
duction of dual-energy x-ray absorptiometry (DEXA). Its
accuracy has now reached an acceptable level, whereas its
precision needs to be further improved and is often over
rated. The interpretation of follow-up measurements in
individuals is difficult, because the average bone mass
changes are small with respect to the uncertainty in the
estimation of the actual changes. Reduction in this uncer
tainty will result in improved monitoring of bone mass
changes.

Apart from the instrument's precision, the uncer
tainty in the observed BMD changes depends on two
additional parameters: the number of measurements and
the time-points at which these measurements are per
formed (5,6). Various combinations of the three parame
ters can be numerically compared if the magnitude of this
uncertainty can be determined. In fact, the length of a
confidence interval can serve as a measure of that. The
shorter the confidence interval, the better the estimate of
the rate of bone mass change.

The effect of short-term precision of current instru
ments on the length of the confidence interval should be
considered in practice optimal, since it appears to have
reached its limits (7). Attention should therefore focus on
the remaining two parameters, which constitute the follow
up procedure. The optimal combination of number and
time-points of measurements will yield the shortest confi
dence interval. We describe a model for the computation
of the length of confidence intervals which allows for the
numerical expression of the degree of uncertainty of ob
served bone mass changes. The model is flexible and
enables clinicians to determine a follow-up strategy for
individual patients which best suits their practice.

METHOD

For the developmentof the model, some generallyaccepted
assumptions were used (5â€”8).It was assumed that during the
observation period, the rate of BMD change is constant, that the
reproducibility is the same in all patients, that measurements are
independent and that the instrument is stable. We also assumed
that BMD values are normally distributed. These assumptions
allow the use of a linear regression model.

Let y be the BMD at time-point t and let the change in

In bone densitometry, the precision of the instrument, the
number of measurements and the time-points of the meas
urements are important criteria for monitoring bone mass
changes.The most appropriatefollow-upprocedurecan be
determined by numerical comparison of various combinations
of these three critena. This can be done by computing the
confidence interval of changes in bone mass. We developed
a modelto estimatethe lengthof a confidenceintervalfor the
observedchangesin indMdualpatients.With specificinstru
ment precision, a specified number of measurements and,
assuminga linear rate of bone mass changes, the best
estimateof the actualchangesin bonemassis obtainedby
measurementsat the endof an observationperiod.With the
current precision of bone densitometers, follow-up of patients
with yearly duplicate measurements is recommended. A
shorter scan time interval offers no additional information
unless very rapid bone loss is expected.

J NucI Med 1992; 33:1406-1410

steoporosis is a complex, multifactorial chronic dis
ease that may progress silently for years until characteristic

fractures appear late in life (1). It is characterized by low
bone mass, microarchitectural deterioration ofbone tissue
leading to enhanced bone fragility and a consequent in
crease in fracture risk (2). Because the structure of the
bone tissue cannot yet be determined in vivo and alter
natives to bone mass measurements are inadequate (3),
bone densitometry is at present the most important tool
for the diagnosis and follow-up of patients at risk and for
the evaluation ofinterventions. The instruments' accuracy
and precision, critical in diagnosis and in monitoring
changes, respectively (4), are ofgreat importance for these
purposes.

Boththe accuracyand precisionofbone mineraldensity
(BMD)measurementshavebeen improvedwith the intro
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Length of 95% Confidence IntervalsTABLE
IA

for Various Instrument Precisions or Standard D
Single, Equidistant Measurementseviations

of the Technique andDiverseMeasurements*

CV@= 1CV@ = 1.5 CV@= 2 s.d.t 0.008s.d.* 0.016s.d.t0.0242

Â±2.77Â±4.16 Â±5.54Â±0.022Â±0.044Â±0.0673
Â±2.77Â±4.16 Â±5.54Â±0.022Â±0.044Â±0.0674
Â±2.63Â±3.94 Â±5.26Â±0.021Â±0.042Â±0.0635
Â±2.48Â±3.72 Â±4.96Â±0.020Â±0.040Â±0.0606
Â±2.34Â±3.51 Â±4.69Â±0.019Â±0.037Â±0.056*

Total number ofmeasurements.t

Coefficient of variation in%.*

Standard deviation in g/cm2.

Length of 95% Confidence Intervals fTABLE
lB

or Various Instrument Precisions or Standard Deviations of the T
Replicate Measurements at Only Two Time-Pointsechnique

andDiverse,Measurements

CV@= 1CVt = 1.5 CV@= 2 s.d.@= 0.008s.d.4 = 0.016s.d.t =0.0242

x 2 Â±1.96Â±2.94 Â±3.92Â±0.016Â±0.031Â±0.0472
x 3 Â±1.60Â±2.40 Â±3.20 Â±0.013Â±0.026Â±0.0382
x 4 Â±1.39Â±2.08 Â±2.77 Â±0.011Â±0.021Â±0.032*

Total number ofmeasurements.t

Coefficient of variation inpercent.*

Standard deviation in g/cm2.

where 7 is the mean of the time-points@ of all measurements
within the observation period. If we use Equation 4 to substitute

Eq. 1 Sb in Equation 3 we obtain:

Sb@ T)2 Eq. 5

The length of the observation period, that is, the period over
which the changes are evaluated, is arbitrary. It can be set equal
to 1, and thus becomes the unit of time.

RESULTS

The lengths of confidence intervals for various possible
measurement set-ups are computed on the basis of the
presented model. Tables 1A and lB shows the results with
the measurement precision expressed in both CV (%) and
s.d. (g/cm2). These tables may be ofhelp in deciding which

Eq. 3 combination suits best a particular precision.
The confidence intervals computed from two and three

measurements within the same period of time have equal
lengths, provided the third observation is carried out ex
actly at the mean time-point. Extra equidistant measure
ments have practically no effect on this interval. Replicate
measurements reduce the length of confidence intervals
considerably. This reduction is inversely proportional to
the square root of the number of replicate measurements
per time point. There is a direct relation between the
confidence level and the length of the confidence interval.
The effect of various confidence levels can be computed
using the numbers depicted in Table 2. A practical appli

BMDbe linear in time; the regressionequation is then equal to

Y,=L@o+f3i *(t@t@)+@,

where f-@ois the BMD at the start (t0) of the observation period,
@ representsthe rateof change(slopeof the regressionline), 1.is

the time-point of the measurement and@ is the random error.
The random error@ comprises all time-independent variables,
such as variations due to counting statistics and machine varia
bility.

The confidence interval for@ is defined as

(b â€”z@,*Sh)< i3@< (b1 + z@sSh), Eq. 2

where b represents the observed rate of change, z, is the nor
malized standard deviate which is related to the confidence level
(see Table 1) and Sb is the standard error of b1:

1 S@.1

Sb @(nâ€”1)@

In Equation 3, n is the number of measurements and S,, the
instrument's precision. The short-term precision can be obtained
from duplicate measurements and is defined as the coefficient of
variation (CV), which is the standard deviation (s.d.) divided by
the mean and expressed as a percentage. Reproducibility is often
used to describe the long-term precision of phantom measure
ments (9).

SI is the s.d. of the time-points:

S1=@ Eq.4
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TABLE2A
Numberof FrequentlyUsedConfidenceLevelsandTheirRelated

Valuesfor the NormalizedStandardDeviate,zaNormalized
standardConfidence

level (%)deviate99

2.5895
1.9690
1.6580
1.2868.2

1

Student's t-distribution should be applied if the intervals
are calculated from multiple measurements and the mdi
vidual reproducibility is estimated (6). Thus, an underes
timate by the ratio of z/t occurs.

The best approach would be to calculate each person's
variability. This, however, cannot be done at the beginning
of the study since it requires at least three or more meas
urements to obtain a reasonably accurate estimate of var
iability (6). Hence, applying the same precision for all
patients is often a necessary assumption. Moreover, an
estimate of only the average length of the confidence
interval is needed as the purpose of the presented model
is to determine a follow-up procedure suitable for the
majority of patients.

. Another assumption concerned the instrument's stabil

ity. The absence of instrument drift should be checked
regularly by phantom measurements. This has to be ac
counted for if a drift is detected.

Because of the assumptions made, the presented model
may not define the exact lengths of the confidence inter
vals, but provides fairly accurate, easily calculated esti
mates of the degree of uncertainty. The model can also be
utilized for the computation of confidence intervals in
other fields for which the assumptions made here are
applicable.

It appearedthat measurementsat the ends of the obser
vation period invoke a far greater reduction of the length
of a confidence interval than measurements close to the
mean time-point. In fact, confidence intervals do not
change at all when measurements are performed exactly
at the mean time-point. This was observed in earlier
studies (5,8), but was never supported by mathematical
evidence: observations at the mean time-point do not
contribute to the summation in the denominator in Equa
tion 5. The more an individual time-point differs from the
mean time-point, the larger the contribution to this sum
mation and hence the smaller the standard error in the
observed rate of change. This is described in more detail
in the Appendix.

Attention must be paid to the fact that biologic varia
tions, as mentioned earlier, restrict the effect of replicate
measurements in improving the estimate of the rate of
bone mass change but not its effect on the estimate of the
actual loss. Davis et al. ( 7) have used longitudinal data to
assess the contribution of biologic nonlinearity to the
uncertainty in the computation of the rate of bone loss.
Their data suggest that the shorter the confidence interval,
the relatively higher this contribution. This is explained by
the fact that biologic variations generate a patient-related,
and hence nonstatistical, factor.

Regarding the frequency of bone mass measurements,
Heaney (8) recommends multiple, evenly-spaced obser
vations to avoid the potential problem of instrument's
instability. However, we feel that this factor should not
influence the follow-up strategy as long as the instrument's
stability is checked daily. With the same number of meas

cation of the model is described in the Appendix. The
confidence intervals in two examples with different rates
of bone mass changes have been computed. Although
completely different, they yield confidence intervals of
similar lengths.

DISCUSSION

We developed a model to estimate the length of a
confidence interval for measured BMD changes in individ
uals. To examine group responses, a different statistical
consideration is needed (10).

The results indicate that even with the currently best
achievable precision, monitoring ofindividual patients still
includes a relatively high degree of uncertainty. The short
term precision is limited by the inhomogeneity ofthe soft
tissue layer (11) and can hardly be improved. Therefore,
determination of an optimal follow-up procedure is nec
essary in order to minimize the uncertainty ofthe observed
BMD changes.

We assumed that the rate of BMD change is linear.
Actually, biologic variations resulting from factors such as
menopause (12) or temporary disability may cause nonlin
ear changes (7). However, it must be taken into consider
ation that the exact effect ofthese variations in individuals
is unknown and that bone mass changes may be consid
ered linear during a short interval even ifthey are nonlinear
over a longer period (10). We felt, therefore, that the
assumption made is the best possible approximation for
actual bone mass changes during an observation period,
especially at the beginning of a follow-up study.

In the model, it was also assumed that the short-term
precision is the same for all patients. In fact, the short
term precision is not exactly the same in all patients due
to its relation to the BMD and to the composition and
thickness ofthe soft-tissue layer (11). Therefore, relatively
low BMD values and inhomogeneous or thick soft-tissue
layers may lead to an underestimate of the confidence
interval, or to an overestimate in the opposite case. To
account for this problem, we have expressed the precision
not only in percentages, as is usually done, but also in g/
cm2 (Table 1A and 1B).

In addition, it should be noted that the lengths of the
confidence intervals are minimum values. The use of the
standard normal (z) distribution is only allowed in case
the reproducibility is known and has a constant value. The
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2urements, replicate measurements yield the optimal re
duction of the confidence interval for the BMD change.

Care should be taken that measurements are repeated
in the same season since seasonal variations in bone mm
eral mass may mask real bone mass changes (13,14).
Yearly measurements avoid this problem. Shorter scan
time intervals yield confidence intervals that are large with
respect to the average patients' bone loss during this period.
These are only required if rapid losses are expected, e.g.,
in case ofovariectomy or immobilization. Rapid bone loss
can double the patient's fracture risk over two years (7),
which necessitates early detection. Longer scan time inter
vals are preferable if the precision is low, or if the patient
is not treated and has a bone massvalue higher than the
average for his/her age and sex. In the other cases, such
intervals should be avoided.

Further scan time intervals will be decided after the first
follow-up period and should depend on the actual level of
bone mass and the rate of its change. The initial scan time
interval can be maintained if the observed loss is within
the range of the average loss for the patient's age and sex,
plus or minus half the length of the computed confidence
interval (as depicted in Table 1A and 1B). In case the
detected loss is larger, the scan time interval must be
shortened; in case of smaller losses (or gains), the interval
can be extended. Apart from these considerations, the
choice ofthe most appropriate follow-up strategy may also
depend on other important factors such as costs, patient's
discomfort, and availability of personnel and equipment.
Adequate interventions should always be available.

In conclusion, we found that even with the current
precision of DEXA instruments, confidence intervals are
large with respect to the observed changes in bone mass.
Therefore, an optimal follow-up procedure is required to
minimize the uncertainty in the estimation of bone mass
changes. Replicate measurements yield the optimal esti
mate of the actual bone mass changes with respect to a
specified number of measurements. Examinations should
be repeated during the same season. A scan time interval
ofless than a year offers no advantages in a clinical setting
unlessrapid changesin bone massare expected.

.â€˜ ItT l\2 /1 l\2 /2 l\2 /3 l\2V RÂ°@)@ +@â€”@)+@â€”@)

14 l\2 f@ l\2 l\2+@â€”@)+@â€”@)+(l@@@)

If an 80% confidence level is chosen, Za 1.28 (Table 2) and
hence the length of the confidence interval Za * Sb Â±2.91%.
Suppose the observed rate of BMD change equals + 1% (in 3 yr
time); then the confidence interval for@ is equal to

(b â€”Za*Sb)<@ < (b + Za*Sb)

(I â€”2.91%) < flu < (1 + 2.91%)

â€”1.91%< $i < +3.91%.

So, with 80% certainty (and under the given assumptions), the
real change in BMD will be between â€”1.91%and +3.91%.

In the second case, the instrument's precision is equal to 1.1%,
close to the present in-vivo short-term precision of lumbar spine
measurements using DEXA (16). Duplicate measurements are
performed at both the start and end ofa 1-yr observation period,
and the observed BMD change is equal to â€”4%.Again I = 1/2
and, using the same equation for Sb, we obtain

Sb

1.1

V{(Â°-@)2@(Â°-@)2Ã·('i)2( i)2}
= 1.1%.

by choosing a 99% confidence level, Za 2.58%, hence z@s Sb =
2.84%,so that @3rangesfrom

(â€”4â€”2.84%)< flu < (â€”4+ 2.84%)

â€”6.84%< I@i< â€”1.16%.

In these two specific cases, the equations regarding Sb can be
simplified. For equidistant measurements we can rewrite the
equation to:

= 2.27%.

SI..,APPENDIX

As an example, two different follow-up procedures are pre
sented. One with equidistant measurements, the other with meas
urements at the start and end of the observation period only.

In the first case, the instrument precision is 2%, as can be
obtained with DPA in patient studies (15). A single measurement
is performed every 6 mo during a 3-yr period. Hence, the number
of measurements, n, is equal to 7 and, as the observation period
is set equal to I, I = 1/2. The standarderror of the observed
change can now be computed:

SI.,
Sb

Sb
\/n 5(1-1)@ V L@I@(@_l)-@f

Sb

______ 1 nlV{@_@)2L1(i-@)2@@ (1-1)(n â€”1)

With the mathematical series for (i@ 1) and (i@ 1)2:

Sb
n(n + 1)
l2(n â€”1)

1409Optimal Follow-up with Bone Densitometry â€¢Verheij et al



By substitutingthe numbers from the first example, i.e., Si., = ACKNOWLEDGMENTS
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7(7 + 1) European Association of Nuclear Medicine Congress, Vienna,
12*6 Austria, September 1991.
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Sy.'

Sh= V{@*(0@@)2+@*(l i)2}

â€”2*S@,-@c.

by substituting the numbers from the second example, i.e., S,,@=
1.1% and n = 4:

2*1.1
Sb@@ 1.1%.

It can be shown that with any given number of measurements,
measurementsat the ends of an observationperiod yieldsmaller
confidenceintervalsthan equidistantmeasurements.If the ratio
of the standard errors of both measurementset-ups, indexedas
S and S , is computed, it follows that:

b,,.d@ h,,,

@ â€” (2*S@.,)/('fi)

Sb,,, (2*S@1)/{@ â€˜J@*@J;;*

=@*@

The set-upsare exactlythe samefor n = 2. With n = 4, it follows:

@n*\/=@J@*@zl.

It can be showninductivelythat the ratio is alwayslessthan 1
forall other evenvaluesof n > 4. So,with the assumptionsmade
for the presentedmodel, n replicatemeasurementsat both ends
ofthe observation period result in a better estimate ofthe rate of
BMDchangethan 2n equidistantmeasurements.
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