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Deconvolution has been used to correct first-pass radlonuclide anglocardlogra
phy for the time courseof the deliveryof radlopharmaceuticalinto the cardiopul
monarysystem.Theextremesensitivityof deconvoiutionto randomerrorsin the
datamayaccountforsOmeof theproblimsencounteredin practice.We imple
mented several deconvolutlon algorfthms that were suitable for use wfth the uni
modal and multimodal superior vena caval and pulmonary curves found In left-to
right shuntquantification.Thesensltivftyof the algorithmsto randomerrorswas
assessed using mathematical test problems degraded with pseudorandom noise.
Analgorithmthatconstrainedthedeconvoivedpulmonarycurvetobeexpressable
asth non-nogativesumofa setof laggednormalcurveswasfoundto havethe
smallest maximum error on the curves tested. comparison wfth resufts from a pre
viouslypublishd test problemIndicatedan error reductionof greaterthan 50%
overpreviouslyusedalgorithms.Useofthisalgorithmmaypermitmoreaccurate
deconvoiutlonof pulmonarytime-activitycurvesandtherebyimproveshuntquan
tificatlon.
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High temporal resolution is essential for optimal vi
sual and numerical analysis of radionuclide angiocar
diography. Reasonably good temporal resolution is at
tamed when the radiotracer is injected rapidly as a single
compact bolus. Fragmented and/or prolonged injections
lead to inadequate angiocardiograms from which it may
be difficult or impossible to obtain the desired infor
mation. An area where the quality of tracer delivery into
the cardiopulmonary system is critical for accurate re
sults is the quantification ofleft-to-right shunting (1,2).
It may be possible to correct some of these studies for
suboptimal delivery of tracer using deconvolution (3,4).
In this procedure, the cardiovascular circulation is
modeled as a linear, time-invariant system (5). Time
activity curves obtained from regions of interest over the
superior vena cava and lungs are taken as the input and
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output of the system respectively. The unit impulse re
sponse (UIR) of the system represents the pulmonary
curve that would be obtained from a perfect spike in
jection at the level of the superior vena cava. Deconvo
lution has been shown to improve the accuracy of left
to-right shunt quantification in studies performed with
prolonged, but not fragmented, delivery of tracer
(3,4).

Deconvolution by exact solution of the convolution
equation is an unstable process in the sense that small
errors in the data lead to large errors in the computed
UIR (6â€”9).This instability may be illustrated by an
example. Consider the input function that would be
produced by starting a constant infusion of tracer at the
levelof the superior vena cava. The corresponding output
function would be equal to the integral of the UIR of the
system. In this special case, deconvolution is equivalent
topoint-by-pointdifferentiationoftherecordedoutput
function. Clearly small data errors in the output function
will lead to large errors in the point-by-point estimates
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of the derivatives.In the generalcase,UIR estimates
computed by exact deconvolution often contain negative
values and high-frequency oscillations that are physio
logically unrealistic.

In practice, the UIR may be estimated with a well
behaved approximate solution to the convolution equa
tion that is judged to be physically plausible. The accu
racy of such an estimate is open to question, since in most
cases the true UIR is not obtainable. Reconvolution of
the estimated UIR with the input should produce a
function that is approximately equal to the output. In
other words, the UIR estimate should have a small red
onvolution error. However, this is not a sufficient test to
ensure the accuracy of the UIR estimate, since functions
that are physically implausible will often have a small
reconvolution error (6). It is thus necessary to verify the
stability of deconvolution algorithms with regard to
random data errors using problems where the true UIR
is known. This can be done with mathematical test
problems degraded with pseudorandom noise.

The application of deconvolution analysis to shunt
quantification is unusual in that multimodal input and
UIR functions occur with some frequency. Many of the
deconvolution algorithms previously used for the char
acterization of vascular beds have been designed and
verified for use with simple unimodal UIR functions
(9â€”15).Simulation results on some more general de
convolution algorithms have suggested that they are
rather sensitive to random data errors (6). Our experi
ence with several of the algorithms previously used for
shunt quantification has suggested that sensitivity to
noise is a significant problem and may account for some
oftheoscillatoryUIR computedfromstudiesdonewith
fragmented injections (4). It is thus desirable to evaluate
a deconvolution algorithm capable of accurately han
dling the range of functions found in shunt quantifica
tion. Development of such an algorithm may extend the
range of clinical studies that are correctable by decon
volution.

METHODS

We investigated the noise sensitivity of deconvolution
algorithms using mathematical test problems. Known
input and UIR curves were convolved to obtain a known
output curve. The input and output curves were degraded
with pseudorandom noise. An estimate ofthe UIR was
obtained by deconvolution of the degraded input and
output curves. Reconvolution error was assessed by
comparing the degraded output with the convolution of
the degraded input and the UIR estimate. UIR error was
assessed by comparing the UIR estimate with the known
UIR.

General descriptions of the algorithms tested are given
below. More detailed information on their implemen
tation is given in the Appendix.

Smoothandnon-negativealgorithm.This algorithm
constrained the UIR to be non-negative and smooth in
the sense of having a small sum of squared second or
fourth differences. The non-negativity constraint ex
presses the physically evident fact that the UIR must not
be negative. Second and fourth differences are discrete
approximations to the second and fourth derivatives
respectively. The differences of a function increase with
an increase in the rate of change of that function. The
sum of squared differences is thus inversely related to the
smoothness of a function. Therefore, constraining the
UIR to have a small sum ofsquared differences has the
effect ofconstraining the UIR to be smooth. The use of
non-negativity (6) and smoothness (7,8) constraints in
deconvolution has been described in the literature.

Low-passfilter algorithm. The discrete Fourier
transform was used to express the exact solution of the
convolution equation as the sum of scaled sine and cosine
waves of various frequencies. The algorithm constrained
the UIR to be smooth in the sense of being primarily
composed of low-frequency sinusoidal components. A
low-pass filter was used to remove components of fre
quency greater than a cutoff frequency, w@.The filter
multiplied the amplitude of the sinusoidal components
with frequency <<(.i)@by a factor close to 1, and the
components with frequency >>w@by a factor close to 0.
This has the effect of removing components of frequency
greater than@ The UIR was reconstructed by summing
the filtered sinusoidal components.

Cubicsplinealgorithm.A cubicsplineisa function
composed of a series of cubic polynomial segments with
continuous first and second derivatives. Cubic splines are
thus a family of relatively smooth functions. The algo
rithm constrained the UIR to be the cubic spline that
minimized the reconvolution error in the least-squares
sense.

Laggednormalalgorithm.TheUIR encounteredin
shunt quantitation may be decomposed into several
components resulting from transit of tracer through the
different pathways of the cardiovascular system. A
lagged normal curve is a simple unimodal curve similar
in shape to the gamma variate function that has been
used extensively as a model for the UIR of simple vas
cular beds. The lagged normal algorithm constrained the
UIR to be expressable as the non-negative sum of a set
of scaled lagged normal curves. This has the effect of
constraining the UIR to be composed ofcomponents that
might be expected from simple vascular beds. The con
tribution ofeach curve was chosen to minimize the rec
onvolution error in the least-squares sense. The algorithm
is a modification of one used in the deconvolution of
dye-dilution curves (16).

Simulation studies were carried out on a test problem
with a unimodal input and UIR proposed by Gamel et
al. (6) and subsequently studied by Caprihan and Neto
(9).Sincewewereinterestedindeconvolutionproblems

Volume 24, Number 3 259



KURUC,TREVES,AND PARKER

mation may be weighted into a least-squares formulation
with the data. Additional information may also be ex
pressed as a rule, such as low-pass filtering or smoothing,
for obtaining a UIR estimate from an exact solution of
the convolution equation.

An ideal deconvolution algorithm would exclude all
physically unreasonable solutions while allowing all
solutionsthat arephysicallypossible.Thisimpliesthat
accurate results can be obtained by making all possible
use of as much information about the true solution as
possible. Use of a non-negativity constraint is advanta
geous in that it excludes impossible solutions while not
making assumptions that need to be tested. Additional
information, obtained from characterization of the range
of UIR seen in practice, may also be incorporated into
the deconvolution process. Use of such information,
provided it is correct, allows more accurate UIR esti
mates.

The most successful program used by Gamel et al. (6)
ontheunimodalinputandUIR testproblemhadaUIR
error of more than 11% at the R = 0.01 noise level.
Caprihan and Neto (9), using more sophisticated mod
eling techniques, obtained errors of 5 and 12%with noise
at R 0.01 and R = 0.1 respectively. Using the lagged
normal algorithm, we were able to reduce these errors
to slightly over 2 and 5% respectively.

The algorithms tested in this report have one or more
variable parameters which were adjusted to give low
UIR errorson the range of problems tested at a partic
ular noise level. Optimum settings for these parameters
depend on the signal and noise characteristics encoun
tered in a particular application. These parameters may
be thought of as expressing the strength of a preference
for a well-behaved solution, as opposed to an exact so
lution, of the convolution equation. Different settings for
them were used at the R = 0.01 and R = 0.1 noise levels,
since data degraded with high noise levels require a
stronger preference for a well-behaved solution in order
to achieve optimal results. The range of UIR encoun
tered in practice might vary more widely than the range
of test problems described in this report; in particular the
time scale of events may vary several-fold. This may
cause greater difficulty in expressing the necessary ad
ditional information, and hence a loss of accuracy. Ro
bustness of an algorithm with regard to a large range of
UIR is clearly desirable. Results on a deconvolution al
gorithm similar to the lagged normal algorithm de
scribed in this report suggest that the lagged normal
algorithm has this property (16).

The problem of deconvolution has been examined in
the context of quantification ofleft-to-right shunts from
radionuclide angiocardiographic data. Numerical
problems that reasonably approximate this real problem
were examined to determine which deconvolution
methods give the most accurate results. An algorithm
that constrained the computed UIR to be expressible as

I1tC4\@@ â€” I2@

u1h\@ U2

FIG. 1. Curves used in simulation experiments. On top are input
functions Ii and 12.At bottom are unit impulse response (UIR)
functions Ui and U2.

involving more general functions, we also investigated
bimodal input and UIR sequences. The curves tested are
shown in Fig. 1. Details of the test problems are in the
Appendix. Noise levels of R = 0.01 and R 0. 10 (i.e.,
1%and 10%) were investigated.

Means and standard deviations of the UIR- and red
onvolution (RC) errors were calculated for each problem
using the Euclidean norm expressed as a percentage, as
described in Caprihan and Neto (9). This differs slightly
from the absolute value norm used by Gamel et al. (6).
The formulae used to compute the error norms are in the
Appendix.

RESULTS

Results on the test problems are shown in Table 1. The
algorithms tended to perform relatively well at noise level
R = 0.01 , and less well with R 0.1 . UIR errortended
to be higher in test problems using the bimodal input
function rather than the unimodal. The smooth and
non-negative algorithm and cubic spline algorithm were
noteworthy in that performance on the bimodal UIR was
much worse than on the unimodal UIR, particularly with
noise at R = 0.01. In general, the lagged normal program
appeared to perform the best in the sense of having the
smallest maximum UIR error over the range of problems
tested (see Table I).

DISCUSSION

Practical application of deconvolution requires the
incorporation of additional information describing what
constitutes an acceptable UIR into the deconvolution
process. This information may be provided by the
physical characteristics of the system being studied. For
example, in radionuclide angiocardiography the true
UIR must be non-negative.Additional informationmay
be incorporated into the deconvolution process in several
different ways. The UIR may be constrained to be a
member of a specific class of functions, for example, to
be non-negative or expressable as the sum of lagged
normal curves. Probabilistic information concerning the
UIR may be weighted with the data into a statistical
estimate of the UIR. For example, smoothness infor
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thenon-negativesumof a setof laggednormalcurves
was found to give the best results. It is suggested that this
method be applied to determine whether it improves the
clinical evaluation of patients with left-to-right
shunts.
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APPENDIX

The relationship of the input, UIR, and output of a discrete,
causal,linear, time-invariant systemisdescribedby theconvolution
equation:

O1[i] = @:l@Eiâ€”j + 1] U1[jj (i = 1,N)
jâ€”I

11[i],U1[i], and O@[i](i = I ,N) arediscreteinput, UIR, andoutput
sequencesin time respectively. Alternatively Eq. (1) can be cx
pressedby the matrix equation:

01= 1@U1

Letting T denotetranspose,Ot is the column vector [0@[1),O@[2],
. . . , 01[NIJT, U1 is the column vector [U1[1], U1[2] U1[N]JT,

and l@is the lower triangular N X N matrix:

I Li ki = J@1Li â€”k + I}j@ k
1@ to

We wishedto obtain an estimateof U1,which wewill denoteasU
from noise-degradedmeasurementsof I@and O@,which we will
denote as I and 0 respectively.

. â€” I11[i] (1 = 20,N)

I2@[i]â€”Il1[iJ + 0.83 I11[i â€”20) (i 21,N)

The UIR sequencesusedwere given by:

U 11[il = (i@t) e@'@'@

and

. â€” U11[i] (i = 1,20)

U21[i] â€”U11[iJ + 0.7 U11[i â€”20] (i = 21,N)

Valuesof A = 2 and @t 0.1 wereused.01[ij (i 1,N) wasgiven
by direct discrete convolution ofthe sequencesI1[iJand U1[il ac
cording to Eq. ( I ). The observation,I [i] and O[iJ (i = I ,N), were
obtained by the equations:

and

0[i] =01[iJ (1 +r) (9)

r wasa pseudorandomnumber uniformly distributed betweenâ€”R
and R. R valuesof0.Ol and 0.1 wereinvestigated.The simulation
experimentsweredoneusinginput and UIR sequenc@of75 points,
except in the experiments using the low-pass filter algorithm, which
were done using sequencesof I 28 data points. Longer sequences
were used for the low-passalgorithm so that the sequencesused
werealmostequalto zeroat their ends.This is important whenone
is filtering with Fourier transforms, to avoid artifacts due to edge
effects (17). Ten trials were run for eachsetofconditions tested.
Theerror normsusedweredefinedas:

IN @I/2, N /2
UIR error = 100@@(U[iJ â€”Ut[i])2@ /@ U1[i]2

ti@I J I iâ€”I

(I0)
and

N . 11/2 j N@ 1/2
RC error 100 @:(0[i] â€”I@U[1])2l I @:0[@]2

iâ€”I J I i@1

(11)
where * representsthe convolution operator.

(1) IMPLEMENTATJON OF DECONVOLUTION
ALGORITH MS

Smoothandnon-negativealgorithm.Thesumofsecondor fourth
differences of a vector U is given by the product UTSTSU where
S representseithera secondor fourthdifferenceoperator.The

(2) secondand fourth difference operators,denotedas52 and 54 re
spectively, were given explicitly by:

I1(jâ€”k+l=â€”l,1)
S2[j,kJ=@â€”2(jâ€”k+I0) (12)

(3) t@ (otherwise)

and

11(jâ€”k+I =â€”2,2)

S4[j,k]=@4Uk+hl@U (13)
6 (jâ€”k + I= 0)

@@0(otherwise)
The operatorswerenot applied to the edgesof U. The information
SU = 0 was incorporated with weight y into a least-squaresfor

(4) mation with the data. Increasing @yhasthe effect ofdecreasing the
magnitude of UTSTSU acceptable in the solution. The UIR was
estimated by solving the least-squaresproblem:

(5) [@i@@@ (14)

for U, subject to the constraint U 0. The non-negative least
(6) squaresproblem expressedby Eq. ( I 4) was solvedusing the al

gorithm of Lawson and Hanson (18). In the simulation experi
mentsusingthe seconddifferenceoperator,S = S2, the parameter

(7) @Ywassetequal to 2 and 20 for noiselevelsR 0.01 and R 0.1
respectively. In the experiments using the fourth difference op
erator, S = 54, @ywassetequal to 100and 250 for R = 0.01 and
R = 0.1respectively.

Low-passfilter algorithm:ThediscreteFouriertransformcx
pressesa discretecurveof finitedurationasa finite sumof scaled
complexexponentials(/7,19). If the time scaleof the observations

(8) is properly extendedwith zeros,it can beshown that the Fourier

DESCRIPTION OF THE TEST PROBLEMS

The input sequencesusedwere given by:

111[i] = (it@t)2eA(i@t)

and
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coefficients of the exact solution to the convolution equation, UE,
are obtained by:

UE[w]= O[w]/l[w] (o, â€”irl(Nâ€”1)/Nl,@r) (15)

UE[w],O[w]and11w]aretheFouriercoefficientsof UE[i],O[i],
and I[i] respectively. The Fourier coefficients of U[iJ were then
obtained from the formula:

where

COMPUTER IMPLEMENTATION

The input and output curveswerescaledto onebeforethe start
ofthe computation,and the UIR resealedappropriatelyat the end.
The programs were written in FORTRAN under the RT-1 1op
crating systemand were implemented on a laboratory computer
using double-precision (54-bit mantissa, 8-bit exponent) arith
matic.
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U[w]@ A[w] UE[wJ

A[wJ = 1/Il + (W/Wc)Bl (s,, T1(N l)/Nl,T) (17)

This formula describesa low-pass,zero-phasefilter known as a
Butterworthfilter.Theparameterw@controlsthecutofffrequency,
and the parameter B controls the steepnessof the cutoff at that
frequency.Simulation wasperformedwith the parameterB taking
on valuesof 2 and4. In theexperimentsusingB 2, the parameter
W1;was set equal to 10 and 6 for noise levels R 0.01 and R 0.1

respectively. In the experiments using B@ 4, w@wassetequal to
16and 10 for R = 0.01 and R = 0.1 respectively.

Cubic splinealgorithm. Given an interval divided into a number
of subintervals, a cubic spline is a function with continuous first
and secondderivatives, which can be expressedas a cubic poly
nomial over each subinterval. The endpoints of the subintervals
are known as break points. A cubic spline over NB break points
can be expressedas a linear combination of NB + 2 linearly in
dependentbasisfunctions(18). Thus, the problemof fitting a cubic
spline over NB break points to an N-point curve, H, by least
squarestakes the form:

AC= H

A is a N X NB + 2 matrix ofthe basisfunctions,and C is a NB +
2 vectorof theamplitudesof the basisfunctionsin the least-squares
fit (18).

The cubic spline algorithm constrained the computed UIR to
a cubic spline over NB evenly spacedbreak points. It was imple
mented by solving the least-squaresproblem:

IAC =0

for C. The estimated UIR is given by AC, the cubic spline that
minimized the sumof the squarereconvolutionerrors.The number
of break points,NB, usedin the simulation experimentswas6 and
5 for R 0.01 and R = 0.1 respectively.

Lagged normal algorithm. The lagged normal curve may be
described as the convolution of a normal density curve with a
first-order exponentialdecaycurve (10). It may becharacterized
by three parameters, the mean time T@,the standard deviation
about the mean time S@,and the skewness.The UIR was con
strainedto beexpressableasthe non-negativesumof a setof scaled
lagged normal curves. The contribution of each lagged normal
curve to the UIR waschosento minimize the sum of the squared
reconvolution errors. Twenty lagged normal curves of skewness
I, with T@geometrically distributed between5 and 60, were used
in the simulation. The S@valuesweregiven by:

Sj = So+ K Ti

An Sovalueof 5 wasusedin the simulation experiments.K values
ofO.2 and 0.3 were usedwith R = 0.01 and R = 0.1 respectively.
The algorithm wasimplementedusinga non-negativeleast-squares
algorithm (16).




