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This report presents analytical formulas for the Image-forming and background
event rates seen by circular posltron-emlssion tomographs with parallel side
shielding. These formulas include deadtime losses, detector effIciency, coinci
dence resolving time, amount of activity, patient port diameter, shielding gap, and
shielding depth. A figure of merit, defined In terms of these quantities, describs
the signal-to-noise ratio in the reconstructed Image of a 20-cm cylinder of water
with uniformly dIspersed actlvfty. For 1-cm-wide NaI(Tl) detectors, a 50-cm pa
tient port, an actIvity of 200 iCi per axial centimeter, and a Shieldinggap of 2 cm,
the optimum shielding depth Is 20 cm, which requires a detector circle diameter
of 90 cm. For a 25-cm patient port and other conditionsas above, the optimum
shielding depth Is 14 cm. Resufts are presented for the scintiliators Nai(Tl), bis
muthgermanate(BGO), CsF, and plastic;and for Ge(Li) and wire chamberswfth
converters. in these examples, BGO provided the best signal-to-noise for activfty
levels below 1000 iCi per cm, and CsF had the advantage for higher activfty
levels.

.JNuciMed 21: 971â€”977,1980

In positron-emission, transverse-section tomogra
phy, the image is derived from the detection of unscat
tered coincident annihilation pairs. Almost all posi
tron-emission tomographs use shielding on either side
of the detector plane to block activity external to the
transversesectionbeingimaged(1â€”8).Shieldingis also
used between detector planes in multiple-section devices
(9â€”15).In spite of this shielding, image contrast is de
graded by true coincidencesof scattered annihilation
pairs and by accidental coincidences of unrelated anni
hilation photons (Fig. 1). Most positron-imaging systems
operate with scatteredand accidentalbackgroundsthat
are each typically 20%of the detected coincidences. Even
if these backgrounds can be perfectly estimated and
subtracted from the detected coincidences, the random
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fluctuations in the result are greater than if the back
grounds did not exist. In the following sections we cx
amine the trade-off between sensitivity and backgrounds
and describe a procedure for determining the optimum
shielding depth for single-ring circular positron-emission
tomographs. This treatment does not consider, but can
be extended to include, nonparallel shields and multislice
configurations.

The procedure consists of (a) measuring image and
background event rates from a 20-cm phantom using the
type of detector system being considered; (b) fitting
analytical expressions to these rates; and (c) varying the
shielding depth in those expressions to maximize the
statistical accuracy in the reconstructed image.

As an example, this procedure is carried out for cir
cular detector arrays using the Donner 280-Crystal
positron tomograph with NaI(TI) and bismuth ger
manate (BGO) detecturs. Since the result. depend sig
nificantly on detector characteristics, addtional exam
pies are provided for a variety of detectors, using typical
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FATES OF ANNIHILATION PHOTONS

values of detection efficiency and of time and energy
resolution.

EVENT RATES

As has been shown analytically for circular posi
tron-emission tomographs (16), the overall rate of un
scattered coincidentevents (C1)is givenby:

C1= B1f2pG@/(H+ @P)

UNSCATTERED TRUE COINODEP4CE SINGLES

FIG. 1. Types of coincident events do
tected by positron tomographs. Image is
formed from unscattered coincident anni
hilation pairs. Coincident scaflered pairs
and accidental coincidences of unrelated
photons resuft In broad backgrounds.

where H is the shielding depth in centimeters and B5 is
a constant that incorporates pulse-height thresholds, the
angular distribution of accepted Compton scatters, and
numerical factors.

FIG. 2. Detector, shiedng, and phantom geometry for op@mIzation
(3) calculations.ScatterbackgroundcanbemeasuredInInn&cyikider

by imaging with activity in outer cylindricalannulus only.

SCATTERED TRUE COI4CE*NCE ACCCENTAL COINCIDENCE

(1)

where Eis the detection efficiency for annihilation pho
tons (including detector packing fraction), p is the ac
tivity density in jzCi per axial centimeter, G@is the ef

fec@iveshielding gap (cm), H is the shielding depth (cm),
p (Fig. 2) is the patient port diameter (cm), and B1is a
constant that incorporatesthe averageattenuation and
numerical factors. R = H + @Pis the detector ring ra
dius. For activity distributed in a 20-cm cylinder of
water, B1 = (37,000 sec'@Ci') X (average attenua
lion) X (1/4) = 1850sec'zCi'. Due to edge pene
tration, the effective shielding gap, G@,is slightly larger
than the physical shielding gap, G:

G@= G + Ã”G. (2)

A differentanalyticalexpressionwasderivedin(16) for
the overall rate of coincident scattered events (Cs):

C - Bsâ‚¬2pG@
S@H(H +@P)
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The overall rate of accidental events (CA) given in
(16) is:

CA BAâ‚¬2rp2G@/H2, (4)

where r is the full coincidence-time window. in nano
seconds, and BA @Sa constant that incorporates pulse
height thresholds, detector efficiencies for scattered and
unscattered photons, and numerical factors.

These rates are reduced by system deadtime, which
is a combination of the deadtime of the detectors, the
timing and pulse-height discriminators, the coincidence
circuits, and memory. We assume that for a particular
scattering medium (i.e., a 20-cm cylinder of water) the
ratio of photon interactions to coincident events is fixed,
and that we can define an effective nonparalyzing system
deadtime that applies to the total coincident-event rate
only. Before deadtime losses, the system detects C1 C@
CA in the on-time coincidence window and CA in an
off-time window. Thus the total coincidence rate is CT
= C1 C@ 2CA, and the fraction of events, F, that is lost

to deadtime is given by:

F = tCT/(1 tCT),

where t is the deadtime per event. The observed system
rates are:

D1 = (1 â€”F)C1

D@= (1 â€”F)Cs

DA=(1-F)CA. (6)

In the central region of the reconstructed image of a
cylinder of activity in water, the intensity of unscattered
coincident events per square centimeter (d1) is given
by:

d1 = (1@ F)b1â‚¬2pG@/(H+ @P).

For a 20-cm cylinder, b1 = 29.44 reconstructed events
sec' cm2@zCi'. The intensity of scattered coincident
events per square centimeter (ds) is given by:

(Iâ€” F)bsc2pG@
d@= H(H+@P) â€˜ (8)

and the intensity of accidental events per square centi
meter (dA) is given by:

dA (1 â€”F)bAE2rp2G@/H2. (9)

Before background subtraction, the total intensity, dT,
is given by:

dT=dIdSdA. (10)

DEFINITION OF THE FIGURE OF MERIT

A figure of merit (Q) can be defined as the product of
the unscattered coincidence rate (Dj) and the image
contrast (dI/dT) using the arguments of Beck (17):

Q=DI(dI/dT) (11)

(5) Q may also be called an â€œeffectiveâ€•image event rate,
since the same signal-to-noise ratio would be obtained
in an ideal tomograph with D1' = Q and d5' = dA' = 0.
Note that d1,d5, and dA all undergo the same deadtime
effects, attenuation correction, and error propagation
in the reconstruction process.

From Ref. 18, it is possible to relate the value of Q
(and the imaging time, T) to the statistical uncertainty
in the reconstructed image. In the case of a 1-cm2 cell
near the center of a 20-cm cylinder of uniform activity,
the fractional rms uncertainty is given by 90/@/@!

OPTIMIZATION OF THE FIGURE OF MERIT

(7) Equations1â€”10showthatforagivenimagingsitua

TABLE1. SHIELDINGOPTIMIZATiONFOR NaI(Tl)

5118,58211.98,8050.972.59.221,9321040,0004.08,2200.480.760.453,6721522,3502.27,3250.320.380.594,29520@15,3521.56,5580.240.240.674,4182511,7181.25,9240.190.170.734,337309,5131.05,3970.160.130.774,175406,9710.74,5790.120.090.833.789505,5410.63,9740.100.060.863,422604,6170.53,5100.080.050.883,102

a Port 50cm, effectIve shieldIng gap, G. 2 cm, pulse-height threshold 100 keV, detector efficiency e 45% , p 200

@Cl/cm,deadtlme t = 1 @isec,coIncidence-tIme window r@ 15 nsec.
t Total rate in on-time and off-time coincidence windows combined.
: H 19.8cmformaximum0.
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tion, reducing the shielding depth, H, improves the
imaging rate, D1, but also decreases the image contrast,

dI/dT. Choosing a value of H that maximizes Q (Eq. 11)
ensures the best tradeoff between sensitivity and image
contrast.

By combining Eqs. 1- 11 we show the dependence of
Qontheshieldingdepth,H:
Q(H) =

dQ
dH

A6H3[4Ao + 3A1H + 2A2H2 + A3H3 A5H51

[Ao + A1H + A2H2 + A3H3 + A4H4 + A5H5J2@

(14)

An analytical expression for an optimum value of H (i.e.,
a formula for H in terms ofAo, A1, A2, A3, and A5 such
that dQ/dH = 0) requires the general solution to the

(12) quintic equation, which has not been accomplished.
However, since the coefficients Ao, . . . , A6 are positive,
it maybeshownfromEq.14thattheslopeof Q isequal
to zero for only one value of H, is greater than zero for
smaller values of H, and is less than zero for larger values
of H. As a result Q has only one extremumâ€”a max
imum.

In this work the optimum value of H was determined
in each case by using an iterative quadratic interpolation

algorithm on a small digital computer.

EXAMPLES

NaI(TI). The constants â‚¬,Bg, BA, bS, bA, and the
penetration factor Ã´@were determined for NaI(Tl) by
fitting Equations 1-9 to measurements of 20-cm phan
toms made by the Donner 280-crystal positron tomo
graph. The overall rates D1,D@,and DA were measured
for a 20-cm-diameter cylinder of activity in water (6),

and ds/(ds + d1)and dA/(ds + d1)were measured at the
(I 3) center of reconstructed images of a 5-cm-diameter cyl

inder containing only water, surrounded by a 20-cm
diameter annulus of activity in water (Fig. 2). The
pulse-height threshold was 100 keV, the coincidence
time window was 20 nsec, the activity was varied from
100 to 300 MCi/cm, and the shielding gap was varied
from I to 3 cm. A good fit was obtained with â‚¬= 45%,
B5= 5100,BA =0.73,b@= 7l,bA 5.3 X 103,andÃ´G
= 2. 1 mm. The penetration factor Ã”G was necessary in

each of Equations 1, 3, and 4 (D1, D5, and DA, respec
tively) for an adequate fit to the data. Using these
coefficients in Eqs. 1-10, the shielding depth, H, was
varied to maximize the figure of merit, Q, in Eq. 11.

As an example, Table I lists D1,ds/d1, dA/dI, dl/dT,
and Q as a function of shielding depth, H, for a 50-cm
patient port, p = 200 jzCi/cm, G@ 2 cm effective
shielding gap, a 20-cm-diameter water cylinder, and a
1-zsec deadtime. Figure 3 presents curves of Q as a
function of H for the same conditions except for 25-cm
and 50-cm patient ports.

Other detector materials. The relative rates D1, D5,
and DAfor bismuth germanate (BOO) detector crystals
have been measured in this system with a 300-keV
pulse-height threshold (6), and led to the constants â‚¬
67%, B@ = 5100,BA 0.36,b5 = 71,bA 2.6X i0@.
Note that the photopeak selection reduces BAand bA,
but not B5 and b@,since the scatter background consists

A6H4

A0 + A1H + A2H2 + A3H3 + A4H4 + A5H5'

where

A6 B1b1E2pG@

A5 = b1

A4 b5G@b1P/2 pG@(tB1b1e2bAr)

A3 = Gc[barpGcP/2 + (tb1â‚¬2pG@)
x (B5 + BArpG@)+ (P/2 + tB1E2pG@)

x (b@+ bArpGe)]

A2 pG@(bArP/2) (P/2 + B1tâ‚¬2pG@)

tpE2G@4[BAbIrpP/2 + (B5 + BATPGC)

(b5 + bArpG@)]

A1 (tm2p2G@5P/2) [bA(BS + BATPGC)

+ BA(bS+ bArpGe)]

and

A0 = BAbAtr2E2p3G@6P2/4.

The slope of Q is given by:

â€˜U
a,

0

0

03
0

02 5 10 20 50
ShieldIng depth (cm)

FiG. 3. Effective event rate, 0, as function of shielding depth for
Nal(fl) detectors with 45% detectIon efficiency, 2-cm Shieldinggap,
200 @zCi/cm,1-,@secdeadtime, and coincidence resolving time of
15 nsec. Optimum values are indicated with arrows for 25- and
50-cm patient ports.
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TABLE2. OPTIMUMVALUESOF H AND 0 FOR VARIOUSDETECTORMATERIALSWire

chamberNal(Tl)BGOCsFGe(Li)converters
Plastic

BASIC SCIENCES
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Pulse-height threshold: 100 keV 300 keV 100 keV 500 keV 200 keV 100 keV
511-keVefficiency: 45%t 67%t 50%t 15%t 20% 20%t
Coincidence-tIme window: 15 ns 30 ns 3.3 ns 15 ns 50 ns 3.3 ns
B5 5,100 5,100 5,100 0 5,100 5,100
BA 0.73 0.36 0.73 0.15 0.50 0.73
b5 71 71 71 0 71 71
bA 5.3 X iO@ 2.6 X iO@ 5.3 X iO@ 1.0 X iO@ 3.5 X iO@ 5.3 X iO@
p = 100 MCi/cm

Shielding depth: H (cm) 16.3 16.5 12.7 6.9 19.8 12.5
Image contrast: d1/d@ 0.68 0.69 0.70 0.88 0.66 0.69
Qualftyfactor:Q(sec1) 2,460 5,417 3,390 459 435 546

p = 200 MCi/cm
Shielding depth: H (cm) 19.8 20.3 14.1 8.9 24.7 13.8
Image contrast: d,/d@ 0.67 0.68 0.70 0.85 0.63 0.69
Qualfty factor: 0 (@@1) 4,419 9,648 6,477 835 750 1, 1

p = 500 MCi/cm
Shielding depth: H (cm) 27.6 29.4 17.6 12.5 34.6 16.7
Image contrast: d1/d@ 0.65 0.67 0.70 0.80 0.58 0.68
Quality factor: Q (@@1) 8,846 18,858 14,450 1,775 1,42 2,399

p = 1000MCi/cm
Shielding depth: H (cm) 37.9 42.1 22.4 16.4 46.4 20.4
Image contrast: d,/d@ 0.63 0.66 0.70 0.76 0.53 0.67
Qualityfactor: 0 (sec1) 13,827 28,561 24,894 3,031 2, 9 4,284

. Port 50 cm, effective shielding gap Ga, 2 cm, deadtime t 1 @sec per coincident event.

t Detector size I cm wide X 5 cm deep.

primarily of photons above 415 keY that have scattered
through <40Â°(5).

By using the values for efficiency, time resolution, and
energy resolution for other detector materials, it is pos
sible to optimize the shielding depth for each material.
Table 2 lists the results for six detector materials at four
activity levels. See (19) for a more extensive tabulation.
The detection efficiency for Ge(Li) and plastic was de
termined from Monte Carlo calculations that traced the
interactions of a beam of 51l-keV photons through a
group of 1-cm-wide detectors (20). The detection effi
ciency was defined as the fraction of incident photons
that produced a signal above threshold in only one de
tector.

Note that Table 2 was intended to provide examples
of results of the optimization method only for a variety
of detector materials, and does not necessarily represent
the best that can be done.

DISCUSSION

In the examples considered in Table 2 (a circular de
tector array, parallel shields with a 2-cm gap, and a
50-cm patient port) the highest optimum value of Q is
achieved with BGO at each of the four activity levels.

The second best material is CsF, which has a lower de
tection efficiency than BGO but significantly better time
resolution.

Ge(Li) is unique in having sufficient energy resolution
to reject almost all tissue-scattered photons. This elim

mates the coincident scattered background and greatly

reduces the accidental background. The low full-energy
efficiency for 5 11-keV photons, however, results in low
values of Q.

Plastic scintillators are unique in having such excellent
timing resolution that the coincidence-time window of
2â€”3nsec is determined by the size of the patient port and
the speed oflight. If time resolutions of the order of Â±100
psec could be realized for tomographic systems, the
timing information and the use of shorter detectors could
localize the annihilation point along the line of flight to
Â±1.5 cm. This possibility was suggested by Anger in
1966 (2!) and is used in a 3-dimensional imaging system
built by Nickles and coworkers (22). The use of CsF for
time-of-flight positron tomography has been suggested

by Allemand et al. (23) and by Mullani et al (24). In
Ref. 23 a 0.5-nsec FWHM timing resolution is reported,
and this is estimated to improve the signal-to-noise ratio
in the reconstructed image of a 32-cm cylinder of activity
in water by a factor of 2.9.
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For the case of wire chambers with lead converters,
rather optimistic values of efficiency and time resolution
have been used, but the resulting quality factors are still
relatively low. The situation may improve, as several
groups are investigating schemes to improve their
properties (25-28).

CONCLUSIONS

For positron-emission tomographs, one can define a
quality factor that describes the signal-to-noise ratio in
the reconstructed image, and it is then possible to choose
a side-shielding depth and detector-circle diameter that
optimize the tradeoff between sensitivity and image
contrast. The method requires knowledge of the scaling

coefficients for the scattered and accidental background
rates as well as an adequate description of the detectors
being considered.

Under these conditions, the comparison of optimal
quality factors permits a direct comparison of the suit
ability of different detector materials for positron
emission tomography in terms of the signal-to-noise
ratio. This approach may be expanded to include non
parallel shields and multislice geometries.
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