Rapid Digital Filtering
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Image filtering with the larger, and potentially most valuable, digital filters is
very time-consuming, thus precluding use of these filters in routine clinical applica-
tions. A recently developed algorithm for spatial-domain filtering is described, and
its speed is compared with those of conventional methods with and without an
array processor. Using the new Chebyshev method, a 64 by 64 pixel image can
be filtered on a standard 16-bit minicomputer with filters of size 3 by 3 to 23 by 23
in 1.4-9.2 sec. The conventional spatial-domain algorithm requires 3.8-71 sec.
With an array processor, filtering is accomplished in 0.19-0.54 sec. Fiitering in the
frequency domain requires 34 sec without an array processor and 0.12 sec with
one. Thus with this new Chebyshev algorithm, clinically practical digital filtering
can be performed with large filters even without an array processor.

J Nucl Med 24: 625-628, 1983

Digital filtering of images is used in several areas of nuclear
medicine, including gated cardiac studies (/,2) and the processing
of static images (3-6). Unfortunately, application of the larger,
and potentially most valuable, filters can be quite time-consuming
without an array processor, thus precluding their routine use in
many clinical applications. In this paper, rapid methods of com-
putation of digital filters are evaluated. The performance of a re-
cently developed algorithm for spatial-domain filtering will be
compared with conventional methods with and without an array
processor. It will be shown that this new method makes routine
clinical use of large digital filters practical for those users who do
not have an array processor.

MATERIALS AND METHODS

Basic theory. The theory and application of digital filters in
nuclear medicine are described in detail elsewhere (3,4). Briefly,
filtering can be performed either in the “spatial domain,” where
the image and filter are both described in X-Y coordinates, or in
the “frequency domain,” where a Fourier transform is performed
leading to representation of the image and filter as Fourier series
of differing spatial frequencies. In spatial domain, or finite impulse
response (FIR), filtering a two-dimensional convolution operation
is performed in which a square “mask” filter is passed across the
image. The widely used *“nine-point smooth” is an example of a
simple 3 X 3 FIR filter. In frequency-domain filtering, a two-
dimensional Fourier transform is performed, the resulting trans-
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formed image is multiplied by the desired filter function, and the
inverse Fourier transform is computed to yield the filtered
image.

The performance of different filtering methods can be charac-
terized by the number of multiplications required to effect the
filtering operation, since on most minicomputers multiplication
is much slower than addition and is, therefore, the principal de-
terminant of speed of computation.

Filter algorithms. The simplest algorithm for computation of
FIR filters is direct convolution (3,4). For a filter mask of size (2N
+ 1) X (2N + 1), this method requires (2N + 1)2 multiplications
for each point in the image, or M2(2N + 1)2 multiplications for
an image of size M X M. By exploiting the symmetry properties
of circularly symmetric, zero-phase filters (4), the number of
multiplications can be significantly reduced by first adding all the
image elements with symmetric filter values, and then multiplying.
With this symmetric algorithm, the number of multiplications is
approximately 0.6M2(N + 1)2,

A popular method of implementing FIR filters—especially for
filters of approximately size 11 X 11 or greater—uses the Fourier
transform (7,8). First, the two-dimensional filter mask is Fourier
transformed to yield the desired filter function in the frequency
domain. The calculation then proceeds as described above for
conventional frequency-domain filtering. The Fourier-transform
and spatial-domain methods yield mathematically identical results.
The Fourier-transform method requires approximately M2(4
logoM + 1) multiplications using the fast Fourier transform
7).

A completely new class of filtering algorithms has recently been
proposed (9); they yield mathematically exact computation of FIR
filters with many fewer multiplications than the conventional
convolution methods. These algorithms use a small filter mask that
is passed repeatedly across the image. One such filtering scheme,
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FIG. 1. Network diagram showing Chebyshev method of spatial domain filtering with filter of length 2N + 1. K is a 3 X 3 mask, or kernel,
that is passed over original unfiltered image. 2K is a mask with coefficient values twice those of K. ho, h,, . . ., hy are coefficients of
the one-dimensional filter with same frequency response as desired for the two-dimensional filter.

using the recursion relation between the Chebyshev polynomials,
is shown in Fig. 1 (/0). The h; are the one-dimensional filter
coefficients with the same frequency-response characteristics as
those of the desired two-dimensional filter. The 3 X 3 mask, or
kernel, K is
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This kernel (or twice its value after the first pass) is repeatedly
passed over the image, as shown, with the resulting image after
each pass multiplied by the successive filter coefficients h, hy, . . .
and added together to give the filtered image, as shown in Fig. 1
and described in more detail in the Appendix. The number of
multiplications for this Chebyshev algorithm is only M2(4N + 1)
(9). Note the striking resemblance of the kernel K to the popular
nine-point smooth:
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This filter is available on many nuclear medicine computers as
a fast, assembly-language program that uses bit shifting to effect
the multiplications and division. This nine-point smooth program
can readily be modified to yield K, thus further enhancing the
speed of the Chebyshev method. The number of multiplications
is then reduced to M%(N + 1) assuming the bit-shift operations
are essentially instantaneous relative to multiplication (9).

When digital filtering is performed entirely in the frequency
domain, M2(4 log;M + 1) multiplications are required, as in the
Fourier-transform implementation of the FIR method described
above.

Computer hardware and measurements. The filter algorithms
were implemented in FORTRAN on a 16-bit minicomputer* and
in AP assembly language on an array processort. All programs
were written to fit in 32K of host memory without requiring storage
of intermediate results on disk or extended main memory. The
programs for the array processor did not use the symmetry prop-
erties of the filters. A 64 by 64 pixel image size was used, since
that matrix size is widely used in nuclear medicine, especially in
cardiac studies. Larger arrays would require storage of interme-
diate results on disk, resulting in loss of computational speed. FIR
filters from size 3 X 3 to 23 X 23 were evaluated. The computation
time was measured for each method, excluding the time required
to read the image in or out of main memory, but including the time
to pass the images between the host and array-processor memories.
To avoid the wrap-around error in FIR filtering, a border of width
N was deleted from the filtered image as the last step in the pro-
cessing (3).

626

RESULTS

Figure 2 shows the timing results for FIR and frequency-domain
filtering both with and without use of the array processor. The FIR
values are shown for filters of size 3 X 3 to 23 X 23 using the
symmetric algorithm, the new Chebyshev method, and the array
processor. The timing is the same for all FIR-filter sizes using the
Fourier transform implementation. Note the marked reduction
in computation time for the Chebyshev method compared with the
symmetric algorithm. Without the array processor the Fourier-
transform implementation is faster than the symmetric algorithm
for filters larger than 13 X 13, while the Chebyshev computation
is superior to the Fourier-transform method for filters of all sizes
shown here. Computation time is identical for pure frequency-
domain filtering and for the Fourier-transform implementation
of FIR filtering, since the mathematical operations are the same.
Computation time for FIR filtering with the array processor is
10-20 times faster than the Chebyshev method, the fastest con-
ventional technique. Fourier-transform filtering on the array
processor is 10-80 times faster than the Chebyshev method.

The relative number of multiplications required by each method
was computed from the formulas given above. A very close cor-
relation was observed between the measured timing values and the
computed number of multiplications. Such a comparison was not
performed for the array processor, since the pipeline architecture
of the add and multiply units on those machines invalidates a direct
comparison based on the number of multiplications.

DISCUSSION

If digital filters are to be applied in routine clinical use, the
computation time must be rapid. The popular “nine-point smooth”
is an example of a widely used small filter that can be applied very
quickly to an image, especially if an assembly-language imple-
mentation is used. There are, however, reasons to use larger, and
hence slower, filters. These more elaborate filters, computed in
either the spatial- or frequency-domain, can be designed with
special properties tailored to match the characteristics of the
imaging equipment or to enhance certain features of the image
(2-6). A larger filter will also more closely approximate the desired
frequency response (//,4).

As shown in Fig. 2, the new Chebyshev method yields remark-
ably fast computation of even large FIR filters without the use of
an array processor. This approach is faster by a factor of ~4-10
than the conventional convolution (symmetric algorithm) and the
fast Fourier-transform methods. The most rapid computation
continues to be with the array processor, although the gap between
the conventional computer and array processor is significantly
narrowed with the new algorithm.

Use of the Chebyshev algorithm may improve the speed of
computation with the array processor. Unfortunately, storage of
the intermediate images would require an array processor with

THE JOURNAL OF NUCLEAR MEDICINE



100¢
F /SYMFIR
C FFT
CHEBY
v
®
LI
w
s
=
10
o
r FIR-AP
FFT-AP
o.l L I 1 'l A ' 1 ' ' 1
35 7 9 1N 1315171921 23

FILTER SIZE (2N+1)

FIG. 2. Time required to filter a 64- by 64-pixel image is shown using
Fourier transform (FFT) method and symmetric FIR and Chebyshev
spatial-domain filters of size 3 X 3 to 23 X 23. AP denotes results
obtained with an array processor.

memory larger than is now commonly available, or time-con-
suming transfers from array processor to host memory.

To illustrate these results in a practical setting, a 32-frame gated
cardiac blood-pool study can be analyzed in less than 3 min (5.2
sec/frame) with an 11 X 11 filter using the Chebyshev algorithm,
excluding a small amount of disk 1/O time, whereas the compu-
tation would require almost 15 min (27 sec/frame) using the
symmetric convolution. With the array processor, the calculation
requires 10 sec (0.32 sec/frame) using the FIR method or only 4
sec (0.12 sec/frame) with the Fourier-transform implementa-
tion.

The timing results may differ substantially when using computer
hardware, programming languages, or image sizes other than those
applied in this work. While different computers and array pro-
cessors will, of course, have different inherent computational speed,
the relative performance of the different algorithms should parallel
the results in Fig. 2 since the timing results reported here closely
correlated with the number of multiplications, the rate-limiting
step in computational speed in most computers. Images larger than
64 X 64 pixels may exceed the capacity of the host computer and
array-processor memories, thus requiring time-consuming transfer
of intermediate results to disk. The data reported here for the
Chebyshev method were obtained with the bit-shifting imple-
mentation of the kernel, Eq. (1). If integer multiplication is used
instead, the performance will be somewhat slower.

In conclusion, rapid—and thus clinically practical—digital
filtering can be performed on a conventional minicomputer using
a new, efficient algorithm.

FOOTNOTES

* Digital Equipment Corporation PDP-11/34A equipped with a
hardware floating-point processor and cache memory.

t Analogic AP-400.

A FORTRAN-IV program is available from the authors to per-
form the Chebyshev calculation.
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APPENDIX}

The Chebyshev algorithm, shown in Fig. 1, may be programmed
as follows using the arrays M, M, M3, and R, and the filter values
ho to hn:

1) Place the original image in M;.
2) Apply kernel K to M, and place the result in M, (without
changing M,).
3) Multiply M, by ho; multiply M by 2 X hy; place the sum of
the results in R (without changing M, or M3).
4) Do the following loop: (each pass of the loop applies 2K
twice.)
5) Start withi= 2.
6) Apply 2K to M, and place the result in M.
7) Subtract M, from M3, and place the result back in
Ml;.
8) Multiply M, by 2 X h,. Add the result to the current
pixel values in R, and place the result back in R.
9) Ifi = N, skip to step 14. Otherwise, increment i by
1 and continue with step 10.
10) Apply 2K to M, and place the result in M3.
11) Subtract M, and M3, and place the result back in
Ma.
12) Multiply M2 by 2 X h;. Add the result to R, and place
the result back in R.
13) Ifi= N, skip tostep 14. Otherwise, again increment
i by 1, and go back to step 6.
14) The filtered image is now in R.
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