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Positron emission tomography (PET) with the added tÂ¡me-of-flight information

has been shown to provide a better reconstructed image over conventional posi
tron tomography. This improvement depends on the size of the object being im
aged, the Intrinsic resolution of the detector, and the time-of-fllght resolution.
Moreover, the signal-to-noise ratio of a PET image Is related not only to the total
number of counts in the image but also to the event-locating uncertainties, the re

construction filter function, and the recovered resolution in the image. This study
provides a physical explanation for, and description of, the improvement in signal-
to-noise ratio of a reconstructed Image as a function of the crucial design parame
ters: time-of-flight timing resolution, intrinsic detector resolution, object size, and

reconstructed image resolution.
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Under the ideal situation of infinite counting statis
tics, a properly designed positron emission tomograph
(PET) could reconstruct an accurate two-dimensional
image. Under clinical circumstances, however, counting
statistics are limited by the radiation dosage that can be
safely administered to the patient, and the detector ef
ficiency of the tomograph. Consequently, the limited
counting statistics cause a noisy reconstructed image,
where the amount of noise in the image is related to de
tector's uncertainty in exactly locating the emitting event

along and normal to the direction of photon flight, and
the filter function used in the reconstruction process.
Recently it has been demonstrated (1-4) that the addi
tion of time-of-flight (TOP) information, obtained by
measuring the difference in the arrival times of the
annhilation photons, provides a better signal-to-noise
(S/N) ratio than that in conventional PET images. The
TOP technique has been shown to improve the image
signal-to-noise ratio by factors of 1.5 to 3, depending on
the TOP resolution, compared with conventional systems
with identical detector geometry and efficiency.
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However, in order to realize the full benefit of added
TOP information, it is necessary to relate the S/N im
provement in the image to the detector's intrinsic reso

lution (IR), TOP timing resolution, reconstruction object
size, and final reconstructed image resolution (RR).
Such a comprehensive analysis should provide a better
understanding of pertinent design parameters so that the
design or selection of a PET camera can be tailored to
individual, specific applications or requirements.

THEORY AND METHODS

In conventional PET, a coincidence event detected
between a pair of detectors is assigned an equal proba
bility of location along the coincidence line, since the
position of the site of the annihilation is not known other
than its being somewhere on the coincidence line.
However, in TOP-PET, for each event detected, a
measure of the time-of-flight difference between the two
annihilation photons provides an approximate value for
the position of the source. The position information thus
obtained is associated with an uncertainty that depends
on the properties of the detector and its associated
electronics. This uncertainty can be measured by accu
mulating many detected events along the coincidence
line. We have shown that it approximates a Gaussian
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Conventional Positron Emission Tomography Back Projection (Point Source) For A Detector Pair
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Timo of Flight Positron Emission Tomography Back Projection (Point Source) For A Detector Pair

FIG. 1. Effect of carrying over of the con
fidence-weighted method used by con

ventional PET to TOP PET.

PSF - TOF)1 1

Count = 1

function, with the mean at the source of the positrons and
a full width at half maximum (FWHM) of At (or stan
dard deviation of crt).Location of a source based on the
datum collected alone is called the most likely position
(MLP), since every event detected represents a measure
of the most likely position of the source.

It has also been shown that in reconstructing images
from TOP information, signal-to-noise ratio is improved
if each detected event is represented by its known un
certainty function (3-5). This is to decrease the noise
band pass from that of the sampling pixel's size limit to

that of the detection limit. Thus, each detected event is
replaced by a one-dimensional Gaussian function along
with the coincidence line with mean at the measured
position and a standard deviation crt (Fig. 1). This
technique has been called confidence weighting. In the
conventional PET, the back-projection technique is a
confidence weighting with infinitely large TOP uncer
tainty. The confidence weighting results in a convolution
of the measured data with a noise-free probability
function with a standard deviation of fft. A pictorial il
lustration of the confidence-weighting technique of the
conventional and TOP PETs is shown in Fig. 1,assuming
infinitesimally small a\. As the intrinsic resolution of
detection a\ becomes finite, such confidence weighting
should incorporate the detector's intrinsic resolution

uncertainty as well (4). This is also illustrated in ap
pendix 1 by extending the argument in Ref. 3 to include
the finite detector's size weighting. Hence, every mea

sured count is replaced by a two-dimensional confidence
function with one axis characterized by the TOP un
certainty and the other axis characterized by the detec
tor's intrinsic uncertainty.

For the profile with the coincidence lines parallel to
the x-axis and without 2-D confidence weighting, a point
source at the center of field will be accumulated as a 2-D

Count =00

Gaussian po (Fig. 2):

Po = exp(-x2/2<rt2) X exp(-y2/2<TÂ¡2), ( 1)

since this function pois also the 2-D uncertainty function
used for the 2-D confidence weighting. The 2-D weighted
point spread function pi for that profile is then given
by:

r<D/2

r>D/2

P, = (PO**PÂ°

o

exp

0

2<rc,2

exp
-r

l2(Tci2J

(2)

r < D/2

r>D/2

where rjcl= \/20\, <7ci= V2aÂ¡,and D is the diameter of
the reconstructed field size. The back-projected point
spread function p(r) for a point source at the center is
then given by the summation of all the projections:

P(r) = R(p,(r)i = R|po**poi

Where R is the back-projection operator.

(3)

FIG. 2. Sampling isosensitivity contour of a pair of TOP detec
tors.
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(C* l-T2COS2ÃŸ\Joexph^~)
P(r) =

â€¢exp

0

dÃŸ r < D/2

r>D/2

This prefiltered back-projected point spread function
(BPSF) p(r, ff, <rct,D) is found to be (Appendix 2):

P =

rio(qr2)
r<D/2

r>D/2,

(4)

where

., i i iq = V4 â€”;-T!

and I0is the zerolh-order modified Bessel function of the

first kind.
The cross section of BPSF is illustrated in Fig. 3, with

time-of-flight FWHM, At, equal to 64 mm, detector
intrinsic resolution FWHM, A(, equal to 6.5 mm, and
D greater than 30 cm. The figure also shows a back-
projected point spread function in which a large time-
of-flight value for At equal to 70 cm is used to simulate
a non-TOF unfiltered back-projected PSF. As seen in
Fig. 3, the TOP P(r) retains most of the activity in the
peak region because p(r) converges to zero quite rapidly
with respect to r, whereas the non-TOF unfiltered p(r)
distributes a significant amount of background in the
whole region of reconstruction. However, given a priori
knowledge of the edge of the object, as the object size
decreases (e.g., D = 4 cm in Fig. 3), the difference in p(r)
between the two systems becomes smaller due to the
truncation at smaller radius for p(r). Hence the distri-

P(r)

DectectorResolution=6.4mm

â€”TOP(FWHM) =6.4cm
--TOF(FWHM)=70cm

10 5 5 10 cm
FIG. 3. Point spread functions with TOP FWHM = 6.4 cm and 70

cm, with an intrinsic detector resolution of 6.4 mm.

bution of noise is dependent on the size of the recon
struction region, and increases for larger objects.

The modulation transfer function (MTF) or frequency
content P(co) of the unfiltered BPSF is given by the
two-dimensional Fourier transform (2D-FT) of p. For
a rotationally symmetric function such as p, the 2D-FT
is given by the Hankel transform:

= 2f (p)

ArD/2
= A I

Jo
10(qr2)J0(27rru) rdr (5)

where JQis the zeroth-order Bessel function of the first
kind, 2f is the two-dimensional Fourier transform op

erator, and A is the renormalizing constant to keep all
P(0) = 1.0. Since P(0) represents the integral counts
under the point spread function p, all P(co = 0) should
be constant (set to 1.0) to represent identical statistics
for systems having different point spread functions. P(co)
can be evaluated numerically, and as an example, the
P(co) for the point spread functions p(r) in Fig. 3 with D
equal to 50 cm is shown in Fig. 4.

There are several techniques available for recon
structing an image from its projections. For mathe
matical simplicity in this study, we have used the pre
filtered TOF back-projection image followed by a two-
dimensional filtering technique (5). The desired recon
struction resolution <TR(FWHM= AR) is obtained with
the appropriate choice of the two-dimensional filter. In
the frequency space, the two-dimensional filter F(o>)
required to recover a resolution (TRfrom the back-pro
jected point spread function p(r) is given by:

F(w) = PR(Â«,<TR)/P(cu,ffci,(Tc,,D), (6)

where PR(W,<JR)is the two-dimensional Fourier trans
form of the point spread function pR(r,<TR)for the desired
reconstruction resolution. This point spread function is
assumed to be a two-dimensional Gaussian with standard
deviation <rR:

pR(r,0R) = e-r

PluÂ»
â€” TOF(FWHM|=6.4cmTOF(FWHM)=70cm

DetectorResolution=6.4mm
FieldSize= 50cm

0.2 1.0 cycles/cm

FIG. 4. Two-dimensional fast Fourier Transformation of point spread
functions shown in Fig. 3, with field size D = 50 cm.
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therefore Hence, the variance at (x,0,0):

(7) V(x,0,0) = jAp(x,0,0))2

PR(Ã›;,<TR)is also renormalized to 1.0 at w = 0 for the
same reason as the P in Eq. 5.

This filtering process to obtain the desired recon
struction resolution modifies the image noise from that
of the prefiltered image. If good reconstruction resolution
is to be obtained, high-frequency noise in the prefiltered
image will be amplified. If low reconstruction resolution
is tolerable, the high-frequency noise in the prefiltered
image will be suppressed, resulting in an image with
lower resolution and less noise.

The total noise variance at the center of a large cir
cular uniform activity distribution after filtering is then
calculated as follows.The noisevariance partially follows
the development of Ref. 3, extended to include the de
tector's intrinsic resolution. For a measured event at the

center of the object (0,0) as detected by a pair of detec
tors along the x direction (Fig. 2) with confidence
weighting, an intensity distribution of

Po Ã§ t y t (Ã¶j

is projected. For a detection line along another angle 0,
one can find pe by rotating p0 by 0

Pe = Po(x COS0+ y sin0, â€”xsin0 + y cos0) (9)

Therefore the measured activity at the origin by the
detector pair at angle 0 contributes an image intensity
p(x,y,0) at (x,y):

p(x,y,0) = apo(x COS0+ y sin0,
-xsin0 + ycos0)**f(r), (10)

where f(r) is the desired filter and "a" is the measured

number of counts at the center

= |A(a(po**f)(x coso, -x sin0))j2

^Â»oo

p(x,y,0) = a j
Â»/â€” 0

X po((x - x') COS0+ (y - y') sin0

-(x - x') sin0 + (y - y') coso}

X f(y/(x'2 + y'2)) dx'dy'

Let s = x' COS0+ y' sin0, and t = -x' sin0 + y' cos0,

P(x,y,0) = a T f"

J â€” 00 J â€” o

X po(x COS04- y sin0 â€”s, â€”xsin0

+ y COS0- t) - f(v/(s2 + t2)) dsdt

p(x,0,0) = a f P " po(x COS0- s,

^/ â€”co ^J â€”oo

-x sin0 - t)f(vV + t2)) dsdt

= a|po**f)(x COS0,-x sin0) (11)

= Â¡(po**f)2(xcos, -x sino)} â€¢(Aa)2.

Since a, the measured counts at (0,0) by the detector pair
at angle 0, follows Poisson statistics,

V(x,0,0) = a(po**f)2(x COS0,-x sino). (12)

The variance contribution at (x,0) from all the detection
angles is then:

V(x,0)= fTV(x,0,0)d0

Jo

= a f* (po**02(x COS0,-x sino) d0 (13)

Jo

Since the equation is nothing but the 2-D back-projection
of (po**f)2, and the results have only r-dependence,

V(r) = aR|(p0**f)2i(r). (14)

For a large uniform object, the contribution of the
noise variance to r from the measured counts at the origin
is equivalent to the contribution of the measured activity
at r to the origin. Hence, the total noise contribution at
the origin from the surrounding activity is

V(0) = Ã¤ fÂ° P Rj(po**f)2}(r) rdrd0.

Jo Jo
Applying Parseval's theorem (3):

V(0) = irÃ  f" R|(P0F)2j(u) udw,

Jo

where POand F are the two-dimensional Fourier trans
forms of the weighting function poand the filter function
f.

Since F from Eq. 6 has rotational symmetry,

j;V(0) = Tra I F2R|Po2|(w)udw. (15)

This is the noise variance for an infinite or large uni
form activity distribution. It can be used, however, to
approximate that of a finite uniform distribution, since
with the currently available TOF detector timing, the
contribution of noise at (0,0) from events near or outside
the practical range of object perimeter is negligble. This
approximation will not hold, however, for small object
size D relative to the TOF resolution. Hence, all calcu
lations presented in the following restrict the TOF res
olution FWHM AI < D/3: for a D = 20 cm, A,(max) =
0.5 nsec; for D = 30, At(max) = 0.7 nsec and for D = 40
cm, A,(max) = 1nsec. Equation 15 has a simple physical
interpretation. Since every count collected is weighted
by the weighting function po, it is equivalent to con
volving the data by po-The convolution changes the noise
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before filtering and the noise amplification of the filter
respectively. Hence, the variance V(0) is given by the
integration of [noise spectrum] X [noise amplification]
over the entire frequency space.

To compare the S/N between TOP and the conven
tional PET systems, Eq. 15 is also used to calculate the
noise variance of the conventional systems.

In the conventional system, the prefiltered noise
spectrum R(Po2) in Eq. 15 can be found analytically as

follows. The weighting function is as shown in Fig. 5.

FIG. 5. Weighting function with infinite time-of-flight, finite detector
size (s.d. = aÂ¡),and known activity diameter D.

spectrum from that of the sampling pixel's size to that

of the detection-uncertainty size. In other words, the
noise band-pass is restricted and equal to PQ,the 2D-FT
of po. Moreover, if F is equal to unity (i.e., if no filtering
takes place):

po = ^
|x| >D/2

PO* T T Po e-2iri<ux+vy>dxdy
^J â€”co ^/â€”oo

(16)

D/2
-D/2' -2Â«ux

V(0) = 7TÃ¤fÂ°R{Po2Ko;)

Jo

7TU

Hence, R)Po2) and F2 can be interpreted as the noise

power spectrum defined by the detector uncertainty

.T/22 /Â»'=-r
7T Jo

X e-4ir2<7j2w2sin2Â»|sin2(irDa>cos0)/7r2Ã¼)2cos20|

40cmfield
4mm intrinsic resolution 6mm intrinsic resolution 8mm Intrinsic resolution 12mm intrinsic resolution

100.0 100.0

ÃŒ

0.1
8 10 12 14

Resolutionof Reconstruction(mm)

FIG. 6. Relative signal-to-noise ratios for uniform source 40 cm in diameter, as functions of detector's intrinsic resolution, TOP resolution,

and reconstructed resolution.
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FIG. 7. Relative signal-to-noise ratios for uniform source 30 cm in diameter, as functions of detector's intrinsic resolution, TOP resolution,

and reconstructed resolution.

Using the above Eqs. 15,16,6, and 5, the relative noise
variance or relative signal to noise ratio, S/N, is calcu
lated as a function of fft>G\,0r, D. Relative S/N is de
fined as: S/N = 1/VV(0).

RESULTS

Using the above equations we have calculated nu
merically the relative S/N as a function of ac, a\, <TR,D.
The calculations are carried out for three different ac
tivity sizes: D = 20 cm, 30 cm, and 40 cm. For each ac
tivity size D, four values of detector intrinsic resolutions
with FWHM (AÂ¡)equal to 4,6,8, and 12 mm were used,
and for each D and AÂ¡,the TOP resolution FWHM, A,,
was varied from 0.1 nsec to the At (max) as discussed
earlier, together with the non-TOF conventional limit.
A relative S/N was then calculated for each D, AÂ¡,and
At, for a range of recovered reconstructed resolution
from 4 to 14 mm (FWHM). As an example, Fig. 6 shows
the relative S/N for a 40-cm uniform activity source,
plotted as a function of the recovered resolution for dif
ferent intrinsic detector resolutions and several TOF
values. Figures 7 and 8 show similar calculations for
object sizes of 30 and 20 cm. To simplify the results we

have assumed constant slice thickness and detection ef
ficiency for each size of detector. For instances in which
slice thickness or detection efficiency change, the relative
S/N can be estimated to be higher or lower with a mul
tiplicative factor derived from the detection efficiency
of a particular detector and scanner geometry.

The S/N curves for TOF At = 0.1-0.5 nsec for all
three object sizes are almost identical, since <r,Â«D and
the effect of the object-edge truncation for the point
spread function is negligible. Most of the variation in
S/N curves between the different object sizes comes
from the conventional-system calculations for various
intrinsic detector resolutions. Since the large object sizes
of 30 and 40 cm allow the noise variance (Eq. 15) to
approximate that of a finite object even for worse TOF
resolution, TOF ert= 0.7 nsec was added for the 30-cm
object and fft = 0.7, 1.0 nsec was added for the 40-cm
object. These calculations have been verified for the
relative S/N with Ref. 4, which exactly calculates the
finite-object noisevariance for the case of a 30-cm object.
The calculation for crÂ¡= 8 mm is presented in the com
parison. For all the cases studied here it is interesting to
observe that in the conventional system, the S/N de
creases asymptoticaly much faster than that of the TOF
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FIG. 8. Relative signal-to-noise ratios for uniform source 20 cm in diameter, as functions of detector's intrinsic resolution, TOP resolution,

and reconstructed resolution.

system as one tries to reconstruct to resolutions smaller
than 1.2 times the IR. Hence, it indicates that the TOP
system that may be reconstruct to slightly higher reso
lution than that of a similar conventional systems. These
calculations also show that a gain in relative S/N can be
achieved by using detectors smaller than the desired
reconstruction resolution as in Refs. 6 and 7. This is
easily understandable, since from Eqs. 6 and 15:

V(0) =

and

fJo
R|Prj2Kco)codeo,

P2 = (2/Ã•P))2

= f2;fR(po**Po)i2

= fR(Po2)}2.

portance of the detector's intrinsic resolution and TOP

resolution for a given size of activity distribution, so that
a better optimization between these two important pa
rameters can be obtained in regard to the available de
tector competence. For example, some of the results
shown in Figs. 6,7, and 8 are extrapolated and replotted
in Figs. 10, 11, and 12 respectively for discussion.

For the 40-cm field size, as shown in Fig. 10, useful
TOP S/N gain can be obtained with a TOP resolution
of 500-600 psec. If one is to decide between a 4-mm-IR
non-TOF system and a 8-mm-IR 550-psec TOF system
with identical detection efficiency, the former will be a

30 cm Objlct TOF S/N IMPROVEMENT

Hence,

V(0) = Tra
fJo R(Po2)

â€¢codeo,

and for any reconstruction resolution rjR, the noise
variance V(0) will be lower if R(Po2) is larger at all

values of co.This in turn implies smaller detector intrinsic
size and/or TOP variance in the spatial domain.

DISCUSSION
These results can be used to evaluate the relative im-

TOFTimingIFWHM)

FIG. 9. Comparison of present calculation with that of Ref. 4 for
special case of a 30-cm object.
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2 4 Â« 8 10 12 14
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FIG. 10. Forty-cm object; relative S/N comparison among six
chosen systems: 4-mm-IR, 6-mm-IR conventional, 8-mm-IR TOP,
12-mm-IR TOP, and a standard 12-mm-IR conventional system.

better choice provided that good reconstruction resolu
tion (<8 mm) is needed and the low S/N or sensitivity
associated with such small reconstruction resolution is
tolerable. This is often the case in a research environ
ment. On the other hand if one needs high S/N or sen
sitivity and 8-11 mm image resolution is sufficient, the
8-mm-IR 550-psec TOP system is also a viable choice.
It can also be observed in Fig. 10 that the 8-mm 550-psec
TOP system has a higher S/N than the 12-mm 450-psec
TOP system. Hence, in this case, the gain in S/N with
the use of smaller detectors more than offsets the loss

i

I

20-1

10-
8-

4-

2_

1.
0.8-

0.6-

0.4-

0.2-

0.1

30 cm field

4 6 8 10 12

Resolution of Reconstruction (mm)
14

FIG. 11. Thirty-cm object; relative S/N comparison among six
chosen systems: 4-mm-IR, 6-mm-IR conventional, 8-mm-IR TOP,
12-mm-IR TOP, and a standard of 12-mm-IR conventional

system.

9
1

i

10

I
6

4-

2-

0.2-

0.1

20 cm field

2 4 6 8 10 12 14

Resolution of Reconstruction (mm)

FIG. 12. Twenty-cm object; relative S/N comparison among six
chosen systems: 4-mm-IR, 6-mm-IR conventional, 8-mm-IR TOP,
12-mm-IR TOP, and a standard 12-mm-IR conventional system.

resulting from the worse TOP resolution. The futuristic
4-mm-IR 250-psec TOP system illustrated in Fig. 10
shows that it can reconstruct to 5-mm resolution with the
same S/N or sensitivity as that of the 4-mm-IR non-
TOF system reconstructing to 7.6 mm.

As the field size decreases to 20 cm, as shown in Fig.
12, the TOP S/N gain is less than that of the 40-cm field
size, and the relative merit of using smaller detectors
increases. For example, the 4-mm-IR non-TOF system
for this small field size has higher S/N throughout the
useful region of reconstruction resolution than the 8-mm
550-psec TOP system. However, even at this unfavorable
object size for the TOP systems, a TOP resolution of 250
psec can still provide a twofold increase in S/N, or a
fourfold increase in sensitivity, over the non-TOF sys
tems, as illustrated by the 4-mm-IR calculations.

Again, one should be cautioned that for more realistic
comparisons, one should apply a mutiplicative factor to
the present S/N results in order to take into account the
actual system differences in detector efficiency, packing
fraction, detector ring diameter, slice thickness, and the
utilization of all the cross-slice coincidences (8). The
highly individual system-related factors such as scattered
and random coincidence should also be considered when
evaluating a particular PET system.
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APPENDIX I

The following proof follows that of the 1-Dconfidence weighting
of Ref. 3 but extended for 2-D confidence weighting. The weighted
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point spread function p(r) in Eqs. 3 and 4 for any arbitrary 2-D
weighting function w0(x,y) is given by:

p(r) = R(Po(<7i,(rt,D)**Wo)

where R is the 2-D back-projection operator

P(Â«)= 2/lp(r)) = 2/R(po**W0)

= R2/ (PO**WO)

= R|Po-W0)

The filter function F in Eq. 6:

p, . _

Where PR is the 2-D-FT of the desired reconstruction resolution
point spread function. The variance at the center of the object is
given by Eq. 15.

V(0)= f~F2R|W02)(u>)codu>

Jo
PR2(w,<rR)

- f
Jo (R(Po-Wo)P

By Schwartz's inequality

|R(PoW0)P

-U:PO(COcos0,

<r
Jo

R|W02|(co) oodco.

o) cosÃ¶.cosinÃ¶)dÃ¶

< |R(Po2| â€¢|R(Wo2)|

PR2(w,<TR)R(Wo2)
codeo. (Al)R(P02)R(Wo2)

the equality holds if PO= WQ.Therefore, Vminoccurs when the 2-D
weighting function is equal to the 2-D detector's uncertainty

function, which is equal to a 2-D Gaussian with the x-y standard
deviations equal to the detector's intrinsic resolution a\ and the

time-of-flight resolution <rt.

APPENDIX 2

For a very large object, a point source at the center of the field
is given by:

p = 1 i* * e~r2 coÂ»Z|8(2<ra2)e-r2 sin2/V(2<Tci2)Â¿ÃŸ

TI Jo

= - e-r2/(2<Tci2> T 2e-r2(cos20)( 1/Â«a2- l /<jci2)/2 Â¿ÃŸ

7T ./O

(7ct2)

f "/

Jo

Leta = r2(l/<rci2-l/(7ct2)/2:

p = - e-r2/(

TT

Let 6 = 2/3:

p = e-rV(W) e"/2 f'e(a cosÂ»)/2d0

Jo
= e-r2/<2Â»a2>eÂ»/2Iota/2),

where Io is the zerolh-order modified Bessel function of the first

kind.
p = e-r2(i/^2+i/ac,2)/4 I0|r2(l/Â«7ci2- l/<rct2)/4)
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