
The inclusion of Compton scattering effects in the re
construction matrix does present several practical prob
lems. First, for a one-source-slice to one-projection-slice
matrix such as that considered here, about 95% of the
matrix elements are non-zero when scatter effects are
considered, compared with only about 5% when scatter
effects are ignored. Ifscatter effects are not included in the
matrix, data compression techniques can be employed to
reduce the memory requirements of the matrix, perhaps
by a factor of ten, say from 30 megabytes to 3. Further
more, as discussed in the Methods section, fully realistic
treatments of scatter will require matrix elements specify
ing the probability of photons that were emitted from a
given source slice (that is, a given y value) being detected
in a different projection slice. Such a matrix would prob
ably be impractical since it would be many times larger
than the 30-megabyte matrix considered here. On the other
hand, more compact representations of this scatter infor
mation may be possible. Scatter introduces a small but
non-zero probability for a photon emitted from a given
source location being accepted at almost any position on
the detector. This probability varies slowly as a function
of source location and detection location and therefore
could perhaps be stored using coarse source and projection
grids; alternatively, one might store the coefficients of low
order polynomial fits to these probabilities. Second, meth
odsfor obtaining, in an acceptableamount of computation
time, the scattered-photon detection probabilities of a
specific patient have not been worked out. Research on
these problems is underway. This paper examines the
degree of and the nature of the improvements in image
quality that can be expected from these efforts.
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@â€˜Kethodsof correctingfor the
lvi physicalfactofComptonscat
tering of gamma rays within a pa
tient with subsequent detection by
an Anger camera are always extra
work. The justifications for this ex
tra work are (1) anticipated im
provement of contrast in the image
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and (2) the potential for accurate
quantification if the attenuation
correction is also correct.

Techniques for Compton-scatter
correction can be classified as pre-,
during- or post-reconstruction. The
extra work involved in the method
is not directly related to the type.
Pre-reconstruction methods include
those ofGagnon et al. (1) and Koral
et al. (2), which require acquisition

of separate energy spectra for mdi
vidual locations on the face of the
Anger camera. The early one-di
mensional projection convolution
followed by subtraction of Axelsson
et al. (3) and the later two-dimen
sional version by Msaki et al. (4)
are also pre-reconstruction meth
ods.

During-reconstruction methods
are represented by (1) the true de
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convolution method of Floyd et al.
(5) and (2) the expectation-maximiz
ation- (EM) with-scattering method
of Bowsher and Floyd (6) reported
on in this issue of the Journal and
previously referred to as inverse
Monte-Carlo reconstruction ( 7).

Post-reconstruction methods in
dude the image-subtraction mode
of the dual-energy-window method
introduced to SPECT by Jaszczak
et al. (8). In this mode, a separately
reconstructed image is subtracted
from the normal tomographic slice
to effect scatter correction. The pro
jection-subtraction mode for this
technique, on the other hand, falls
under the pre-reconstruction head
ing (9).

As far as commercial clinical im
plementation, three techniques are,
or perhaps soon, will be available.
First of all, the possibility of a two
window tomographic acquisition
has been provided for by at least one
company (Siemens Medical Sys
tems, Inc., Hoffman Estates, IL).
Second, an on-line energy-depend
ent method known as WAM (Sic
mens) is available and has been in
vestigated (10). In my opinion, the
quantitative accuracy of this
method did not motivate its original
introduction and has not as yet been
established. Lastly, another com
pany (Elscint, Inc., Boston, MA) is
looking into acquiring individual
energy spectra as the basis for cor
rection.

The new publication on the EM
with-scattering algorithm by
Bowsher and Floyd emphasizes the
maximum-likelihood, expectation
maximization algorithm but Monte
Carlo simulation is used, as before,
to find the probabilities (also called
weights) for each pixel in the image
to have contributed to a particular
projection element. It is the need for
this latter calculation which is prob
ably the weakest point of the
methodâ€”more on this at the end of
this editorial. It also clearly places
the technique among those requir
ing considerably more work than in
a normal SPECT reconstruction.

The algorithm itself is quite dc
gant in that all of the great variety
of possibilities for transmission or
scattering of gamma rays are taken
into account. For instance, if there
are 100 counts in a given projection
element and that element has the
relative probability of0.001 of being
reached from a laterally displaced
pixel due to Compton scatters, then
that pixel is likely to have a recon
struction strength of 0. 1, according
to this projection element. A non
displaced pixel facing little attenua
tion and having the larger relative
probability of 0. 1 is likely to have a
strength of 10.0. All other pixels in
the slice from which a gamma ray
can originate and be received at the
projection element within the en
ergy window are also included with
their own relative probability.

In their article, Bowsher and
Floyd have done a very comprehen
sive job ofinvestigating many of the
important parameters of their sub
ject in terms of several meaningful
statistical measures. They include
the effects of noise at three different
count levels. They also present a
comparison of accounting for scat
ter in the probability matrix of the
reconstruction with not accounting
for it.

On the other hand, the authors
have chosen to present all their re
suits in terms oflesion contrast, de
fined as the ratio ofbackground mi
nus signal over background. This
choice has two consequences: (1) the
quoted results are dependent on the
method for background calculation
and (2) absolute quantification of
the lesion activity with the EM al
gorithm including scatter is not di
rectiy investigated. The method for
calculating background using â€œthe
average pixel value in a ring sur
rounding, and extending a few cm
beyond, the lesionâ€• is, however,
quite reasonable.

Also, the authors have simulated
phantoms in which the activity does
not vary with distance along the axis
of rotation. Given that they wish to
carry out 500 iterations and do an

ensemble of 20 noisy cases for each
data point, their restriction is un
derstandable.

By comparing reconstructions
from an ensemble of noisy data to
that from noise-free data, Bowsher
and Floyd conclude that noise af
fects the average bias in contrast
only weakly or not at all. They also
state that, generally, the bias aver
aged over the ensemble of 20 cases
decreases with the number of itera
tions up to 500 (as we would expect)
but that the standard deviation of
the contrast, @C,increases.

I would have preferred that the
authors plot root-mean-square
(RMS) error in the contrast against
iteration number in Figure 4 rather
than the average contract, @,and
z@C.However,it istruethat(1)the
bias in contrast can be simply cal
culated from C and the true con
trast, CT, by the equation bias = C.@.

@ and (2) the RMS error can then
be obtained from â€˜JL\C2+ bias2.
The reason for my preference is that
the RMS statistic is a combination
of the bias and standard deviation
and, thus, (1) summarizes both to
some extent and (2) gives a single
figure ofment in the noisy situation.
One can then obtain an optimum
number of iterations, at least as
judged by this figure of merit.

For the CT 0.5 (cold) lesion, off
the cylinder center by 8 cm, with
200,000 count data, Bowsher and
Floyd do point out that the RMS
error in contrast (which combines
bias and fluctuation as discussed
above) does have an optimum at
iteration 38. The existence of this
optimum iteration number means
that, even in this method where
scatter is being taken into account,
life isn't simple since more than 38
iterations are not better than exactly
38. Thus, in using the method, one
cannot plan to iterate as long as is
practicable and get the best answer
given the time available. Rather, for
any particular geometry, there ap
pears to be a number of iterations
one should approach but not cx
ceed. This problem can, of course,
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occur with other iterative algo
rithms as well.

Perhaps the major question about
the future ofthis algorithm concerns
how the Monte Carlo calculation to
obtain the probabilities is to be car
ned out in the case ofpatients. Here
there are two problems: (1) the oh
ject does vary in the dimension
along the axis of rotation and (2) a
model for the patient is not easily
available.

The authors discuss the matter of
the memory storage requirement for
their technique when the object var
ies along the axis of rotation. This
is presumably solvable with ad
vances in the field.

The second problem of a patient
model â€œhasnot been worked outâ€•
according to Bowsher and Floyd. I
have had experience with superim
posing individual slices of a patient
CT scan on those of a SPECT re
construction (11). An algorithm to
obtain attenuation-coefficient maps
from such CT slices is under inves
tigation in my research work. An
extension to obtaining Compton

scatter cross sections might be prac
ticabie. Future work on implement
ing the EM algorithm with scatter
included might proceed in this di
rection. Probably that is the next
step in the reasonable development
of this inherently elegant but prac
tically difficult approach. Success or
failure in this area will likely deter
mine the possible entrance of this
technique into the competition of
commercial, clinically implemented
techniques.
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