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Deconvolution has been used to correct first-pass radionuclide anglocardiogra-
phy for the time course of the delivery of radiopharmaceutical into the cardiopul-
monary system. The extreme sensitivity of deconvolution to random errors in the
data may account for some of the problems encountered in practice. We imple-
mented several deconvolution algorithms that were suitable for use with the uni-
modal and multimodal superior vena caval and pulmonary curves found in left-to-
right shunt quantification. The sensitivity of the algorithms to random errors was
assessed using mathematical test problems degraded with pseudorandom noise.
An algorithm that constrained the deconvolved pulmonary curve to be expressable
as the non-negative sum of a set of lagged normal curves was found to have the
smallest maximum error on the curves tested. Comparison with results from a pre-
viously published test problem indicated an error reduction of greater than 50 %
over previously used algorithms. Use of this algorithm may permit more accurate
deconvolution of pulmonary time-activity curves and thereby improve shunt quan-

tification.
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High temporal resolution is essential for optimal vi-
sual and numerical analysis of radionuclide angiocar-
diography. Reasonably good temporal resolution is at-
tained when the radiotracer is injected rapidly as a single
compact bolus. Fragmented and/or prolonged injections
lead to inadequate angiocardiograms from which it may
be difficult or impossible to obtain the desired infor-
mation. An area where the quality of tracer delivery into
the cardiopulmonary system is critical for accurate re-
sults is the quantification of left-to-right shunting (/,2).
It may be possible to correct some of these studies for
suboptimal delivery of tracer using deconvolution (3,4).
In this procedure, the cardiovascular circulation is
modeled as a linear, time-invariant system (5). Time-
activity curves obtained from regions of interest over the
superior vena cava and lungs are taken as the input and
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output of the system respectively. The unit impulse re-
sponse (UIR) of the system represents the pulmonary
curve that would be obtained from a perfect spike in-
jection at the level of the superior vena cava. Deconvo-
lution has been shown to improve the accuracy of left-
to-right shunt quantification in studies performed with
prolonged, but not fragmented, delivery of tracer
3.9).

Deconvolution by exact solution of the convolution
equation is an unstable process in the sense that small
errors in the data lead to large errors in the computed
UIR (6-9). This instability may be illustrated by an
example. Consider the input function that would be
produced by starting a constant infusion of tracer at the
level of the superior vena cava. The corresponding output
function would be equal to the integral of the UIR of the
system. In this special case, deconvolution is equivalent
to point-by-point differentiation of the recorded output
function. Clearly small data errors in the output function
will lead to large errors in the point-by-point estimates
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of the derivatives. In the general case, UIR estimates
computed by exact deconvolution often contain negative
values and high-frequency oscillations that are physio-
logically unrealistic.

In practice, the UIR may be estimated with a well-
behaved approximate solution to the convolution equa-
tion that is judged to be physically plausible. The accu-
racy of such an estimate is open to question, since in most
cases the true UIR is not obtainable. Reconvolution of
the estimated UIR with the input should produce a
function that is approximately equal to the output. In
other words, the UIR estimate should have a small rec-
onvolution error. However, this is not a sufficient test to
ensure the accuracy of the UIR estimate, since functions
that are physically implausible will often have a small
reconvolution error (6). It is thus necessary to verify the
stability of deconvolution algorithms with regard to
random data errors using problems where the true UIR
is known. This can be done with mathematical test
problems degraded with pseudorandom noise.

The application of deconvolution analysis to shunt
quantification is unusual in that multimodal input and
UIR functions occur with some frequency. Many of the
deconvolution algorithms previously used for the char-
acterization of vascular beds have been designed and
verified for use with simple unimodal UIR functions
(9-15). Simulation results on some more general de-
convolution algorithms have suggested that they are
rather sensitive to random data errors (6). Our experi-
ence with several of the algorithms previously used for
shunt quantification has suggested that sensitivity to
noise is a significant problem and may account for some
of the oscillatory UIR computed from studies done with
fragmented injections (4). It is thus desirable to evaluate
a deconvolution algorithm capable of accurately han-
dling the range of functions found in shunt quantifica-
tion. Development of such an algorithm may extend the
range of clinical studies that are correctable by decon-
volution.

METHODS

We investigated the noise sensitivity of deconvolution
algorithms using mathematical test problems. Known
input and UIR curves were convolved to obtain a known
output curve. The input and output curves were degraded
with pseudorandom noise. An estimate of the UIR was
obtained by deconvolution of the degraded input and
output curves. Reconvolution error was assessed by
comparing the degraded output with the convolution of
the degraded input and the UIR estimate. UIR error was
assessed by comparing the UIR estimate with the known
UIR.

General descriptions of the algorithms tested are given
below. More detailed information on their implemen-
tation is given in the Appendix.
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Smooth and non-negative algorithm. This algorithm
constrained the UIR to be non-negative and smooth in
the sense of having a small sum of squared second or
fourth differences. The non-negativity constraint ex-
presses the physically evident fact that the UIR must not
be negative. Second and fourth differences are discrete
approximations to the second and fourth derivatives
respectively. The differences of a function increase with
an increase in the rate of change of that function. The
sum of squared differences is thus inversely related to the
smoothness of a function. Therefore, constraining the
UIR to have a small sum of squared differences has the
effect of constraining the UIR to be smooth. The use of
non-negativity (6) and smoothness (7,8) constraints in
deconvolution has been described in the literature.

Low-pass filter algorithm. The discrete Fourier
transform was used to express the exact solution of the
convolution equation as the sum of scaled sine and cosine
waves of various frequencies. The algorithm constrained
the UIR to be smooth in the sense of being primarily
composed of low-frequency sinusoidal components. A
low-pass filter was used to remove components of fre-
quency greater than a cutoff frequency, w.. The filter
multiplied the amplitude of the sinusoidal components
with frequency «w, by a factor close to 1, and the
components with frequency >>w, by a factor close to 0.
This has the effect of removing components of frequency
greater than w.. The UIR was reconstructed by summing
the filtered sinusoidal components.

Cubic spline algorithm. A cubic spline is a function
composed of a series of cubic polynomial segments with
continuous first and second derivatives. Cubic splines are
thus a family of relatively smooth functions. The algo-
rithm constrained the UIR to be the cubic spline that
minimized the reconvolution error in the least-squares
sense.

Lagged normal algorithm. The UIR encountered in
shunt quantitation may be decomposed into several
components resulting from transit of tracer through the
different pathways of the cardiovascular system. A
lagged normal curve is a simple unimodal curve similar
in shape to the gamma variate function that has been
used extensively as a model for the UIR of simple vas-
cular beds. The lagged normal algorithm constrained the
UIR to be expressable as the non-negative sum of a set
of scaled lagged normal curves. This has the effect of
constraining the UIR to be composed of components that
might be expected from simple vascular beds. The con-
tribution of each curve was chosen to minimize the rec-
onvolution error in the least-squares sense. The algorithm
is a modification of one used in the deconvolution of
dye-dilution curves (/6).

Simulation studies were carried out on a test problem
with a unimodal input and UIR proposed by Gamel et
al. (6) and subsequently studied by Caprihan and Neto
(9). Since we were interested in deconvolution problems
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FIG. 1. Curves used in simulation experiments. On top are input
functions 11 and 12. At bottom are unit impulse response (UIR)
functions U1 and U2.

involving more general functions, we also investigated
bimodal input and UIR sequences. The curves tested are
shown in Fig. 1. Details of the test problems are in the
Appendix. Noise levels of R = 0.01 and R = 0.10 (i.e.,
1% and 10%) were investigated.

Means and standard deviations of the UIR- and rec-
onvolution (RC) errors were calculated for each problem
using the Euclidean norm expressed as a percentage, as
described in Caprihan and Neto (9). This differs slightly
from the absolute value norm used by Gamel et al. (6).
The formulae used to compute the error norms are in the
Appendix.

RESULTS

Results on the test problems are shown in Table 1. The
algorithms tended to perform relatively well at noise level
R = 0.01, and less well with R = 0.1. UIR error tended
to be higher in test problems using the bimodal input
function rather than the unimodal. The smooth and
non-negative algorithm and cubic spline algorithm were
noteworthy in that performance on the bimodal UIR was
much worse than on the unimodal UIR, particularly with
noise at R = 0.01. In general, the lagged normal program
appeared to perform the best in the sense of having the
smallest maximum UIR error over the range of problems
tested (see Table 1).

DISCUSSION

Practical application of deconvolution requires the
incorporation of additional information describing what
constitutes an acceptable UIR into the deconvolution
process. This information may be provided by the
physical characteristics of the system being studied. For
example, in radionuclide angiocardiography the true
UIR must be non-negative. Additional information may
be incorporated into the deconvolution process in several
different ways. The UIR may be constrained to be a
member of a specific class of functions, for example, to
be non-negative or expressable as the sum of lagged
normal curves. Probabilistic information concerning the
UIR may be weighted with the data into a statistical
estimate of the UIR. For example, smoothness infor-
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mation may be weighted into a least-squares formulation
with the data. Additional information may also be ex-
pressed as a rule, such as low-pass filtering or smoothing,
for obtaining a UIR estimate from an exact solution of
the convolution equation.

An ideal deconvolution algorithm would exclude all
physically unreasonable solutions while allowing all
solutions that are physically possible. This implies that
accurate results can be obtained by making all possible
use of as much information about the true solution as
possible. Use of a non-negativity constraint is advanta-
geous in that it excludes impossible solutions while not
making assumptions that need to be tested. Additional
information, obtained from characterization of the range
of UIR seen in practice, may also be incorporated into
the deconvolution process. Use of such information,
provided it is correct, allows more accurate UIR esti-
mates.

The most successful program used by Gamel et al. (6)
on the unimodal input and UIR test problem had a UIR
error of more than 11% at the R = 0.01 noise level.
Caprihan and Neto (9), using more sophisticated mod-
eling techniques, obtained errors of 5 and 12% with noise
at R = 0.01 and R = 0.1 respectively. Using the lagged
normal algorithm, we were able to reduce these errors
to slightly over 2 and 5% respectively.

The algorithms tested in this report have one or more
variable parameters which were adjusted to give low
UIR errors on the range of problems tested at a partic-
ular noise level. Optimum settings for these parameters
depend on the signal and noise characteristics encoun-
tered in a particular application. These parameters may
be thought of as expressing the strength of a preference
for a well-behaved solution, as opposed to an exact so-
lution, of the convolution equation. Different settings for
them were used at the R = 0.01 and R = 0.1 noise levels,
since data degraded with high noise levels require a
stronger preference for a well-behaved solution in order
to achieve optimal results. The range of UIR encoun-
tered in practice might vary more widely than the range
of test problems described in this report; in particular the
time scale of events may vary several-fold. This may
cause greater difficulty in expressing the necessary ad-
ditional information, and hence a loss of accuracy. Ro-
bustness of an algorithm with regard to a large range of
UIR is clearly desirable. Results on a deconvolution al-
gorithm similar to the lagged normal algorithm de-
scribed in this report suggest that the lagged normal
algorithm has this property (/6).

The problem of deconvolution has been examined in
the context of quantification of left-to-right shunts from
radionuclide angiocardiographic data. Numerical
problems that reasonably approximate this real problem
were examined to determine which deconvolution
methods give the most accurate results. An algorithm
that constrained the computed UIR to be expressible as
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the non-negative sum of a set of lagged normal curves
was found to give the best results. It is suggested that this
method be applied to determine whether it improves the
clinical evaluation of patients with left-to-right
shunts.

ACKNOWLEDGMENT

This work was supported in part by a grant from the Fannie Ripple
Foundation, Department of Energy contract EY-76-S-4115. National
Institute of Health grant # 2-P50-6M-18674-07 and American Heart
Association, Greater Boston, MA Division grant # 13-523-801. J.
Anthony Parker is the recipient of Research Career Development
Award 5 K04 HL00465 from the National Heart, Lung, and Blood
Institute.

The authors thank Ms. Laurie Pugsley for her assistance in the
preparation of this manuscript.

APPENDIX

The relationship of the input, UIR, and output of a discrete,
causal, linear, time-invariant system is described by the convolution
equation:

oulil = >:| Wi—j+ 11 UG) G=1LN) )
2

Ii[i], U[i], and Oy[i] (i = 1,N) are discrete input, UIR, and output
sequences in time respectively. Alternatively Eq. (1) can be ex-
pressed by the matrix equation:

0| = l( U| (2)

Letting T denote transpose, O, is the column vector [O,[1], O,[2],
..., OINJ]T, Uy is the column vector [U[1], Uy[2], ... .U [N]IT,
and I, is the lower triangular N X N matrix:

. Lj-k+1]j2k
LGk =1{"
Bkl =1 j<k
We wished to obtain an estimate of U, which we will denote as U

from noise-degraded measurements of I; and O,, which we will
denote as | and O respectively.

(3)

DESCRIPTION OF THE TEST PROBLEMS

The input sequences used were given by:
11,[i] = (iAt)2 e~AGAD 4)
and
11,[i] (i=20,N)
I1,[i} + 0.83 11,[i — 20] (i = 21,N)
The UIR sequences used were given by:
Uly[i] = (iAt) e~Gav (6)

120i] = (5)

and

Uli[i] (i=1,20) -
U1 (i) + 0.7 Ul [i = 20} (i = 21,N)

Values of A = 2 and At = 0.1 were used. Oy[i] (i = 1,N) was given
by direct discrete convolution of the sequences I;[i] and U,[i] ac-
cording to Eq. (1). The observation, 1{i] and O[i} (i = 1,N), were
obtained by the equations:

il = L] (1 +7) 0

U21[i] =

262

and
O[i] =Ouli] (1 +71) 9)

r was a pseudorandom number uniformly distributed between =R
and R. R values of 0.01 and 0.1 were investigated. The simulation
experiments were done using input and UIR sequences of 75 points,
except in the experiments using the low-pass filter algorithm, which
were done using sequences of 128 data points. Longer sequences
were used for the low-pass algorithm so that the sequences used
were almost equal to zero at their ends. This is important when one
is filtering with Fourier transforms, to avoid artifacts due to edge
effects (/7). Ten trials were run for each set of conditions tested.
The error norms used were defined as:

UIR error = 100 E:, (Uli] - Ut[i])zlllz/(g. Ut[ilz)ll2
= =

(10)
and
RC error = 100 }'fl (o) - I*U[i])zlm / )rfl Olilz)'/2
(1

where * represents the convolution operator.

IMPLEMENTATION OF DECONVOLUTION
ALGORITHMS

Smooth and non-negative algorithm. The sum of second or fourth
differences of a vector U is given by the product UTSTSU where
S represents either a second or fourth difference operator. The
second and fourth difference operators, denoted as S2 and S4 re-
spectively, were given explicitly by:

1G-k+1=-11)

S2[kl={-2(G—-k+1=0) (12)
& (otherwise)
and
1G—k+1=-=22)
safjk) ={ 40Tk I=-LD) 13)

6G—k+1=0)
& (otherwise)

The operators were not applied to the edges of U. The information
SU = & was incorporated with weight <y into a least-squares for-
mation with the data. Increasing <y has the effect of decreasing the
magnitude of UTSTSU acceptable in the solution. The UIR was
estimated by solving the least-squares problem:

ol=long]¥ a

for U, subject to the constraint U = 0. The non-negative least-
squares problem expressed by Eq. (14) was solved using the al-
gorithm of Lawson and Hanson (/8). In the simulation experi-
ments using the second difference operator, S = S2, the parameter
v was set equal to 2 and 20 for noise levels R = 0.01 and R = 0.1
respectively. In the experiments using the fourth difference op-
erator, S = S4, v was set equal to 100 and 250 for R = 0.01 and
R = 0.1 respectively.

Low-pass filter algorithm: The discrete Fourier transform ex-
presses a discrete curve of finite duration as a finite sum of scaled
complex exponentials (/7,79). If the time scale of the observations
is properly extended with zeros, it can be shown that the Fourier
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coefficients of the exact solution to the convolution equation, UE,
are obtained by:

UE[w] = O[w]/l[w] (w = =={(N = 1)/N},x)  (15)

UE[w], O[w)] and I[w] are the Fourier coefficients of UE(i), Oi],
and I[i] respectively. The Fourier coefficients of U[i] were then
obtained from the formula:

Ufw] = A[w] UE[w] (16)

where
Alw] = 1/{1 + (w/wc)B (w=-={(N—1)/N}x) (17)

This formula describes a low-pass, zero-phase filter known as a
Butterworth filter. The parameter w, controls the cutoff frequency,
and the parameter B controls the steepness of the cutoff at that
frequency. Simulation was performed with the parameter B taking
on values of 2 and 4. In the experiments using B = 2, the parameter
wc was set equal to 10 and 6 for noise levels R = 0.01 and R = 0.1
respectively. In the experiments using B = 4, w. was set equal to
16 and 10 for R = 0.01 and R = 0.1 respectively.

Cubic spline algorithm. Given an interval divided into a number
of subintervals, a cubic spline is a function with continuous first
and second derivatives, which can be expressed as a cubic poly-
nomial over each subinterval. The endpoints of the subintervals
are known as break points. A cubic spline over NB break points
can be expressed as a linear combination of NB + 2 linearly in-
dependent basis functions (/8). Thus, the problem of fitting a cubic
spline over NB break points to an N-point curve, H, by least
squares takes the form:

AC=H (18)

Aisa N X NB + 2 matrix of the basis functions, and Cisa NB +
2 vector of the amplitudes of the basis functions in the least-squares
fit (18).

The cubic spline algorithm constrained the computed UIR to
a cubic spline over NB evenly spaced break points. It was imple-
mented by solving the least-squares problem:

IAC=0 (19)
for C. The estimated UIR is given by AC, the cubic spline that
minimized the sum of the square reconvolution errors. The number
of break points, NB, used in the simulation experiments was 6 and
S for R = 0.01 and R = 0.1 respectively.

Lagged normal algorithm. The lagged normal curve may be
described as the convolution of a normal density curve with a
first-order exponential decay curve (/0). It may be characterized
by three parameters, the mean time Tj, the standard deviation
about the mean time S;, and the skewness. The UIR was con-
strained to be expressable as the non-negative sum of a set of scaled
lagged normal curves. The contribution of each lagged normal
curve to the UIR was chosen to minimize the sum of the squared
reconvolution errors. Twenty lagged normal curves of skewness
1, with T; geometrically distributed between 5 and 60, were used
in the simulation. The S; values were given by:

Sj=So+KT; (20)

An S value of 5 was used in the simulation experiments. K values
of 0.2 and 0.3 were used with R = 0.01 and R = 0.1 respectively.
The algorithm was implemented using a non-negative least-squares
algorithm (/6).
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COMPUTER IMPLEMENTATION

The input and output curves were scaled to one before the start
of the computation, and the UIR rescaled appropriately at the end.
The programs were written in FORTRAN under the RT-11 op-
erating system and were implemented on a laboratory computer
using double-precision (54-bit mantissa, 8-bit exponent) arith-
matic.
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