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Digitalfilteringisa powerfulmathematicaltechniqueincomputeranalysisofnu
clear medicinestudies.The basic conceptsof object-domainand frequency-do
main filteringare presentedin simple,largelynonmathematicalterms. Computa
tional methodsare describedusingboth the Fouriertransformand convolution
techniques.Thefrequencyresponseisdescribedandusedto representthe behav
br of several classes of filters. These conceptsare illustratedwith examples
drawnfroma varietyof importantapplicationsin nuclearmedicine.
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The use of computers in nuclear medicine has in
creased dramatically in recent years. Advanced com
puter techniques are being introduced rapidly, some with
potential for important clinical application. This paper
will describe digital filtering techniques, which are very
powerful mathematical tools that can be used to extract
additional quantitative information and to improve the
quality of nuclear medicine images. Familiarity with
these techniques is important both for the computer
oriented investigator and the clinician who wants to
understand whether these new methods, offered to him
by the computer manufacturers, will be of value in his
practice. The basic concepts of object- and frequency
domain analysis will be developed without recourse to
detailed mathematics. These concepts lead naturally to
the design ofversatile digital filters. After discussing the
principal computational techniques, current and future
applications will be described.

BASIC CONCEPTS (1-3)

Object and frequency domains. Nuclear medicine data
usually represent images in terms of spatial coordinates
(x â€”y) or dynamic functions varying in time (t). This
representation of data in terms of spatial or temporal
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functions is called the â€œobjectdomainâ€•representation.
The Fourier series, described below, can be used to
represent these data as a series of trigonometric functions
characterized by varying frequencies and amplitudes.
This description in terms of spatial or temporal
frequencies is termed the â€œfrequency-domainâ€•repre
sentation.

Digital filters can be applied to data either directly in
the object domain (x â€”y or t) through a â€œconvolutionâ€•
operation or after transformation to the frequency do
main. Because of the exact mathematical equivalence
between the object-domain representation and the fre
quency-domain representation, the results of the digital
filtering will be the same. However, as discussed below,
many digital filters are best described and evaluated by
computing the change in the frequency distribution of
the data that they produce.

Fourier series and Fourier transform. Mathematical
functions that are repetitive in space or time (periodic
functions) can be represented exactly as the sum of a
series of sine and cosine waves of differing frequencies
and amplitudes. Expressed mathematically, for a tem
poral function f(t) this â€œFourierseriesâ€•is

f(t) = A0 + A1 cos(wt) + B, sin(wt)
+ A2cos(2wt)+ B2sin(2wt)
+ A3cos(3wt)+ B3sin(3wt)

(1)

where the A's and B's are the amplitudes of the cosine
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and sine waves, respectively, and w = 2-,r/T where T is
the period of the periodic function f(t). Alternatively, the
Fourier series can be.represented completely by cosine
waves alone with differing phases or shifts of the crests
of the waves from t = 0. In this form, _______

f(t) = ao + a1 cos(wt â€”4@)+ a2 cos(2wt â€”4@2)
+ a3cos(3wtâ€”4@3)+ . . . (2)

FIG. 1. Left panel: Time-domainrepresentation.A representative
= a@ + @:a@ cos(nwt â€” 4@n), tfrfl@ctivfty curve (TAC) from a gated cardiac blood-pool study is

n I shown at top. Constant term and first three frequency terms that

where the an are the amplitudes and the 4@nare the comPriseth@TACare labeled0. I,II,Ill,respectively.Rightpanel:
Frequency-domainrepresentation.Amplftudeof constantterm and

phases. The series in Eqs. (1) and (2) can be terminated fl@t@@ oftheTACinleftpanelaredisplayedas vertical
when the amplitudes become insignificantly small.@ pt@seofeach harmonicis showninparentheses.

The Fourier series, illustrated here for a periodic
temporal function f(t), applies equally to spatial func
tions f(x,y) (e.g., images) where the image is considered where the digital filter consists of the H@terms of the
to be the sum of cosine waves running across the image â€œfiltertransfer functionâ€•multiplying the amplitudes a@
in the x and y directions. To satisfy the periodicity re- of the Fourier series representation of the data.
quirement, the image intensity can be smoothly tapered Using the Fourier transform notation of Eqs. (3) and
to zero at the edges of the image. Thus, the data for each (4), the operation of filtering in the frequency domain
row or column will appear as a continuous periodic may also be written as
function with continuity at the edges. The Fourier series F'(w) H(w) . F(w)
representation of the image consists of the Fourier (6)
transforms of each individual row and column. @â€œ(t)

To illustrate the use of Eq. (2), a left-ventricular In other words, to perform digital filtering in the fre
time-activity curve (TAC) from a gated cardiac study quency domain, first compute the Fourier transform of
is shown in Fig. 1 along with the Fourier series repre- the function to be filtered [F(w) @7@f(t)@],then multiply
sentation of this curve. In this case, frequency compo- by the filter transfer function H(w) and perform the
nents above the third are omitted because their contri- inverse Fourier transform @J1 to obtain the filtered
bution to the TAC is negligible. function f'(t).

The process of determining the amplitudes in Eq. (1) To clarify the concept of frequency-domain filtering
or the amplitudes and phases in Eq. (2) is called Fourier further, we may draw a useful analogy with the familiar
transformation. In mathematical notation, modulation transfer function (MTF) widely used in

F(w) = @.11f(t)), (3) nuclear medicine to characterize scintillation-camera

where @.1denotes the Fourier transfOrm operation and performance (4). The camera may be thought of as a
F(w) is the Fourier transform, a function of the fre- filter that blurs the distribution of activity emanating
quency Co.The process of going back from the frequency from the organ of interest to yield the resulting degraded
domain to the object domain is called inverse Fourier image. This â€œfilteringâ€•function is described by the MTF
transformation, written@ , i.e., in terms of the camera's effect on the spatial frequency

components that comprise the image. In the same way,
f(t) = â€˜tF(w)@. (4) a digital filter acts to modify the frequency components

Digital filtering in the frequency domain. The com- of an image with its effect described by the filter transfer
putations involved in digital filtering may be performed function H(w).
either in the frequency domain or in the object domain. Methods for determining the filtering function will
In frequency-domain filtering, the relative contributions be described below along with examples of several pop
of the frequencies that comprise the data are modified ular filters.
by filter coefficients. Digital filtering of the function f(t) Digital filtering in the object domain. Filtering may
described by the Fourier series of Eq. (2) leads to the be performed directly in the object domain without
filtered function f'(t): Fourier transformation to the frequency domain. In this

case, a convolution operation is performed where thef'(t) = Hf(t) = H0a0 + H,a, cos(wt â€”cF1)
data (image or temporal function) are â€œconvolvedâ€•with

+ H2a2cos(2wtâ€”4@2) thefilter function.Forunfilteredandfilteredtemporal
+ H3a3cos(3wtâ€”cF3)+ . . . (5) functionsf(t) andf'(t),

= H0a0 + @: H@a@ cos(nwt â€” cF@,), f'(t) = h*f = 5h(a)f(t â€” a)da, (7)
n=I

(334)
(68)

I (36)

23

f (cycles/R-Rinter,aI)
lime (R-R interval)
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(9)

Thus, the convolution operation in the object domain
may be computed by multiplying the Fourier transforms
and taking the inverse transform.

DESIGNING A FILTER

The first, and most difficult, task of the filter designer
is choosing the desired frequency response. For each
frequency a number is specified that multiplies the am
plitude of the corresponding frequency term in the
Fourier series to obtain the filtered frequency terms. As
is evident from Eq. (5), the factor I implies no modifi
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where h is the digital filter function in the object domain,
* denotes the convolution operation, and a isa dummy

variable of integration. For discrete functions,

N
r(t)=h*f= @:hnf(t

nm-N

where the filter is of length 2N + 1.
Just as an analogy can be drawn between the filter

transfer function H and the MTF, the filter function h
in the object domain can be compared with the point
spread function (PSF) used to characterize scintilla
tion-camera performance (4). The blurring of the im
aged organ is represented as a convolution of the PSF
with the distribution of radioactivity within the organ.
In the same way, in digital filtering the filter function h
is convolved with the image to yield the filtered
image.

Convolution theorem. As is evident from the above
discussion, object-domain and frequency-domain fil
tering are closely related. This association is expressed
mathematically in the convolution theorem, which states
that the convolution of two functions in the object do
main is equivalent to multiplication of their Fourier
transforms in the frequency domain. In other words, if
f(t) and h(t) are two functions with Fourier transforms
F(@')and H(w) respectively, then

h(t)*f(t) = @79H(w) . F(w)$.

cation of the frequency component, while attenuation
is indicated by values less than one and amplification by
numbers greater than one.

The desired form of the filter transfer function can be
(8) determinedbyconsideringtheactualfrequencyspec

trum of the data and comparing it with the desired fre
quency spectrum after filtering. For a function f(t) with
frequency spectrum (Fourier transform) F(w), the de
sired frequency spectrum, represented by the Fourier
transform F'(w) is, as in Eq. (6),

F'(w) = H(w) . F(w).

Thus, the required filter transfer function is

H(w) = F'(w)/F(w).

(10)

(1 1)

A widely used class of filters is the so-called
â€œsmoothingâ€•filters, whose effect is reduction in high
frequency noise while leaving unaffected the lower
frequencies where the signal predominates. An example
of this group, perhaps better called â€œlow-passâ€•filters,
is shown in Fig. 2A. Other filters, the band-pass and
high-pass filters, are shown in Figs. 2B and 2C; they are
named for the parts of the frequency spectrum unaf
fected by the filter (3). Frequency components outside
these ranges are completely attenuated. Also shown is
the response of a typical Wiener filter, a more sophisti
cated filter based on the principle of minimizing the
mean squared error between the original, undegraded
image and the filtered image (5). Examples of the use
of some of these filters will be presented below.

After the desired frequency response is selected, the
actual digital filtering operation is performed using one
of the techniques discussed below.

DIGITAL FILTERING TECHNIQUES

In doing digital filtering, one always characterizes the
filter in terms of its effect on the frequency components
of the data. However, the actual computations can be
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performed in either the frequency domain or the object
domain.

Fourier transform method. Here, the frequency
components are actually calculated using the Fourier
transform, then the filter is applied, and finally the in
verse Fourier transform is performed. This is the basic
frequency-domain method discussed above.

A very attractive feature of the direct Fourier trans
form technique is the availability of the fast Fourier
transform (,FFT), a computer algorithm that performs
the Fourier transform very rapidly (1 ). There are,
however, several computational pitfalls, described in the
Appendix, that must be avoided to prevent the intro
duction of serious processing artifacts.

Convolution methodâ€”HR filters. In the convolution
method, the computation is performed in the object do
main, as discussed above, without Fourier transforma
tion to the frequency domain (2,6). However, the design
and performance of these filters, often called finite im
pulse response (FIR) filters, is always characterized by
the effect of the filter on the frequency components of
the data. As is evident from the convolution theorem, the
Fourier transform and convolution methods are
mathematically identical. There are, however, important
computational differences and differences in local versus
global properties that are discussed below.

To illustrate in detail the mathematical computations,
consider an image i(x, y) processed to yield a filtered
image i'(x, y) according to the convolution equation

N N

,â€˜(x,y) = @:@ himj(X 1,y â€”m), (12)
1=-N rn--N

where the himare the FIR coefficients for a square filter
ofsize (2N + 1) X (2N + 1). The coefficients are chosen
so that this spatial-domain filter will handle the fre
quency terms of the image as if an actual Fourier
transform had been performed. An example of an FIR
filter is the familiar â€œnine-pointsmoothâ€•widely used in
nuclear medicine (7). While this filter is not generally
recognized as such, it is in fact one of the simplest pos
sible FIR filters. This filter is shown in Fig. 3 along with
the frequency response determined by generating test
â€œimagesâ€•of sine waves of differing frequencies and
applying the filter. To clarify the meaning of Eq. (12),
the magnitude of the filtered image at a point (xo, yo),
i.e., i'(xo, Yo),is, for this filter,

i'(x.o, Yo) = 0.25 i(x@,yo) + 0.125[i(xo â€”1, yo)

+ i(x@+ 1,yo)+ i(xo,Yo 1)+ i(x@,Yo+1)]
+0.0625[i(xoâ€” l,yoâ€”1)
+i(xo+ l@Yoâ€”1)+i(xoâ€” l,yo+ 1)
+i(xo+ l,y+ 1)].

The complete filtered image is obtained by running this
FIR â€œmaskâ€•over all values of x@and yo in the image.

There are a number of ways to determine the FIR
coefficients after the filter designer specifies the desired

(@21
-@-(242
16@ 2 1

I

0.4

f (cycles/pixei)
FiG.3.FrequencyresponsefunctionH(f)shownforthewidelyused
3 X 3 smoothingFIRfilter.FiRercoefficientsare shownin inset.
Here, f = w/2ir.

frequency response (6). The simplest approach would
be to take the Fourier transform of the filter transfer
function, i.e.,

h=5@IH(w)@. (14)

Unfortunately, as discussed in the Appendix, this method
will introduce spurious terms in the FIR coefficients
arising from the â€œleakageâ€•phenomenon. To correct this
problem, a â€œwindowâ€•must be applied to the coefficients
(2).

The most widely used method ofdetermining the FIR
coefficients is based on a mathematical technique called
Chebyshev optimization. McClellan et al. (8) have
written a versatile Fortran computer program to deter
mine the one-dimensional coefficients by this method.
A second program is available to obtain two-dimensional
coefficients from the one-dimensional terms (6).

A filtering method theoretically related to the FIR
filter is the infinite-impulse response (IIR) filter (9).
While a casual analysis of this method suggests certain
advantages over the FIR techniqueâ€”especiallyin speed
of computationâ€”closer inspection reveals several
practical disadvantages that make the FIR filter the
preferred method in most applications.

COMPARISON OF FOURIER TRANSFORM AND FIR
METHODS

The Fourier transform method of digital filtering
using the FFT is older than the convolution (FIR)
method and it is still very popular. However, the FIR
technique has been thoroughly developed in recent years,
and it is now widely used both for one-dimensional digital
signal processing and two-dimensional image pro
cessing.

â€˜13' Basically,eithermethod willwork inmost applications

â€˜. I of interest in nuclear medicine. Indeed, as discussed

above, the fundamental identity of the two techniques
is expressed in the convolution theorem. However, the
choice of method in a particular application depends
primarily on two considerations: (a) computational issues

69Volume 23, Number 1



MILLER AND SAMPATHKUMARAN

(see the Appendix) and (b) the â€œlocalâ€•nature of the FIR
filter. The F1R filter operates only on the data in a local
region surrounding each individual point to be filtered.
In other words, the filtered value for any given point
depends only on the nature of the data in the adjoining
area. This FIR property permits â€œadaptiveâ€•filtering
where the characteristics of the filter are adapted, or
changed, to match the nature of the data on a point
by-point basis. Furthermore, since the performance of
the filter is insensitive to characteristics of the data
outside the range of the filter mask, any artifacts or
corruption of the dataâ€”e.g.,falloffofTAC counts in late
diastole due to beat-length variabilityâ€”will not affect
the filtered result far from those regions. Ofcourse, when
only a fixed, or global, filter is required and the data are
of good quality, the Fourier transform method is often
quite satisfactory.

Propagation of noise through a digital filter is an im
portant consideration in most nuclear medicine appli
cations. The choice of a filter to reduce data noise is often
a major concern of the filter designer. Although this
complex topic is beyond the scope of this paper, note that
the Fourier transform and FIR techniques treat noise in
essentially the same way, since the primary determinant
of noise response is the nature of the filter, not the way
it is implemented.

Digital filters may be used to reduce temporal or
spatial blurring. Here, too, this important goal is related
to the choice of frequency response of the filter and not
to whether the Fourier transform or FIR technique is
used to realize the filter design.

APPLICATIONS

Digital filtering techniques pervade the digital sig
nal-processing and image-processing literature. Since
many excellent books and review articles (5,6,10,1 1) are
available describing applications outside nuclear medi
cine, the discussion here will be limited to recent work
in nuclear medicine.

Studies of the heart lend themselves naturally to
digital-filtering analysis since the heart functions pen
odically in time. Verba et al. (12), in their program for
automatic analysis of the gated cardiac blood-pool study,
rely extensively on Fourier transform filtering both in
space and time. They perform a two-dimensional (spa
tial) Fourier transform to smooth the cardiac images
and, additionally, smooth the pixel-by-pixel TAC curves
in time. They believe that this combined filteringâ€”es
sentially a three-dimensional Fourier transformâ€”is
critical to the performance of their program.

The Fourier transform is the central component of the
so-called â€œphaseâ€•analysis of the gated cardiac study
(13). A time-activity curve is formed for eachpicture
element (â€œpixelâ€•)of the two-dimensional image. The
first harmonic (first frequency term) of the Fourier series

representation of each pixel's TAC is then computed.
Two static â€œfunctionalimagesâ€•are formed, one with the
gray level or color of each pixel proportional to the
maximum amplitude of the first harmonic of the come
sponding TAC, and the other with the pixel value pro
portional to the phase angle. The amplitude image sep
arates the beating atria and ventricles from the adjoining
static structures and areas of ventricular hypokinesis.
The phase image shows dramatically the progression of
the electrical conduction wave through the heart, and
serves to highlight areas of chamber dyskinesis.

Applications of digital filters to nuclear medicine
images are reviewed by Todd-Pokropek (14). Examples
of representative FIR filters applied to the gated cardiac
study are shown in Fig. 4. The widely used nine-point (3
x 3)FIRfilterofFig.3isshownalongwith7X7low
pass and Wiener filters similar to those diagrammed in
Fig. 2. Note the noise reduction or â€œsmoothingâ€•effect
of the low-pass filter and the edge sharpening of the
Wiener filter. These and other related FIR filters are
discussed in Ref. (15).

It is not necessary to compare specific images filtered
with the Fourier transform and FIR methods. As dis
cussed above, the two filtering techniques give essentially
identical results. The differences between them lie in the
realm of computation time, adaptive properties, and
details of their implementation.

HARDWARE AND SOFTWARE REQUIREMENTS

Most popular minicomputers and microprocessors
used in nuclear medicine can be programmed to do

FIG.4. Sk@g1eframefrom 35@LAO @Ã±ewof gatedcard@cblood-pod
study. Unprocessedimageat upper left. Same image is shown at
right, processedwith a 7 X 7 FIRWienerfilter similar to that shown
in Fig. 3. Bottom images are same view after fiftering with the 3 X
3 (ninepoint)filterof Fig.4 anda 7 X 7 FIRlow-passfiltersimilar
tothatshowninFig.3.NoteedgesharpeningevidentwithWiener
fifter and noise suppression obtained with nine-point and low-pass
filters.

4
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digital filtering by either the Fourier transform or FIR
methods. The required programs are available in the
literature for those wishing to develop their own software
(1 ,6,8), and several computer manufacturers are now

beginning to supply integrated software packages to do
frequency-domain analysis. Indeed, users with minimal
training in computer applications should very soon have
access to these powerful techniques on a â€œturn-keyâ€•
basis, just as they can now perform elaborate cardiac
analysis without detailed knowledge of the internal
workings of the programs.

A major advance in computer hardware, the low-cost
array processor, should have great impact on the feasi
bility ofcomplex computations in routine data processing
in nuclear medicine. These powerful machines perform
arithmetic operations on arrays of data at rates 100 to
200 times faster than in conventional minicomputers.
These units, now available as optional accessories for
nuclear medicine computers, make practical many so
phisticated filtering applications that could not have been
considered in the past because of the prohibitively long
computation time required with conventional mini
computers.

FUTURE OF DIGITAL FILTERING IN NUCLEAR
MEDICINE

Digital filtering techniques are ubiquitous in digital
signal-processing and image-processing applications
outside nuclear medicine. Indeed, the methods described
here are routine mathematical tools that are used widely
in such diverse contexts as astronomy, oil exploration,
telephone communication, and planetary imaging. In
recent years, these techniques have been applied suc
cessfully to increase the diagnostic power of studies in
nuclear medicine. As more advanced equipment, in
cluding array processors, and more complex programs
become commonplace in nuclear medicine, these digital
techniques are sure to assume a still more prominent role
both in research and in day-to-day clinical nuclear
medicine.
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APPENDIX

Computationalpitfalls. Seriousartifacts may arise in fre
quency-domain analysis if certain computational details are not
adhered to. These considerations,except for the aliasing problem
referred to below, arise principally when the direct Fourier
transform method is used. Indeed, the absence of most pitfalls in
the FIR method constitutes an important reason why some users

prefer that technique.Theseproblemsare related to the subtle but
important differences between the continuous Fourier trans
formâ€”applicable to continuous functionsâ€”and the discrete
Fourier transform used with digital computers where the function
mustbesampledat discretepoints.

Leakage(1,16).Whenthefunctiontobeanalyzedbythe Fou
ncr transform is not periodic, spurious frequency terms, called
â€œleakage,â€•are introduced. To suppress leakage, the beginning and
end of the function should be smoothly tapered to zero with a
â€œwindowâ€•function to restore periodicity.

If theperiodicfunctionissampledoverpreciselyoneperiod,as
in Fig. 1, then leakagewill not occur and a window neednot be
appliedunlessthereisdata lossat theendofthecycleleadingto
violation of the periodicity requirement.

Wraparounderror (1,3, 16). In a convolutionoperation,the two
convolved functions are assumed to be periodic. If the periods are
tooshort,thefunctionswilloverlaporâ€œwraparoundâ€•at theedges,
leading to erroneous results. For convolution of images (Eq. (12))
orone-dimensionaldata (Eq.(8)),theproblemcanbeavoidedby
stopping the convolutionmask N-l pixelsbeforeeach edgeof the
image or by padding the convolved functions with zeros to lengthen
the periods.

Aliasing (2,5). According to the sampling theorem, a function
must be sampled at least twice in every wavelength of the highest
frequencycomponentin the function(Nyquistinterval).If the
sampling is too coarse, low-frequency artifacts will be intro
duced through the aliasing phenomenon.To avoid this pitfall,.a
relatively fine sampling interval should be chosen initially and the
Fourier transform computed to determine the highest significant
frequency component in the data. Then, if desired, subsequent
samplingcanbeperformedat a widerintervalupto the limitset
by the sampling theorem.

Speed of computation. It is difficult to make dogmatic state
ments about the time required to run different filters, because of
the widevariability in floating-pointprocessorspeedand memory
among different computers. Ifspeed is a critical issue in a partic
ular setting, both the direct Fourier transform and FIR methods
should be tried.

A few generalizations do, however, usually hold:
(I) TheFIRmethodisfasterforfiltersuptoaboutlength11

(11X 11fora2Dfilter)(5,6).ThisrelativelylargeFIRfilteris
adequateformanyapplications.Iflarger filtersare required,the
Fourier transform method using the FFT is usually preferred.

(2) Elaborate algorithms are available to increase the speed
oflarge FIR filters (17) and to perform FFT calculationson large
two-dimensional arrays (5). However, the efficiency of these
complex methods may be severely limited on computers without
very large memories because they require many disc transfers to
move segments of the data in and out of memory.

The advent of the array processormay obviate most consider
ations of speed. Both one- and two-dimensional FFTs and large
FIR filtersshouldrunsorapidlywiththisnewhardwarethat the
major considerations may become user preference and attention
to computational pitfalls rather than speed of computation.
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Featured speakers are Edwin C. Glass, M.D., John W. Keyes, Jr., M.D., Herbert L. Steinbach, M.D., ThomasA. Verdon,
M.D., James P.Farrell, M.B.A., and Keith D. Garrick, C.P.A.

SVNMA is applying for AMA Physicians Recognition Award Category 1 CME Credit (6 hr) and VOICE Credit for
technologists.

For further information call: Frank Romano, Program Chairman, (916)489-0343or write Sierra Valley Nuclear Med
icineAssociation,P.O.Box 15413,Sacramento,CA95851.

VOICE MEMBERS

VOICE membershipcards are now available from the home office. Those wishing a card need only send a self-ad
dressed,stampedenvelopeto VOICE, Society of Nuclear Medicine, 475 Park AvenueSouth, New York, NY 10016.

Membership in the VOICE system is now an automatic benefit of Technologist Section membership. For those who
wish to join the VOICE system only, there is an annual charge of $40.00.

Your VOICE number is the same as your membershi.p number. It is the five-digit number appearing on the mailing
labels of the journals in the upper left-hand corner.




