
The increasedcontrastsensitivityand improvedthree-dimen
sional visualization provided by single photon emissioncomput
erized tomography(SPECT) holdsthe promiseof improvingearly
detection and delineation of disease states with radionuclide
imaging (1). However, the image quality provided by SPECT has
limited SPECT's fulfillment ofits anticipated role. SPECT image
quality has been less than optimal because of a number of factors
including technical problems with instrumentation, the problem
of attenuation correction, and a high noise levelwith inadequate
spatial resolution (1â€”6).An approach to the problems of noise and
spatial resolutionthrough the useofdigital imageprocessingafter
acquisition is the subject of this paper.

Theuseofdigitalfiltersisan integralpartofthe reconstruction
of SPECT images by filtered backprojection (2-9). In the fre
quency domain, the filter used usually involves a ramp function,
which corrects for the blurring inherent in backprojection, mul
tiplied by a function that determines the portion of the ramp to be
used.Thissecondfunctionisusuallytermedtheâ€œwindowâ€•func
tion. A number of windowfunctions have been proposed (2â€”9).
Typically, one-dimensional window functions have been used,
probably because much of the work on tomographic reconstruction
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was done in transmission tomography, where data are collected
from onlyone sliceat a time. In nuclearmedicine,two-dimensional
images are acquired, and consequently the use of two-dimensional
windows has been proposed (10,1 1). Until recently the amount
of time required to perform two-dimensional filtering ofthe data
has beenexcessive.The useof array processorsmarkedlydecreases
the processingtime for such techniques(12), resultingin clinically
acceptable execution times on a dedicated nuclear medicine
computer system.

Window functions have usually been low-pass digital filters that
roll off smoothly toward zero at high spatial frequencies in order
to avoid ripple artifacts (7) and to suppresshigh-frequencyterms
dominated by noise. The use of resolution recovery filters that
enhance selected frequenciesto compensate for their attenuation
during acquisition has been suggested (6). The image power
spectrumâ€”whichis the square of the complex magnitude of the
two-dimensional Fourier transform of the imageâ€”can be modeled
as consistingofthe sum ofthe powerspectrumofthe blurredobject
plus that of the noise (13â€”15).It has been demonstrated that as
the number of counts in an image increases, the object power
spectrum can be differentiated from the noisepowerspectrum to
a greater extent in the frequency domain (13â€”15).Thus the fre
quencyat whichthe windowfunctionbeginsto rolloffshould move
to higher spatial frequencies, with increased counts. Also, the form
of the window should be influenced by the object power spectrum,
since it is the combinationofobject powerspectrum and the noise
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Two-dimensionalfiftering,both before and after reconstruction,has been ap
plied to the processingof single photon emission computerized tomographic
(SPEd) Images.ThefIltersinvestigatedwere the count-dependentMetz filterand
Wiener filter, both of which automatically adapt to the Image being processed.
Usinga SPECTphantom,with Imagesreconstructedwith thesefIlters ratherthan
the ramp, we observeda statistIcallysignificantincrease(p <0.05) in the image
contrastforsolidPlexIglasspheres,andsignificantdecrease(p <0.05)Intheper
cent fractional standarddeviationof countsin a regionof uniformactIvity. The
adaptabIIIt@of these filters Is demonstratedby a comparisonof SPECT acqulsi
tionsof the phantomat two dIfferentcountlevels.An exampleof their application
to clinical studiesis presented.We concludethat two-dimensionaldigital image
restorationwith these techniquescan producea significantincrease In SPECT
Image quality, with a small cost In processing time when these techniques are im
piemented on an array processor.
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FIG.2. ComparIsonof logarithmof powerspectraof threedifferent
types of SPECT Images (bone study of lumbar spine, liver/spleen
study, and gated heart blood-pool SPECT study).

the minimum mean square error (MSE) for a set of simulated
two-dimensional object/image pairs (14). This causes the filter
to adapt to the image being reconstructed. It was observed that
lower MSE values, and visually more pleasing images, could be
obtained by using a generalized exponential function instead of
the â€œtrueâ€•MTF in Eq. (1) (14). The form of this exponential
function and details on its â€œoptimizationâ€•,have been published
(14). This filter was used to processSPECT studies either before
or after reconstructionby filteredbackprojection.The onlychange
made from previousapplicationsofthis filter (14) was to alter the
filter to compensate for the increased pixel size due to the use of
a larger crystal (38 cm compared with 27 cm diameter) and van
ations in magnification when using the camera.

Figure 1showsthe one-dimensional form of this filter, plotted
for six different total image counts. Notice that, as the count in
creases, more resolution recovery occurs (filter rises farther above
1.0), together with less noise suppression (filter moves farther to
the right). In Fig. 2 the logarithm of the power spectrum of several
SPECT acquisition images, of â€œ-@5O,0Â®total counts each, is
plottedagainst spatial frequency.Two-dimensionalpowerspectra
have been averaged over annuli to yield the one-dimensional
functions plotted in this figure. The filter second from the bottom
in Fig. I would be used for filtering the studies of Fig. 2. Note that
this filter falls below 1.0 at about the same spatial frequency that
the object power spectra of Fig. 2 blend with that ofthe noise power
spectra. This is the frequency at which the image power spectra
become â€œflatâ€•,indicating that the noise components are now
dominating those of the object (15).

Wiener filter for planar images. The second filter investigated
was the Wiener. For images degraded by Poisson noise, the one
dimensional form of this filter has been shown to be
(13,15,20,2!):

W(f) = MTF'(f)-MTF2(O/[MTF2(f) + N/P0(f)], (2)

where N is the total image count, which for Poisson noise is equal
to the average value of the noise power spectrum, and Po is the
object power spectrum. As with the Metz filter, the Wiener is made
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METZ FILTER

FIG. 1. Plot of Metz filter used for processing SPECTimages,for
totalcountsof20,000,50,0O0@100,000,200,000,500,000,and
1 million from lowest to highest curve.

levelthat determinesto what extent the objectcan bedifferentiated
from the noise (13â€”15).Therefore, there is no unique window
function for use with SPECT; instead, one ofa family of â€œoptimalâ€•
functions should be selected automatically by an algorithm based
on some parameter(s) of the image to produce â€œoptimalâ€•image
quality. Promising preliminary results along this line have been
reported with one-dimensional implementations of the Wiener
filter in the spatial (16) or frequency (17) domain.

The purpose of this work was to evaluate the effect of using
two-dimensional filtering ofSPECT images on image quality. We
studied two filter typesthat automaticallyadapt to the imagebeing
processed. A comparison was also made of the effect of using these
filters both before and after reconstruction, and at different count
levels.

METHODS

Two restoration filters that adapt to the images being processed
were investigated, for use as two-dimensionalwindowfunctions
for preprocessing SPECT images and in filtering reconstructed
images. In both cases, each filter was first formed as a one-di
mensional function of spatial frequency, which was then used to
generate two dimensionally symmetric filters. This was accom
plished by forming the two-dimensional filter as a function of radial
displacement from the origin (zero frequency).All of the filtering
was carried out in the frequency domain by multiplying the two
dimensional Fourier transform of the image by the filter, and then
inverse-transforming the result.

Metz filter. The first filter investigated was the count-dependent
Metz filter (14,18,19), whose one-dimensional form is defined
as:

M(f) = MTF(fl'.[l â€”(1 â€”MTF(f)2)x], (@)

where MTF is the modulation transfer function, f is the spatial
frequency, and X is a factor that controls the extent to which the
inverse filter is followedbefore the filter switches to noise sup
pression (14). That is, the filter is made up of the product of the
inversefilter [first term after equal sign in Eq. (1)] and a low-pass
filter (second term), and the magnitude of X determines the fre
quency at which the low-pass filter begins to dominate. X was
made a function ofthe total image count, being optimized to give
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terpolation (3), the theoretical form of the noise power spectrum
(Pa), as a one-dimensional function of spatial frequency, is
(22,23):

P@(f)= (MN/ir)fSINC2(irf/f@) SINC4(irfa), (3)

where f@is the cutoff frequencyofthe filter, a is the pixelsize,and
SINC isdefinedas SIN X overX; it isassumedthat M projections
each backproject a total count N. Equation (3) does not account
for attenuation or its correction. To test Eq. (3), we reconstructed
a simulated acquisition of a uniform phantom, with the projections
degraded by Poissonnoise. No account of attenuation was taken
in obtaining the simulated acquisition data, nor were attenua
tion-compensation techniques used in reconstructing the image.
The results are shown in Fig. 3 for a ramp filter and linear inter
polation. Notice the good agreement between predicted and actual
values for the noise power spectrum. The form of the noise power
spectrum of Eq. 3 wassubtracted from the image powerspectrum
to yieldan estimateofthe objectpowerspectrum for use in forming
the Wiener filter used in postprocessing SPECT images (24). In
the actual implementation, a least-squares fit of Eq. (3) to the end
of the image power spectrum was used. This assumes that the
object powerspectrum reduces to insignificanceat high frequen
cies. We have observed this to be approximately true for clinical
images (Fig. 2), but, as one might expect, not for high-count im
agesofSPECT phantoms,whichare highlystructured and contain
fine detail.

Comparison ofimage quality. To assess the effects ofthese filters
upon image quality, the following study was performed. Five
SPECT acquisitions ofa standard SPECT phantom* (64 frames
of 64 X 64 pixels each) at each of two different count levels
(200,000and 20,000per frame) wereacquiredusinga single-head,
rotating camera SPECT system interfaced to a nuclear medicine
computer system. The count levelswere chosen to span the levels
encountered clinically. An asymmetric energy window was used
to reduce scatter (25). A high-resolutioncollimatorand a circular
head orbit of 14cm radius were used for image acquisition. The
full width at half maximumofthe systemwith this collimatorand
radius of rotation was 1.4 cm. To reduce the possible effects of
aliasing with a 64 X 64 acquisition matrix (26,27), a magnification
factor of 1.5was used, resulting in a pixelsize of0.4 cm. The im
ages were reconstructed using standard softwaret adapted to run

.00 0@.12 0.25 0.37
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FIG.3. Plotof logarithmofnoisepowerspectruminreconstruction
of simulated uniform-countphantom, and predicted formfor ramp
filterand linearinterpolation.

up of the product of the inverse filter and a low-pass filter. The
roll-offof the low-passfilter isdependent on the magnitude of the
ratio ofthe noiseto objectpowerspectra,comparedwith the square
ofthe MTF. Thus this filter adapts to images ofdifferent objects
as well as to different noise levels.

In order to form the Wiener filter it is necessary to have esti
matesof the objectpowerspectrum,noisepowerspectrum,and
MTF. The method for obtaining these estimates and implementing
the Wiener filter for planar images has been described (15). The
MTF used in generating the Wiener filter for SPECT studies was
obtained as the Fourier transform of a Gaussian function fitted
to the reconstruction of a line source at the center of rotation, ac
quired with acquisition parameters (collimator, magnification,
and radius of rotation) matching those of the study to be fil
tered.

Wiener filter for reconsfructedSPECT slices.The noisepower
spectrum of the acquisition data is altered by the processesof fil
tering, backprojection, and interpolation during reconstruction
(6,22,23). For Shepp-Logan â€œwindowâ€•functions and linear in

,@
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@ .@i

?â€˜A

FIG. 4. Slices from acquisition of SPECT
phantom,at 200,000countsper frame,
with six Plexiglas spheres with diameters
of 0.95, 1.27, 1.59,1.91,2.54,and3.18
cm, spaced 60Â°apart. A: ramp; B:
Shepp-Logan-2;C: Shepp-Logan-4;D:
Shepp-Logan-5; E: Metz prefifter;F: Wiener
prefilter; 0: ramp followed by 9-point
smooth of slice; H:Metz postfilter;and I:
Wiener postfifter.H I

1236 THE JOURNAL OF NUCLEAR MEDICINE



Imagecontrast
Fifter 1.59 cm 1.91 cm 2.54 cm 3.18%

Fract.SDâ€¢
cm Center1Periphery1
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TABLE1. IMAGECONTRASTAND FRACTiONALSTANDARDDEViATIONFOR 200,000 COUNTSPER
ACQUISITIONFRAME

Ramp 0.36
(0.15)
0.36

(0.14)
0.34

(0.13)
0.31

(0.10)
0.28

(0.08)
0.23

(0.04)
0.36

(0.06)
0.45

(0.10)
0.40

(0.10)
0.30
(0.05)

0.45
(0.10)
0.45

(0.09)
0.44

(0.08)
0.43
(0.07)
0.41

(0.05)
0.36
(0.03)
0.56
(0.04)
0.66@

(0.05)
0.60@

(0.07)

0.43
(0.02)

0.62
(0.08)
0.62
(0.08)

0.61
(0.07)
0.60

(0.06)
0.59

(0.05)
0.54

(0.03)
0.83@
(0.04)
0.90@

(0.06)
0.85@

(0.07)
0.66
(0.03)

0.72

(0.08)
0.72

(0.08)
0.72

(0.08)
0.71
(0.08)

0.71

(0.07)
0.68

(0.05)
1.00@
(0.01)
0.98@
(0.02)
0.97@
(0.04)
0.86@
(0.07)

17.6
(2.1)
16.8
(1.9)
14.5@
(1.5)

11.4@
(0.8)

8.6@

(0.2)
4.9@
(0.6)
7.4@

(0.5)@
10.2@
(0.7)
10.0@

(0.5)

7.1@
(1.2)

14.4
(1.6)
13.6
(1.5)
11.5@
(1.3)
8.8@

(1.1)

6.8
(1.2)
3.6@

(0.7)

5.1@
(1.3)
7.4@

(1.5)
6.7@

(0.9)

4.9@
(0.9)

Shep@1*

Shepp-Logan-2@

Shepp-Logan-3@

Shepp-Logan-4t

Shepp-Logan-5@

Metzprefliter

Metz postflIter

Wiener prefifter

Wiener postfifter

â€¢Average (s.d.) image contrast for fivedifferentacquisitionsat this count level.
t Average (s.d.) % FSD for counts in 5- by 5-pixel region of interest over center or periphery of slices from five different ac

quisitlonsat this count level.
t Shepp-Loganfiftersof increasingsoftness.
Â§Significantlydifferent(p <0.05) fromrampfilter.

on an array processor.2Attenuation correctionwasdone usingthe
arithmetic-mean method (3). The images were reconstructed using
a ramp filter, five different Shepp-Logan filters (3), and two
dimensionalMetz and Wiener filteringfollowedby reconstruction
with the ramp filter, or with the ramp filter and then processed
using either the Metz or Wiener filters. For a three-pixel-wide slice
througha set of solidsphericalPlexiglaslesions,the magnitude
of the imagecontrastwasdefinedas (5,28):

Cimage [counts/pixel(1@,I@,,,â€” counts/pixel(background)] (4)

counts/pixel(j,@Ck@@fld),

and was calculated for spheres of 1.59, 1.91,2.54, and 3.18 cm in
diameter. To assess the effects of filtering on noiselevels,wecal
culated the percent fractional standard deviation (% FSD) for 5-
by 5-pixel regions of interest (ROIs) in the center and at the pe
riphery ofa three-pixel-wideslice through a phantom containing
uniform activity. For a given sphere or ROI used for calculating
% FSD, the statisticalsignificanceof thevariation in the mean
imagecontrastsor % FSD betweenthe filterswasdeterminedusing
a one-way analysis of variance (29,30). When a significant dif
ference was observed between the means of the various filters at
a p value of 0.05 or less, Sheffe's method of comparing paired
means for a significant difference (29,30) was used to compare
the results of each of the other nine filters with the ramp filter.

RESULTS

With our systemit requiresâ€˜@0.2sec to filter two-dimensionally
a 64- by 64-pixel image with the Metz filter including disk I/O,

and )8 Secto filter a 64-frame SPECT acquisition. This is to be
compared with I30 sec to processa single 64- by 64-pixel image
without the array processor or floating-point hardware (12).
Similarly, it requires about 3 sec to form the filter and to filter
two-dimensionally a 64- by 64-pixel image with the Wiener filter,
and 4 mm to processan entire 64-frame SPECT acquisition. The
difference in processing time between the two techniques can be
almost eliminated if the Wiener filter is formed for only the first
of 64 frames of a SPECT acquisition, and the same filter is then
applied to the rest of the frames.

The resultsof the quantitativecomparisonof the filtersin terms
of their effect upon imagecontrast and % FSD are givenin Tables
I and 2, and a comparison can be obtained visually in Fig. 4. The
tables show that the two-dimensionalprocessingtechniques pro
duce both a significant increase in image contrast and reduction
in the % FSD, comparedwith the ramp filter.The decreasein noise
can be seen in two ways. First by a decrease in % FSD, and second
by a decrease in the standard deviationsof the imagecontrast. The
latter is important because it means not only that the average
image contrast is improved with the two-dimensional restoration
techniques, but also that the variation in the contrast is also di
minished. Thus the spheres are seen with greater certainty.

The count-dependent nature of the Wiener and Metz filtering
techniquescan be seen in that, at the highercount level,the filters
adapt to produce a smaller reduction in % FSD and a greater im
provement in image contrast. This is to be compared with the
Shepp-Logan filters, which produced approximately the same
fractional decrease in % FSD at both count levels.The behavior
of the count-dependent Metz filter can be studied in more detail
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Image contrast
Filter 1.59cm 1.91cm 2.54cm 3.%

Fract.s.d.18cm
Center1PerIphery1

KING, SCHWINGER,DOHERTY,AND PENNEY

45.0

(4.1)
43.1
(3.8)
37.8@
(3.2)
30.0@
(2.4)
21.9@
(2.1)
12.5@
(1.6)
15.7@
(3.0)
17.0@
(1.9)

10.8@
(1.9)
5.7@

(1.0)

46.2
(3.1)
44.3
(2.8)
38.8@
(2.0)

30.4@
(1.3)
21.8@
(2.3)
12.1@
(2.74)
13.9@
(4.9)
16.2k
(4.2)
9.7@

(3.4)
5.7@

(1.3)

Ramp 0.17

(0.23)

0.16

(0.22)
0.14

(0.19)
0.11
(0.16)

0.10
(0.12)

0.08
(0.09)

0.18
(0.11)
0.14

(0.13)
0.12

(0.08)
0.14

(0.06)

0.24

(0.24)

0.25
(0.24)
0.27

(0.25)
0.30
(0.24)

0.33
(0.20)
0.30

(0.09)
0.44

(0.15)
0.39

(0.11)
0.33

(0.10)
0.23

(0.07)

0.59

(0.15)
0.60

(0.15)

0.61
(0.15)

0.63
(0.15)

0.63
(0.15)
0.59

(0.09)
0.77

(0.13)
0.74

(0.08)
0.60

(0.10)

0.48
(0.08)

0.74
(0.16)
0.75

(0.16)
0.78
(0.14)

0.82
(0.13)

0.85
(0.12)
0.81

(0.15)
0.97@
(0.06)
0.89

(0.10)

0.86
(0.11)

0.67
(0.13)

Shepp-Logan-1@

Shepp-Logan-2@

Shepp@Logan@3t

Shepp-Logan-4@

Shepp-Logan-5@

Metz prefifter

Metz postf lIter

Wiener prefifter

Wiener postfliter

â€¢Average (s.d.) image contrast for fivedifferentacquisitions at this count level.
t Average (s.d.) % FSD for counts in a 5- by 5-pixel region of interest over center or periphery of slices from five different ac

quisitions at this count level.
* Shepp.I_on@ flfters of increasing softness.
Â§Significantlydifferent(p <0.05) fromrampfifter.

with the help of Fig. I. In the high-count acquisition images there
are 200,000 counts per frame, thus the prereconstruction Metz
filter used would be fourth from the bottom of Fig. 1. There were
approximately I .2 million counts per slice in the reconstructions
ofthis phantom, thus the postreconstruction Metz filter used would
be the top one of Fig. I . The change in filters with count level cx
plains, in part, the higher contrasts and noise levels in the images
filtered after reconstruction (Table 1). A similar analysis for the
low-count acquisition data of Table 2 shows again a lower noise
level for prereconstruction filtering, but it also shows a higher
contrast. This may be a reflection of a slight advantage for
prereconstruction filtering due to the addition of information in
adjoining slices.

In comparing the two-dimensional restoration filters, we find
that our method of Wiener postreconstruction processing produces
the least contrast enhancement and the most noise suppression.
This results, in part, from the adaptability of the Wiener filter to
changes in object powerspectrum, since the object power spectrum
of the sliceswasobservedto have lesshigh frequencycontent than
that of the acquisition frames. There are only relatively small
differences between the remaining three methods of two-dimen
sional processing. In these a small increase in contrast is generally
coupledwitha similarincreaseinnoise(%FSD)makingthechoice
between them difficult.

We have found these techniques useful clinically. Figure 5 ii
lustrates the effect on image quality for a liver/spleen SPECT
study in which there were approximately 50,000 counts per ac
quisition frame. As seen in this figure and quantified in Table 3,

prereconstruction processing using the Metz and Wiener filters
reduces the % FSD in the liver, and increases lesion contrast.

DISCUSSION

Digital filtering of SPECT images is currently performed by
selecting,from a list of one-dimensionalfilters, a windowfunction
to use in reconstruction, viewing the resulting image slices, and
then repeating the process by selecting a different window function
if the results are unsatisfactory. The two-dimensional image res
toration techniques investigated in this study automatically adapt
to the image being processed, and thus eliminate the need for re
peated reconstructions. They have been shown to produce a sig
nificant increase in image contrast and a reduction in noise level,
compared with reconstructions using the ramp filter, all at the cost
of only a slight increase in execution time (approximately 18 sec)
when an array processor is used.

Figure 4 shows that besides an alteration in the noise magnitude
as determined by the % FSD, the noise character or structure
(19,31) is also altered with application of the different filters. This
results because not only are the frequency components of the object
being altered by the filters, butâ€”aswas shown in the discussion
with Eq. (3)â€”the noise components are also being filtered. Thus
noise â€œblobsâ€•can appear, which might interfere with the process
of detection of small lesions. This fact should be kept in mind
whenever digital filtering is used, and filters should be chosen to
minimize the potential for this hazard.

The choice between prereconstruction and postreconstruction
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filtering of SPECT studies is not entirely clearcut, as is illustrated
in Tables 1and 2. We tend to favor prereconstruction filtering for
thefollowingreasons.First,thenoisepowerspectrumoftheplanar
imageiseasiertoestimatethanthatofSPECTimages(6,22,23).
Second,with two-dimensionalprereconstructionfiltering,a larger
statistical sample is used to determine the value supplied to the
backprojector at each point (i.e., the whole data set is filtered, not
just one slice). This is important, since SPECT imaging is pho
ton-limited (2â€”6),and the additional information contained in
nearby slicescan help to reduce noiseand increase contrast, as is
illustrated by the low-count data of Table 2. Third, the blurring
of nuclearmedicineimagesis two-dimensional,henceit isclear
that techniquesfor two-dimensionalresolutionrecoveryshould
be utilized to preprocess acquisition data. This and the larger
statistical sample allow better input data to be supplied to the
backprojector,thereby resulting in better SPECT images. Finally,
for the reconstruction ofoblique-angle slices from transverse slices,
prereconstruction filtering with a two-dimensionally symmetric
filterproducesan imagewithan isotropicpointresponse(11).We
haveverifiedthat fora givenspatiallocationthe fullwidthat half
maximumvariesonlyaboutonemminanydirectionfor images
reconstructed by these filters.

Therearealsosomeadvantages,however,forpostreconstruction
filtering. One advantage of postreconstruction processing for re
coveryof resolution is that spatial resolution (MTF) varies much
less across a given tomographic slice than it does with distance

away from the face of a collimator in planar images. This makes
the use of a single MTF with deconvolution more appropriate.
Also, only the slices actually reconstructed need to be processed.
With an array processor to minimize execution time this is of
minimal importance, but when a minicomputer alone is used, the
time saving could be significant.

The choicebetweenWienerand count-dependentMetz filtering
is difficult. The Wiener filter has a sound theoretical basis and
adapts to noise level, object power spectrum, and image blur
(system MTF) for the image being processed (15â€”17,20).The
count-dependent Metz filter, as implemented, adapts only to
changes in noise level (14), but because ofits simplicity it does have
a speed advantage over the Wiener filter. With clinical images we
have found no great difference in image quality between the use
ofeither of these techniques to filter SPECT images (Fig. 5). This
may be a reflection of the relatively small difference in object
power spectra for many clinical nuclear medicine images (Fig. 2),
compared with the variation caused by different total counts, and
it may also be because both filters used the minimization of the
MSEas theircriterionforoptimality.

CONCLUSION

In this paper we have presented a comparison of two methods
of image-dependent two-dimensional filtering of SPECT images.
It is apparent that significant improvementsin image quality can
be obtained with two-dimensionalfiltering techniques that adapt
to the image. It is our belief that even more improvementcan be
obtained with use of the more powerful techniques ofdigital image
processing.

FOOTNOTES

* Data Spectrum Deluxe â€œSPECT Phantom.â€•

t DEC SPETS-l I Reconstruction Software Package.

I Analogic AP400 Array Processor.
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TABLE 3. LESION CONTRAST AND

FRACTiONAL STANDARD DEVIATION IN
RECONSTRUCTEDSLICE OF LIVER

Ramp60.527.1Rampplus9-point55.918.6smoothShepp-Logan-457.619.4Shepp-Logan-554.717.9Metzprefifter66.618.0Wiener

preflfter66.518.2
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FIG.5. SlicesfromSPECTliver/spleenstudyreconstructedusing:(A)ramp,(B)rampplus9-pointsmoothwithROIssuperimposed,
(C)ShePP-LOgan-4,(D)Shepp-Logan-5,(E)Metzprefllter,and(F)Wienerprefifter.
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