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A lthough positron emission to
mography (PET) has been per

formedin patientsfor more than 15
years, it has only recently begun to
emerge as a diagnostic modality for
use by clinicians. Implementation of
clinicalPET hasbeendelayedby sev
eral factors, including the high cost of
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required equipment ($5-7 million
with camera, cyclotron and support
ing equipment), absence ofU.S. Food
and Drug Administration (FDA) ap
proval, the lack of widespread reim
bursementfrom federaland private
insurers,and the paucity oflarge din
ical trials (including outcome data)
from multiple sites. Some solutions to
these limitations appear to be near.
The entry of major manufacturers
into PET imaging should decrease the
price of cameras due to increased
competition. Other recent changes are

joint venturesbetweenclinicaland/or
research centers with radiopharma
ceutical groups that share a cyclotron.
By sharing or leasing the cyclotron,
the capital equipment and operating
costs should be reduced while making
PET tracers available to sites with
cameras but without cyclotrons. The
regulatorybarriersarealsostartingto
resolve. In November 1989, the FDA
issued a position statement on PET
radiopharmaceuticalsindicatingthat
PET centerscould continue to operate
eventhoughNew Drug Applications
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extentof diseaseon the basisof non
invasive,direct measurementsof re
gional perfusion at rest and during
high flow states (exercise or pharma
cologic). This type of approach would
be similar to the earlieranimal exper
iments that formed the foundation for
defining severity of stenosis in terms
of anatomy and physiologic limita
tionsin increasingmyocardialperfu
sion in response to stress.

PerfusionImagingwith Single-Pho
tonEmitters

Myocardial perfusion imaging with
thallium-20l is well establishedas a
meansfor diagnosingcoronaryheart
disease (6â€”10). Initial studies showed
a high sensitivity and specificity but
more recently, the observedspecificity
has decreased (11â€”12).One explana
tion for thesechangesis referralbias.
For example, if one begins to rely on
a testfordecisionsaboutthe needfor
arteriography, there is a bias to do
invasive testing only on abnormal
thallium studies and not in patients
with normal 201T1scintigrams. Thus,
specificityfalls since patients with
false-positives have arteriography,
whereasmostpatientswho are true
negativesdo not.The sameevolution
would be expected for any test relying
on a binary decision (positive/nega
tive).Thallium-201 is inherentlylim
ited to this type of analysis since the
absenceofattenuationcorrectionpre
cludestruequantitationof activity.

Two new technetium-99m-based
perfusion agents have recently been
approved by the FDA: teboroxime
(Cardiotec) and sestamibi (Cardiolite)
(13â€”16).The higher photon decay en
ergy of 99mTcshould decrease atten
uation artifacts. However, published
studies have not clearly demonstrated
an improvement in diagnostic accu
racy with thesetracers over that ob
tamablewith 201T1.

In theory, advances in camera tech
nology might allow attenuation cor
rection to be performed with SPECT
to obtaintruequantitation.However,
such technical improvements are

likely to increase the price of SPECT
systems substantially.

PerfusionImagingwith PET

Several investigators have devel
oped models with PET to measure
regional perfusion in absolute terms
using rubidium-82, oxygen-l5-water,
and nitrogen-l3-ammonia(17â€”19).
However, coronary blood flow esti
mates by PET have not been directly
comparedto anatomicmeasurements
of stenosis severity obtained with
quantitative arteriography (QCA).
Relative perfusion reserve (stress to
rest in a defect divided by a compa
rable measure for a normal segment)
has been studied in patients who have
undergone QCA (20). In these studies,
relativeperfusionreservewasnormal
until the stenosis exceeded 50% in
diameter and then decreasedwith
more severestenosis.Followingan
gioplasty,changesin perfusionreserve
parallelarteriographicchangesin ste
nosis severity (21). These results are
concordantwith animalstudiesrelat
ing anatomy and coronary flow re
serve (22).

Althoughthemeasurementofmyo
cardial perfusion per se should theo
retically improve our ability to assess
coronary disease, it is important to
the clinician and insurer to know
whether these differences will justify
the attendant higher cost of PET by
reducing or eliminating more expen
sive procedures and/or decreasing
morbidityand mortality.When PET
hasbeen evaluatedusingsensitivity
and specificity, the results have been
promising.

In an early study, Schelbert re
ported a sensitivity of97% and a spec
ificity of 100% for PET stress perfu
sion imaging with â€˜3N-ammoniain 32
patients with disease and 13 controls
(23). Similar results were obtained by
Yokenura et al. (24). Demer and col
leagues compared â€˜3N-ammoniaor
82Rbrest/dipyridamole stressimages
to QCA and found a good correlation
between coronary flow reserve (CFR),
estimatedfromarteriographyandvis

(NDAs) were not yet approved. Sub
sequently, rubidium-82 generator use
for clinical purposes was approved in
December 1989. The issues related to
reimbursement are now being re
viewed by the Office of Health Tech
nologyAssessment(OHTA) at Health
Care Financial Administration
(HCFA) for Medicare coverage and
independently by members of Health
Insurance Association of America
(HIAA). This editorial reviewsthe ad
vantages and limitations of PET im
aging as a diagnostic modality and
discusses whether these enhancements
justify the higher cost of equipment
and ensuing charges for clinical stud
ies.

PHYSIOLOGIC ASSESSMENT OF
CORONARYHEART DISEASE

The final arbitrator for the diagno
sis of coronary disease has been the
presence of a visually determined ste
nosisof >50% diameter narrowing
based on coronary arteriography (1).
The use of arteriographyas the â€œgold
standardâ€• has recently been chal
lengedby severalinvestigatorsthat
point out significant inter- and in
traobservervariability,the eccentric
ity of most coronary lesions, and the
difficulty in relyingon percentnar
rowing when the â€œnormalâ€•part of the
vessel, the denominator in percent
narrowing, may itselfbe diffusely dis
eased (2-4). An additional problem
with the use of a 50% stenosis as the
definition ofa significant coronary ar
tery lesion is the implication that pa
tients with lesser degrees of stenosis
donothavephysiologicallyimportant
disease. The basis for the selection of
a 50%diametercutoffpoint is derived
from animal studies using fixed ste
nosis of variable severity (5). Lesions
with >50% stenosis are associated
with a decrease in maximal flow with
vasodilation (i.e., decreased coronary
flow reserve).Since the diagnosis of a
functionally significant lesion is based
on the inability to increase flow under
stressconditions, it would seempref
erableto determine the presenceand
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uallyinterpretedPET (25). Recently,
Go et al. compared thallium SPECT
and 82RbPET directly to arteriog
raphy in 202 patients, 133 of whom
had neither prior coronary artery by
pass procedures nor angioplasty (26).
They reported a statistically signifi
cant increase in the sensitivity of PET
of 95% (compared with 79% for
SPECT) but no change in specificity
(82% compared with 76% for PET
and SPECT,respectively).In contrast,
Stewart et al. from Michigan reported
a higherspecificityand similarsensi
tivity with PET/SPECT in patients
comparedwith quantitativecoronary
arteriography (27).

The Positionof PET Today

The major advantage of PET over
SPECT is the ability to correct for
differences in attenuation that would
be expected to improve interpretation
by minimizing artifacts. Another ad
vantageistheabilitytocompletestud
ies in 1â€”1.50hr as opposed to 4â€”6hr
for 20Tl and @mTc@sestamibi.Does
quantificationmakea significantdif
ference in selecting patients for inter
vention? Theoretically it should.
Given the variabilityof interpretation
of arteriography and the attenuation
problemswith201Tland99mTc,PET is
a strongcandidate for use as a decision
end point for determining the need
for arteriography and whether a lesion
wouldrequirerevascularization.Such
studieswouldbe expectedto be par
ticularly helpful in patients most
likelyto haveeitherdiaphragmaticor
breasttissueattenuationartifactswith
201Tlor 99mTcradionuclides.

ASSESSMENT OF MYOCARDIAL
VIABILITY USING RADIONUCLIDE
TRACERS

One of the areas that PET is begin
ning to have major impact on in din
ical decision-making is the determi
nationof myocardialviabilitywith 2-
fluoro 2-deoxyglucose (FDG) (28).
The premise is that only a viable, met

abolicallyactive myocardiumtakes
up glucose. With myocardial ische
mia, uptake of glucoseis enhanced
because of a diminished oxygen sup
ply that increases anaerobic metabo
lism.FDG isextractedsimilarlyto its
normal circulating physiological
counterpart. However, after it is phos
phorylatedand trappedin the cell, it
is not broken down further. Tillisch et
al. found that the presence of FDG in
myocardium, normalized for differ
ences in delivery, predicted improve
ment in regional left ventricularfunc
tion following surgical revasculariza
tion. Patientswithout FDG uptake
had no significant change in wall mo
tion (29). These observations have
beenusedasa clinicalbasisfordiffer
entiating potentially reversible is
chemic disease(i.e., â€œhibernatingâ€•
myocardium)fromextensivemyocar
dial scarin patientswith severeleft
ventriculardysfunction who are being
considered for coronary artery revas
cularization procedures or cardiac
transplantation.

Do 201T1redistribution scans pro
vide similar information?Thallium
redistributionimagingfor viabilityis
based on differences in flow-depend
ent washout between normal, is
chemicand infarctedregions(30). In
experimental animals, viability is usu
ally presentin myocardium with flow
greaterthan 0.6 ml/min/g and absent
in regions with flow less than 0.4 ml/
min/g (31). Regions with intermedi
ate flows are not clearlyseparatedinto
liveor deadtissuesimplyon thebasis
of flow or 201T1uptake.

A study by Brunken et al. found
that 58% offixed thallium defects (ir
reversibly injured) were viable by
FDG (32). Tamaki obtained similar
resultswith 40%ofpersistent thallium
defectsdisplayingFDG activity(33).
Recent studies have suggested that
reinjection of thallium at 4 hr in
creasesthe number of segmentsclas
sifiedas viable(34). Thallium redis
tributionstudieswouldbeexpectedto
be least reliable in regions of inter
mediate flow where differences be
tween viable and necrotic tissue activ
ity may be borderline. Interpretation

of FDG uptake in such regions may
be facilitatedby the quantitative prop
erties of PET imaging and the pres
ence ofa â€œhotspotâ€•to readas opposed
to a â€œcoldspotâ€•for thallium.

Several other approaches to the
PET assessment of viability have
undergone preliminary testing, in
cluding the use of labeled fatty acids
(carbon-l l-palmitate), aerobic me
tabolites (carbon-l 1-acetate and py
ruvate) and differential washout of ru
bidium-82 (35â€”38).Further clinical
validation of these tracers must be
performed before they can be consid
erableacceptablemarkersof viability
in patients.

FUTURE DIRECTIONS

The quantitative properties of PET
and the wide range of possible tracers
using carbon-l 1, nitrogen-13, and flu
orine-18 shouldexpand the use of
PET as the technology becomes more
widelyavailable.PET shouldbeuseful
asa researchandclinicaltoolforeval
uating interrelations between hor
monesand their receptorsand in the
determination of cellular abnormali
tiesassociatedwith the development
of cardiomyopathies, arrhythmias,
atherosclerosis, and thrombosis. An
other potential role for PET may be
in theevaluationofunstablecoronary
artery plaques and in identifying pro
gressionand regressionof atheroscle
rotic lesions. PET may also be used to
studyendorganpharmacokineticsdi
rectly rather than relying on blood
levelsof cardiacdrugs.These new
areas should represent some of the
largest growth areas for PET's clinical
applications.

Richard A. Goldstein
James T. Willerson

University of Texas Health Science
Center

Houston, Texas
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