
ince 1956 when Taplin and co-workers first intro
duced the radioisotope renogram, the publications con
cerning this subject by now probably number well over
a thousand. The interpretation of the renographic data
was performed in a purely qualitative manner by visual
inspection of the recorded curves.

Later, the visual assessment was replaced by semi
quantitative methods based on values ofcertain empiri
cal parameters obtained from simple measurements on
the renograms (heights, slopes, peak times, residual
renal activities, etc.).

The introduction of the gamma camera and the
computer in nuclear medicine has resulted in
many attempts at quantitative analysis of radioisotope
renography (1,2).

The determination of the renal indicator clearance in
renography usually comprises a computer-assisted
analysis of the activity-time curve for a region of inter
est in the body and one or more blood samples drawn at
different times during the renography (3â€”6).In this
work, the evaluation of the renal indicator clearance is
expressed as the ratio of the indicator clearance to its
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vascular distribution volume. Blood samples are not
required. The presentation should be regarded as an
alternative way of adjustment of the renal indicator
clearance, and it is perhaps as correct as the usual one of
adjusting to a standard body surface of 1.73 m2.

The complete description of the passage ofan indica
tor through a kidney is given by the residual impulse
response for that kidney (with respect to the indicator).
We have derived a direct computational algorithm
based on Laplace transforms for determination of the
residual impulse response. This algorithm is likely to be
less sensitive to noise on the renographic data as com
pared with the matrix algorithm of deconvolution used
by others (7).

The residual impulse responses for the whole kidney
and for the renal parenchyma alone are determined in
this work. Knowledge of these residual impulse re
sponses makes it possible to distinguish between ob
structive uropathy and obstructive nephropathy (8,9).

If the residual impulse response should be de
scribed by a single parameter, this parameter would
be the mean transit time. Consequently, the mean
transit times of indicator through the kidney and the
renal parenchyma are the most clinically useful sin
gle parameters for assessment of whether an outflow
obstruction from a kidney will induce loss of nephrons.

Volume 27 â€¢Number 1 â€¢January 1986 117

TechnicalNotes

QuantitativeEvaluationof Iodine-123
HippuranGamma Camera Renography
in Normal Children
Ove Carlsen, Birgit Kvinesdal, and Erling Nathan

Isotope Laboratory, Vejle Hospital, Vejle, Denmark; and Pediatric Department, Kolding
Hospital, Kolding, Denmark

Ina retrospecth,e study of 39 normal thikhen Submittedto [1231)'iippurangamma camera
renography, a quantitative evaluation of the recorded data showed that: (a) the rate constant
for renalplasmaclearanceof [â€˜23l)@ippizanwas â€”0.166Â±0.043 min1 correspondingto
a hippuranplasma clearance of 518 Â±142 mI/mmper 1.73 m2;(b)the fractionalrenal
clearanceof [123l)iippuranwas 0.51 Â±0.03 and0.49 Â±0.03 for the left andthe ri@t
kidney,respectively;and(C)the meanvaluesfor the meantransittimesof [123l)iippuran
throu@ the whole kldney,the renal parenchyma, and the renal peMs, respectively, were
4.2, 1.9, and 2.5 mm. Five kidneys (in fo@xpatients) showed prolonged renal mean transit
times of [1231)iipptran. Follow-up renographies were performed in three of the four thil@en
and gave normal results. Patients with renal mean transit times above the present 5%
significance limitof 8.2 mm should not necessarily be considered having an abnormal renal

@n@on.
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TABLE I
Classification of Patient Material After [1231]Hippuran

GammaCameraRenography

Patients with normal findings prior to the
IHGR 39
Patientswithabnormalfindingspriorto
the IHGR 49

(a) Vesico-ureteral reflux 23
(b) Obstructiveuropathy 10
(c) Pyelonephritis 6
(d) Renalaplasia/dysplasia 5
(e) Glomerulonephritis 2
(f) Neurogenic bladder 2
(g) Nephrectomy 1

Patientswhohadnotbeensubmittedto
all examinations 11
Patientsin whomthe IHGRfailed 10

(a) Patientmovements 2
(b) Unsuccessfuliv. injection 4
(C) Technical errors 4

Total 109

Image Analysis

In the digital images, regions of interest (ROIs) were visu
ally placed over: (a) the heart, mainly over the left ventricle;
(b) the right liver lobe well outside the contour of the right
kidney; (c) the left kidney; (d) the parenchyma of the left
kidney; (e) the right kidney; and (f) the parenchyma of the
right kidney. The parenchymal curves are based on the activi
ty within a 2â€”3-cells-wide ROI running from the upper to the
lower pole along the lateral contour of the kidney. Hence, the
parenchymal curves represent the activities in nephrons
distributed predominantly in the renal cortex. The kidney
curves (i.e., the renograms) include the whole of the renal
pelvis. The above six activity-time curves constitute the basic
data material in the subsequent analysis in the computer.

AnalysisandDecompositionof theHeartCurve

The heart curve is assumed to measure only the radiation
from indicator distributed in the vascular pool within the
cardiac ROI. This plasma volume is denoted Vhp.Let t = t0
denote the time after injection when the bolus has mixed with
the plasma. We use as t0 the peak time of the heart curve plus
45 sec, i.e., t0isâ€˜@â€˜-â€˜lmm after injection. The plasma concentra
tion of indicator in the volume Vhpis denoted Ch@(t)and C@(t)
in the total plasma volume, V@,(for t t0). We get for the
heart curve 1-1(t):

H(t) = GhVhPChP(t)

= GhVhPCP (t) (for t t0). (I)

The factor Gh in Eq. ( I ) takes into account the measure
ment geometry of the indicator within the volume Vhp. Fur
ther, Gh includes the sensitivity of the gamma camera and
subsequent electronic equipment. The dimension of Gh is, for
example, count rate per @Ciof the radioisotope. H(t)
represents a count rate.

Let Fpkdenote the renal plasma clearance of the indicator.
The rate constant for renal clearance of the indicator is
defined as follows:

â€˜pk FPk/VP. (2)

For the computation of the rate constant Apk,we will use the
Stewart-Hamilton method from the theory ofstochastic trac
er analysis. This method states that the (effective) carrier
flow through a system is given by the ratio ofthe injected dose
to the integral from t = o to infinity of the tracer concentra
tion at the output side of the system.

The method can be expressed as:

FPk=@@ , (3)
10 ChP(t)dt

where Q denotes the dose injected (in @zCi).We assume that
the plasma concentrations of indicator at the output side of
the system, i.e., in the renal arteries, is identical to Chp(t).

Combination of Eqs. ( I)â€”(3)gives after rearrangement:

- Gh(VhP/VP)Q
â€œpk@@ . ( )

I H(t)dt
0

MATERIALS AND METHODS

Normal SubjectSelection

During the period December 1981-March 1983, a total of
I09 patients 2- 15 yr old were referred to the pediatric depart
ment of our institution with renal and urological disorders,
predominantly urinary tract infections (UTI).

Intravenouspyelography,microscopyof the urine, quanti
tative bacterial count, stix for protein and glucose in the urine,
and se-carbamid were performed in all patients. UT! was
treated with antibiotics for I0 days followed by prophylactic
nitrofurantoin treatment (1-2 mg/kg/day). Mter a mini
mum of 4 mo without UTI, micturating cysto-urethrography
(MCU) and iodine-l23 (1231)hippuran gamma camera
renography (IHGR) were made.

Classification of the patients at the time of the IHGR is
shown in Table I . Of the I09 children, 39 (two boys, 37 girls)
could be considered normal. The mean age was 7.9 yr.

In all children (except five), the IHGR was performed on
the day after the MCU. Approximately half an hour prior to
the IHGR, the children were asked to drinkjuice to stimulate
the diuresis. The radioactive dose for the children was calcu
lated as follows: (4 X age + 20)/lOO mCi [â€˜23ljhippuran.

RenographicImagingProtocol

A gamma camera with a 40-cm field-of-view and mounted
with a low-energy, high-resolution parallel hole collimator
was used. Patients were lying in the supine position with the
detector head opposite to the kidney region from the dorsal
side. Following a bolus injection into the median cubital vein
of the radioactive indicator, digital images were recorded for
30-40 mm postinjection using three sampling rates: 0â€”5mm:
5 sec/frame, 5-20 mm: 20 sec/frame, and 20-40 mm: 1
mm/frame. Frames were collected in a 64 X 64 matrix. The
energy window setting around the photon peak was 20%.
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Let Q@(t0)and Q@(t0)denote, respectively, the parts of the
dose Q which at time t0 reside in the plasma volume V@and in
the extravascular distribution volume V@.The measurement
ofhippuran clearance starts at time t0 instead ofat zero time.

Equation (4) is then rearranged as follows:

A â€” Gh(VhP/Vp)(Qp(tO+ Q@(t0))
pk

In the time interval from t t0to the end ofthe renography,
the heart curve is approximated by a biexponential expres
sion:

H(t) = H1eAI(t_t0)+ H2ex2@_t0).

Equation 6 is used for extrapolation of H(t) to infinity. The
biexponential decomposition of the heart curve is based on
Marquardt's iterative least-squares method (1,10). The biex
ponential expression for H(t) is consistent with a prerenal
kinetic model for the indicator consisting of an open two
compartmental model. This is shown in Appendix 1.

The quantity Gh(Vhp/Vp)Qp(tO)can be interpreted as the
count rate within the cardiac ROI when Q@(t0) is uniformly
distributed in V@.Hence, Gh(Vhp/Vp)Qp(tO) must equal
H(t0). We then have:

- (H1 + H2)(I -F

Xpk H1/X1 + H2/X2

where Rq denotes the ratio Q@(t0)/Q@(t0).
Owing to the considerable extravascular clearance of hip

puran during the first circulation of the injection bolus, we
assume that at time t0 a state of approximate concentration
equilibrium exists between the plasma volume V@and the
extravascular hippuran distribution volume V@.Becker (ii)
found for [â€˜31ljhippuran a concentration equilibrium be
tween V@and Ve 5 mm postinjection as an average value in
eight patients. Hence, the ratio Rq must equal the ratio VC/VP
as an approximation.

The ratio VC/VPremains to be evaluated. The slow compo
nent ofthe heart curve, H2eA2(tto),is considered proportional
to the concentration curve for [â€˜231]hippuranin the plasma if
Q@(t0)wasdistributed at time t0uniformlyin V@and in Ve.

We have:

H1+ H, = GhVhPQP(tO)/VP

H2 GhVhPQP(tO)/(Vp+ Va).

Solution of Eqs. (8)-(9) for VC/VPyields:

VC/VP H1/H2.

The final expression for calculation of the rate constant for
clearance of [â€˜231]hippuranreads:

- (H1 + H2)(l + H1/H2)

Apk _ H1/X, + H2/X2

Correctionof KidneyCurves
for BackgroundRadiation

The correction of the left and right kidney curves for
background radiation is made with the following expression:

(5)

( I2)K(t) = CK(t) â€”SF . RBG(t),

where K(t) denotes the kidney curve, CK(t) is the composite
kidney curve (i.e., including the background radiation), SF is
the subtraction factor, and RBG(t) denotes a reference back
ground curve. The reference background curve is assumed to
have a shape identical to the true left and right renal back
ground curves. As RBG(t) we use a smoothed version of the
activity curve for a ROb recorded over the right liver lobe well
outside the contour of the right kidney.

The subtraction factor of a kidney curve is calculated from
CK(t), RBG(t), and the heart curve, H(t), using the following
expression:

CK(t0) â€”R . z@CK
SF= , (13)

RBG(t0)â€”R.@RBG

where
L@CK= CK(t0 + zM)â€”CK(t0),

L@RBG= RBG(t0+ @t)â€”RBG(t0)and
(to (to + @5t

R = j H(t)dt /@ H(t)dt.
Jo Jt,

The time t = t0+ i@tchosenexcludesthat any indicatorhas
left the kidney before this time. Usually, t0 + z@tis -â€˜@.-2mm
postinjection. For details of the calculation of the subtraction

(7\ factor SF see Appendix 2.
â€˜1 Compared with the renograms, the correction of the corn

posite parenchymal curves for background radiation is more
simple. The subtraction factor for a parenchyrnal curve is
equal to the product of the subtraction factor for the corre
sponding kidney curve and the fraction of the size of the
parenchymal ROl to that of the renal ROl. The parenchyrnal
curves are multiplied by a factor so that they fit their respec
tive kidney curves until the time when the indicator begins to
leave the renal parenchyrna on that side. In this way, a correct
parenchymal curve should run below the kidney curve dur
ing the time of removal of indicator from the kidney to
demonstrate a delay of indicator in the calyces and/or pelvis.

Computationof the KidneyResidualImpulseResponse

The kidney impulse response, IR(t), is defined by the con
volution integral:

(8)
I lR(T). Kl(tâ€”T)dT= KO(t), (14)

(9) where K1(t) and KO(t) denote the kidney input and kidney
output, respectively. The dimensions of KI(t) and KO(t)
are, for example, count rate/mm. The dimension of IR(t) is

(10) 1/min. The kidney impulse response is a frequency distribu
tion function, i.e., it tells the proportion ofan indicator taken
up by the kidney that traverses it in a given time.

The convolution integral in Eq. ( I4) can be expressed in
another form (I):

(11) CtJRIR(T).KI(tâ€”T)dT=K(t), (15)
0

where the kidney residual impulse response, RIR(t), is given
by:

RIR(t) = 1â€”J IR(T)dT. (16)
0

IH(t)dt

(6)

and
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This way of expressing the convolution integral is more
convenient since the kidney curve K(t) is readily available
in contrast to the kidney output KO(t).

The kidney input, Kl(t), is the derivative with time of the
kidney uptake KU(t):

KI(t)=@-@-. (17)

The kidney uptake KU(t) is defined as the net quantity of
indicator that has entered the kidney from the time of injec
tion to an arbitrary time t. The dimension of KU(t) is count
rate. When no indicator has left the kidney, the kidney curve
and the kidney uptake curve are identical.

Since the kidney input curve is proportional to the heart
curve, the kidney uptake can be determined from a curve fit
of the kidney curve to the integral of the heart curve in the
time interval t0 t td where t = td is the time when
indicator begins to leave the kidney:

K(t) = K(t0) + tij H(T)dT. (18)

The results of the linear regression problem in Eq. (1 8) are
K(t0) and @i;K(t0) is the kidney bolus, i.e., the part of the
injection bolus Q taken up by the kidney and, of course,
K(t0) represents a count rate in the kidney measurement
geometry.

The kidney uptake, KU(t) is given by the expression on
the right side of Eq. ( I8) but valid for all tt0.

The kidney input is determined as the derivative with time
ofthe kidney uptake in Eq. (18):

Kl(t)= K(t0).@5(tâ€”t0)+ a.H(t)

= K(t0) . Ã´ (tâ€”t0) + o@H1eA1@_t@ +@ H2e)'2@@(0).

In Eq. (19), Ã´(tâ€”t0)represents Dirac's delta-function
(i.e., a function with infinite pulse height and infinite small
pulse width around t = t0; area of delta-function is 1). The
kidney input consists ofthe sum ofan impulse function and a
biexponential expresssion.

In the convolution integral in Eq. (15), the kidney input,
Kl(t), and the kidney curve, K(t), are now both known. The
solution ofthe convolution integral is made using the theory
of Laplace transforms.

The formula for the residual impulse response, RIR(t),
reads for tt0:

RIR(t) = @O)Lth@(tT)dT,

where the function @,(t)is a biexponential expression deter
mined by the parameters in the kidney input expression in
Eq.(19).

In the calculation of RIR(t) from Eq. (20), the integral is
approximated by sums over appropriate small time steps. The
derivative of the kidney curve, dK/dt, is approximated by a
finite difference quotient after a smoothing of the kidney
curve by repeated use of a five-point smoothing algorithm.

The derivation of the analytical solution of the convolution
integral with regard to RIR(t) in Eq. (20) is rather cumber
some. It is shown in Appendix 3.

The derivation of the residual impulse response for a paren
chymal curve and for a kidney curve is the same.

Mean Transit Times of Indicator Through the Renal
Parenchyma and the Renal Pelvis

The mean transit time, MTT, of an indicator through a
system is determined by the expression:

MiT = J@t . IR(t)dt, (21)

where IR(t) denotes the impulse response of the system with
regard to the indicator.

Byintroducingthe residual impulseresponseof the system
defined in Eq. (16), the formula for MTT in Eq. (21) can be
rearranged using partial integration to yield:

MTT = j. RIR(t)dt. (22)
Jo

Hence, the mean transit time is the area under the residual
impulse response curve from zero time to infinity.

Since the residual impulse responses for the kidney and the
renal parenchyma have been determined in the preceding
paragraph, the mean transit time through the kidney, MTTk,
and that through the renal parenchyma, MTTa, can easily be
calculated. Mean transit times of subsystems in series are
additive. Thus, the mean transit time through the renal pelvis,
MTTC,is given by:

MTTe MTTk MTTa.

Figure 1shows an example ofthe residual impulse response
curves of [â€˜23l]hippuranfor a kidney and its parenchyma.

FractionalRenalClearances

The fractional contributions to the total renal indicator
clearance by the left and right kidneys are denoted FRC1and
FRCr, respectively; FRC, + FRCr 1.

(19) Let o@and @rdenote the values of@ in the curve fit in Eq.
( I8) for the left and right kidney, respectively. Then we have:

FRC1= @/(@+ (Tr)and

FRCr (Tr/(0i + or).

The rate constants for indicator clearance by the left and

FIGURE 1
Residualimpulseresponse of [123ljhippuranfor leftkidney
(RIRk)and parenchyma of left kidney (RIRa)in 13jfl@Old
normal girl. Mean transit time through kidney, MTTk,is 3.4
mmand that for renal parenchyma, MTTa,1.7 mm.Zero time
is â€œ-1mm after injection

100

(20) :

0
0 2 4 6 8

Time (mm)
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ItemMeanStandard deviation5%
Significance

limitsBoth

kidneys,Xpk(min')â€”0.1660.043â€”0.081â€”0.25Left
kidney,X@,,(min1)â€”0.0840.023â€”0.038â€”0.13Right
kidney,Xpk,r(min1)â€”0.0780.021â€”0.038â€”0.12Left

kidney,FRC10.5070.0310.450.57Right
kidney,FRCr0.4930.0310.430.55

TABLE 2
Mean Values and Standard Deviations of Rate Constants for Renal Clearance and Fractional Renal Clearance of

[1231]Hippuran for Left and Right Kidney in 39 Normal Children

right kidney, XpkIand Apkr,respectively, are calculated as:

@â€˜pk.I FRC1 . )tPk and

@â€˜pk,rFRCr@ Xpk

The biexponentialdecompositionof the heart curve [Eq.
(6)] includes a statistical evaluation of the parameters deter
mined, i.e., the standard deviations (s.d.s) and correlation
coefficientsfor , X@,H2,and X2(I). The linear regression
problem in Eq. ( I8) also includes a statistical investigation.
The total statistical information makes it possible to evaluate
the s.d.s of Xpk,XpkJ,Xpk.rand of FRC, and FRCr. Stochastic
simulation is used for this purpose.

Accuracyof theQuantitativeMethod

The accuracy of the rate constant for renal clearance of
[â€˜231]hippuranhas been investigated by comparison of Xpk
with the standard glomerular filtration rate in a study of 31
patients (15 men, 16 women) submitted to IHGR at our
institution, during the period December 1981-May 1985.
The age distribution was 45 Â±I9 yr. The glomerular filtra
tion rate was determined by chromium-S I ethylenediamine
tetraacetic acid clearance in 27 patients and by creatinine
clearance with urine sampling in four patients. The maxi
mum time interval between the IHGR and the clearance
determination was chosen as 2 mo. For the patient material,
the time interval was 23 Â±19 days. All patients were in a
nonacute state of renal disease, most of them having a long
history of renal diseases. The values of the glomerular filtra
tion rates weredistributed over the interval 10â€”130ml/min
per1.73m2.

Precisionof the QuantitativeMethod

The precision of the quantitative evaluation of the gamma
camera renography has been studied by repeated generation
and computation of the ROl curves in a patient study of 40
children and adults with/without renal diseases. The patients
were selected from a total of 300 patients submitted to (HG R
at the isotope laboratory, Vejle Hospital, during the period
December 198 1-April 1984. Both the original and the new
generation of ROl curves were made by the same experienced
computer cperator.

RESULTS

RateConstantsfor RenalClearanceof [â€˜23llHippuran

The total (Xpk), the left (Xpk.l)and the right (Xpk,r)rate
constant for renal plasma clearance of [â€˜23l]hippuran are

presented with means and s.d.s in Table 2. The 5% signifi
cance limits are included. Chi-square tests of goodness of fit
were made to test the hypothesis that the histograms of the
three variables could be described by normal distributions
(12). All three tests turned out nonsignificant (p<O.l5,
p<0.25, and p<0.30, respectively). The means of Xpk,ApkJ,
and Xpk.rin the table are calculated as weighted means where
the weights are the inverse variances ofthe three variables for
each patient.

Accuracyof theRateConstantforRenalClearance
of [â€˜23llHippuran

Linear regression of/Ark/compared with standard glomer
ular filtration rate, SG FR, in mI/mm in 3 1 patients yielded:

where

and

IXPkI a.SGFR+b,

a = 0.00129Â±0.00011ml' (@Â±Is.c.m.)

b = 0.0059 Â±0.0079 min@ (x Â±1 s.c.m.).

The s.d. of the data around the regressionline was 0.022
min@ while the linear correlation coefficient was 0.90.

FractionalRenalClearanceof [123ljHippuran

The mean value and s.d. for the fractional renal clearance
of [â€˜23l]hippuranof the left (FRC1) and the right (FRCr)
kidney are shown in Table 2. The 5% significance limits are
included.

A Chi-square test of goodness-of-fitwas made to test the
hypothesis that the histogram of the variable FRC1 could be
described by a normal distribution (/2). The test was nonsig
nificant (p<O.4 I). The means of FRC1and FRCr in the table
are calculated as weighted means where the weights are the
inverse variances of the two variables for each patient.

Mean Transit Times of Indicator

The mean transit times (MTT) of [â€˜23ljhippuranthrough
the kidney, the renal parenchyma, and the renal pelvis are
shown as histograms in Fig. 2 for the whole patient material of
39 children. No distinction between the left and right kidneys

has been made.
Logarithmic normal curves were fitted to the histograms in

Fig. 2. Chi-square tests of goodness-of-fit were made to test
the hypothesis that the histograms could be described by
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TABLE 3
Mode, Median, and Mean Values of Logarith

Curve Fits to Histograms in Fig. 2mic
NormalUpper

5%significanceMode

MedianMeanlimitItem
(mm) (mm)(mm)(mm)Kidney

3.0 3.84.28.2Renalparenchyma

1.5 1.71.93.4Renal
pelvis 0.72 1.7 2.57.4
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FIGURE 3â€¢
Logarithmic normal curve fits to histograms of MTTof
[1231}hlppuranthrough kidneys, renal parenchyma,
andrenalpelvisin 39 normalchildren

logarithmic normal curves (12). All three tests were nonsig
nilicant (p<O.29, p<O@22,and p<0.37, respectively). The
three logarithmic normal curves are shown together in Fig. 3
for comparison. It is seen that the skewness ofthe distribution
of mean transit times is considerably greater for the renal
pelvis than for the renal parenchyma. The latter is nearly
symmetrically distributed around 1.7 mm, whereas the distri
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60 60

; 4Â°
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bution of the mean pelvis transit times have a mode value
below I mm, but a mean value of 2.5 mm. The mode, median,
and mean values of the logarithmic normal curves are given in
Table 3 together with the 5% one-tailed upper significance
limits.

Five kidneys (in four patients) had prolonged renal MTT
values (p<O.O5), mainly owing to prolonged parenchymal or

pelvic MTT-values. The shapes of the five renograms differed
considerably from those of the remaining 73 kidneys. The
renograms of the four patients are shown in Fig. 4. Gross

estimates of the diuresis based on urine collection yielded 7.0,
0.2, 0.7, and 2.5 ml/min/ I .73 m2in Patients Iâ€”IV,respective
ly. However, follow-up IHGR performed in Patients I, II, and
IV resulted in normal renal MTT-values. The follow-up
IHGRwerenotincludedinthisstudy.

Precision of the Quantitative Method

To test the hypothesis that the variable values in the first
and second generation and analysis of data have been
drawn from populations with identical mean values, the
Wilcoxon matched-pairs signed-ranks test have been ap
plied (13). The tests for the first six variables listed in Table
4 were nonsignificant. The test for MTTCwas significant at
the 5% significance level. All tests were two-tailed. The
mean values of the seven variables in the first and second

analysis ofthe 40 IHGR are presented in Table 4. Included
in the table is a quantitative evaluation of the precisions of

C0B 0 0 2 4 6 8 @1O
urns (mm)

2 4 6 8 â€˜10 2 4 6 8 @10
Tims (mm) Timâ€¢ (man)

FIGURE 2
Histogramsof MTTsof [1231]hippuranthroughkidneys(A),renalparenchyma(B),andrenalpelvis (C)in39 normal
children

4
Timi (mm)
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Precision of VanTABLE
4

ables Derived from Quantitative Analysis of [123ljHlppuran Gamma C
With/Without Renal Diseasesamera

Renography in 40PatientsRelativeFirst

generation Secondgenerationprecisionand
analysis and analysisformeanVariableof

data of dataAbsolute
precisionvalue(%)Number Mean NumberMean/X@/(min1)40

0.131 400.1280.00685.3/Xpk,I/

(min')37 0.071 370.0690.00405.7IXp@rI(min1)40
0.065 390.0660.00487.3FRC,37
0.52 370.520.0173.3MUk

(mm)77 6.3 765.80.426.9MTTa
(mm)67 3.0 703.50.4212.9MIT0
(mm)67 2.2 70 1.90.2512.5

0 5 10 0 5 10 15
Timâ€¢(mm) Time (mm)

L100

@50

0

20

FIGURE 4
Recorded left and right renograms in four normal children with prolonged MTTsof [123l]hlppuranthrough one or both
kidneys

15 20

@50

15 20

the variables expressed as the standard deviations of the
double determinations (14).

DISCUSSION

We are aware that strictly speaking none of the
children can be considered normal, since the indication
for making the various examinations (including the
IHGR) was recurrenturinary tract infections. Howev
er, the 39 children had been free from infection for at
least 4 mo prior to the IHGR and had normal findings

at all other examinations. We therefore believe that our
patient material is close to a genuine normal material.

According to Wesson (15), the effective renal plasma
flow or the PAH-clearance in girls at the age of 8 yr is
590 Â±115 ml/min per 1.73 m2. The total renal plasma
flow, TRPF, is 638 Â±124 ml/min per 1.73 m2. This
estimation was made by dividing the PAH-clearance by
the normal mean extraction ratio of PAH, EPAH,of
92.5% (13). We have chosen girls as reference since37
of the 39 children are girls (mean age 8 yr).

After a single injection of [125I]or [â€˜31I]hippuran,
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Pihl (16) found that the mean renal extraction ratios in
nine normal adults were, respectively, 92, 79, 77, and
76% at injection time, 10, 20, and 30 mm postinjection.
A normal mean [I23ljhippuran extraction ratio, EHIp,
during 30 mm can be calculated as 80%. The mean
duration of the IHGR was 32 mm. The [â€˜23I]hippuran
clearance, Fpk, is equal to EHIP TRPF or 510 Â±100
ml/min per 1.73 m2 for girls at the age of 8 yr.

Pihl (16), Magnusson (17), and Becker (11) investi
gated the red cell uptake of hippuran. After a single
injection of hippuran, they have all shown that â€˜@@-â€˜24%of
the hippuran is in the red cells â€˜@30mm postinjection.
Hence, a part of the red cell volume must be included in
the vascular hippuran distribution volume, denoted Vd.

Vdcan be calculated as:

Vd Vb. BSA (1 â€”Ht)/(1 â€”CBQR),

where @bis the blood volume per m2 body surface area,
BSA; Ht is the hematocrit and CBQR denotes the Cell
to-Blood Quantity Ratio (CBQR) of hippuran.

Vb @52,245 :E191 ml per m2in women (13), and the
normalvariation ofHt in 8-yr-old girls is 0.389 Â±0.0 18
(13). For CBQR, we use the 24% mentioned above as a
(probably overestimated) mean value for CBQR dur
ing 30 mm. This gives for Vd3, 122 Â±28 1ml per 1.73 m2
corresponding to 2,373 ml plasma and 749 ml red cells.
Based on these data from the literature, the rate con
stant for clearance of [â€˜23I]hippuran,â€”Fpk/Vd,can be
evaluated as â€”0.163Â±0.035 min' (@Â±1s.d.). This is
in accordance with our finding for Xpk of â€”0.166 Â±
0.043 min â€˜(x Â±1s.d.) in the normal pediatric material.

The linear regression of /Xpk/ compared with SGFR
shows that the constant term is not significantly differ
ent from zero (p<O.45). Hence, direct proportionality
between /Xpk/ and SGFR for SGFR in the range
10â€”130ml/min has been established.

The theoretical slope of the regression line is:

IX@@/SGFR= EHIP(l â€”CBQR)/

(EPAHVbBSA(l â€”Ht)FF),

where FF denotes the filtration fraction. As above,
EHIP, EPAH, and CBQR are assigned the values 0.80,
0.925, and 0.24, respectively. For @b,2,405 ml per m2 is

used (for men and women) (13). The hematocrit and
the filtration fraction are given their normal mean
values in adults of 0.45 and 0.20, respectively (13,15).
Insertion of these values in the expression for I
SGFR yields 0.00144 ml@. The slope ofthe regression
line for the material of 3 1 patients was 0.00129 Â±
0.00011 ml' (i Â±1 s.e.m.). The two estimates of the
slopes are not significantly different (p<O. 17). These
findings strongly indicate that the rate constant /Xpk/
actually reflects the ratio of the [â€˜23I]hippuranclear
ance to the vascular hippuran distribution volume. Hu
leh et al. (18) found the renal plasma flow to be â€˜@â€˜4%
greater on the left side than on the right. This is compa

rable with the mean fractional renal clearance of
[â€˜23I]hippuranin this study,which is 3% greater on the
left side than on the right (Table 2), a difference which
is significant (p<O.O5).

The literature on the distribution of the mean transit
times of radioactive indicator through the whole kidney
and the renal parenchyma is still very scarce. For
[â€˜23I}hippuran,we have not found any data, but two
studies deal with [99mTc]diethylenethiaminepentaace@.
tic acid (DTPA) transit times. Vivian et al. (19) investi
gated the transit times of [99mTc]DTPA in 11 children
with unilateral renal diseases under two different phys
iological conditions: an early morning scan (EMS) and,
24 hr later, following hypotonic volume expansion
(HVE). The results for the contralateral normal kid
neys were: whole kidney: 400 Â±117 sec (EMS) and 161
Â±39 sec (HVE), and renal parenchyma: 140 Â±45 sec
(EMS) and 120 Â±20 sec (HVE).

In our work, the MiT-values for the whole kidney
and the renal parenchyma averaged 312 sec and 174
sec, respectively (Table 3) (with 60 sec being added to
correct for differences in definition of zero time). Since
the children in our study were moderately hydrated, it is
to be expected that our mean MTT-values fall between
those obtained at the HVS and the EMS studies. This is
true as regards the mean MTT-value for the whole
kidney, whereas our mean parenchymal transit time
exceeds that obtained at the EMS. Since we are using
logarithmic normal distributions for the MTT-values,
the scatter of the mean transit time distributions cannot
readily be compared.

Piepsz et al. (20) found a mean renal MTT for
[99mTc]DTpAof 216 Â±66 sec in their study comprising
more than 800 children and adults. This distribution of
MTT is clearly below our values. However, Piepsz and
coworkers stated than an MTT-value for the whole
kidney above 8.5 mm gave rise to a suspicion of obstruc
tion or residual postoperative dilatation. In their mate
rial, this was incorrect in only 5% of the cases studied.
The one-tailed upper 5%significance limit for the renal
MiT inour material was9.2mm (Table 3) (again with
1 mm being added to correct for differences in zero
time).

In regard to the four children with prolonged renal
MTT, a failure in hydration prior to the renography can
be the explanation in only one of them. Patient II had
bilaterally prolonged renal MTT-values and a low esti
mated diuresis whereas the other three patients had
unilaterally prolonged renal MTT and a normal/high
estimated diuresis.

Renograms with delayed peak times and slowly de
creasing curves after the peak in patients considered
normal have been reported (21). The MCU performed
on the day prior to the IHGR might have caused a new
urinary tract infection. However, others (20) have
shown that the MTTs are not affected in patients suf
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fering from such infections.
According to Whitfield et al. (8), prolonged renal

transit times are caused by obstructive uropathy and
accompanied by a dilated renal pelvis. If, in addition,
the parenchymal transit times are prolonged, the ob
structive uropathy has induced obstructive nephropa
thy. In our four patients, no dilated renal pelves were
demonstrated radiologically or with ultrasonography.
We believe that the findings in the four children mdi
cate that the dilution ofthe urine in the distal tubuli can
be subject to large variations in the same person at
different times and also between the two kidneys at the
same time.

We conclude that patients with MTT-values within
the 5% significance limits determined in Table 3 can be
considered normal as regards the passage of [1231]hip
puran through the kidneys. Patients with renal MTT
values above the 5% significance limits should not nec
essarily be considered having an abnormal renal
function. The patient material in the study of the preci
sion of the quantitative method represents several pa
tients with impaired renal uptake function, decreased
[1 231]hippuran clearance, and prolonged transit time of

indicator. Hence, this material is believed to be suitable
for investigation of the precision. The results showed a
relative precision of the seven variables determined
between 3 and 13%. This reproducibility is considered
satisfactory.

APPENDIX1

The modelof pre-renalindicatorkineticsisshownin Fig.5.
It consistsof a plasma compartment of volume V@with an
indicator concentration C@(t) and an extravascular compart
ment ofvolume V@with an indicator concentration C@(t).The
intercompartmental indicator clearance is denoted F.

Assuming first order kinetics of the kidneys with respect to
the radioactive indicator in the plasma, the concentrations
C@(t)and C@(t)in the two compartmental model are deter
mined by a set of first order homogeneous linear differential
equations with constant coefficients:

dJCpl Jâ€”(Fpk+ F)/V@ Fi/Vp@JCp (Al 1)
dtlCcJ lF1/@'c F1/VcJlCc

The type ofsolution for this system ofdifferential equations
depends on the eigenvalues of the coefficient matrix. The two
eigenvalues are denoted X@and A2.It can be shown that X@and
A2are distinct, negativereal numbers(1).

With this knowledge of X@and A2, the solution to the
differential equations in Eq. (Al .1) can be expressed as sums
of two exponentials in X@and A2:

C@(t)= CP3eXt+ CP2CA2tand

C@(t)= CEje@@1t+ CE2e@@2t.

The valuesof the coefficients(CP,, CP2)and (CE1,CE2)
dependonthe initialconditions,C@(o)and C@(o),whereasthe
rate constants A1and A2are independent of the initial condi
tions.

FIGURE 5
Modelof prerenal indicatorkinetics as open two compart
mental modelconsIstingof plasma compartment of volume
V@and extravascular compartment of volume V5.Indicator
concentrations in the two compartments are C@(t)and C@(t),
respectively. F@ is renal plasma clearance of indicator,
while F denotes intercompartmental clearance of indicator

APPENDIX 2
Let t0 and t0 + i@tdenote two times after injection when

indicator has not yet started to leave the kidney.
Then we have:

K(t0) = p â€L̃0@@t@@tand (A2.l)

to+@t

K(t0+ i@t)â€”K(t0) = p . J H(t)dt, (A2.2)

where p is a proportionality constant of dimension inverse
time.

Insertion of Eq. ( I 2) into Eqs. (A2. 1â€”2)gives:

and

CK(t0)â€”SF .RBG(t0)= p. (A2.3)

CK(t0+ i@t)â€”CK(t0)â€”SF@ (RBG(t0+ @t)â€”RBG(t0))

(t0+@t=@.J
Division of Eq. (A2.3) by (A2.4) gives:

CK(t0)â€”SF.RBG(t0)R

@CKâ€”SF.@RBG -

which is easily solved for SF to give Eq. ( 13).

APPENDIX 3

The convolution integral in Eq. (IS)

0

(A2.4)

is transformed by means of the convolution rule in the theory
of Laplace transforms:

where

and

RIR(T).KI(tâ€”T)dT= K(t)

(A3.2)

(A3.3)
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41RIR(T).KI(tâ€”T)dTlRIR(s)K1(s),
U0 J

RIR(s)= LIRIR(t)}

Ki(s) = LIKI(t)}.



The Laplace transformation L@f(t)@of a function f(t) is
defined as:

Lff(t)l@ f(s)

where s is a complex number. For

K(s) LIK(t)$ (A3.4)

we get from Eqs. (A3.1-4) that

RIR(s)KI(s) K(s) (A3.5)

RIR(t) = L'IK(s)/KI(s)l, (A3.6)

where@ I indicates the inverse Laplace transformation.
The followingderivations consist of three steps: (a) the

Laplace transform of the kidney curve K(t); (b) the Laplace
transform of the kidney input Kl(t); and (c) the inverse
Laplace transform ofthe ratio K(s)/KI(s).

At this point, it is more convenient that zero time is t0 mm
postinjection and not the injection time. A new time variable,
denoted T, is introduced where T t â€”t0.

The kidneycurve, K(T), willbe approximatedas:

K(T) =@

where the function U(T) is defined as

oforT<T1â€” i@T/2

U.(T) = 1for T â€”i@T/2 T T. + @T/2
oforT>T@ + @T/2,

where T = T_1 + @T(i 2,3, . . . ) are the sample times of
K(T);T1 o.

For K(s) weget

transform of the kidney curve.
Equation (19) for the kidney input with T as the time

variable reads:

KI(T) = K(o) . @(@)+ -y@. eAIT+ â€œ2@ CA2T.

= K(o) . (s â€” a)(s â€” b) (A3.9)

(sâ€”X1)(sâ€”A2)

The parameters a and b are determined as the roots in the
quadratic expressions s2 + L . s + M where

L = (â€”K(o). (A1+ A2)+ -y@+ â€˜y2)/K(o)and

M (K(o).A1 .X2â€”@1-A2â€”y2.A1)/K(o).

It can be shown that the discriminant of the quadratic
equation is positive and, therefore, a and b are real and
distinct numbers. Furthermore, a and b must be negative (1).

Equation (A3.9) is the final expression for the Laplace
transform of the kidney input.

Equations (A3.5) and (A3.8â€”9)give for the Laplace trans
form of RIR(T):

The residual impulseresponseat the time T = Tk(k 1,2,
. . . ) is given by:

RIR(TK)@ .@ @K1. @@(TkTi'), (A3.lO)

where the function @(t)is defined by

(sâ€” A1)(sâ€” A2)
Ll@(T)@

s(sâ€”a)(sâ€”b)

The exponentialterm in RIR(s) is includedin Eq. (i@3.l0)
in the argument of the p-function using the delay rule in
Laplace transforms.

Equation (@3.l0) is the final expression for the computa
tion of the residual impulse response. However, the p-func
tion remains to be determined.

TheexpressionforL@(T)@isdecomposedinsumsofpartial
fractions:

(sâ€”A1)(sâ€”A2)=__c__+__@@_+:@ (A3.ll)
s(sâ€”a)(sâ€” b) sâ€”a sâ€”b s

(sâ€”A1)(sâ€”A2)= C.s.(sâ€” b)+ D.s.(sâ€”a)

+ E . (s â€”a)(s â€”b).

Insertion of s = a, s = b, and s = c into the last expression
gives for C, D, and E, respectively, that

C(aâ€”A3)(aâ€”A2)/(a.(aâ€”b)),

D =(bâ€”A1)(bâ€”A2)/(b.(bâ€”a)),and

E= A1.A2/(a.b).

= Je_s.tf(t)dt.

The Laplace transform of this expressionis:

KI(s)= K(o)+@â€˜ + @Y2
sâ€”A1 sâ€”A2

and that

(sâ€”A1)(sâ€”A2)@
(A3.7) RIR(s)@ s(sâ€”a)(sâ€”b) â€¢e

i= I

K(s) L{@ K(T1)U1(T)}

= @;K(T1)LlU1(T)@

=@ K(T1) . ! . (e@T@ e@I@t@)

where T@denotes

T.*=T1_i@T/2(i=2,3, ... ) or

and

T@ = T3=0.

The expressionfor K(s) can be rearranged to read:

K(s)@ i@K@. I . e_Tk, (A3.8)

where @K1= K(T1) â€”K(T1_1) for i 2,3, . . . and @K,
=K(o).

Equation (A3.8) is the final expression for the Laplace
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