Skip to main content
Log in

Diagnostic accuracy of bone metastases detection in cancer patients: Comparison between bone scintigraphy and whole-body FDG-PET

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) has become widely available and an important oncological technique. To evaluate the influence of PET on detection of bone metastasis, we compared the diagnostic accuracy of PET and conventional bone scintigraphy (BS) in a variety of cancer patients.

Methods

Consecutive ninety-five patients with various cancers, who received both PET and BS within one month, were retrospectively analyzed. A whole-body PET (from face to upper thigh) and a standard whole body BS were performed and these images were interpreted by two experienced nuclear medicine physicians with and without patient information using monitor diagnosis. Each image interpretation was performed according to 8 separate areas (skull, vertebra, upper limbs, sternum and clavicles, scapula, ribs, pelvis, and lower limbs) using a 5-point-scale (0: definitely negative, 1: probably negative, 2: equivocal, 3: probably positive, 4: definitely positive for bone metastasis).

Results

Twenty-one of 95 patients (22.1 %) with 43 of 760 areas (5.7%) of bone metastases were finally confirmed. In untreated patients, 12 of 14 bone metastasis positive patients were detected by PET, while 9 of 14 were detected by BS. Three cases showed true positive in PET and false negative in BS due to osteolytic type bone metastases. In untreated cases, PET with and without clinical information showed better sensitivity than BS in patient-based diagnosis. For the purpose of treatment effect evaluation, PET showed better results because of its ability in the evaluation of rapid response of tumor cells to chemotherapy. Out of 10 cases of multiple-area metastases, 9 cases included vertebrae. There was only one solitary lesion located outside of FOV of PET scan in the femur, but with clinical information that was no problem for PET diagnosis.

Conclusion

Diagnostic accuracy of bone metastasis was comparable in PET and BS in the present study. In a usual clinical condition, limited FOV (from face to upper thigh) of PET scan may not be a major drawback in the detection of bone metastases because of the relatively low risk of solitary bone metastasis in skull bone and lower limbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eubank WB, Mankoff DA. Evolving role of positron emission tomography in breast cancer imaging.Semin Nucl Med 2005; 35: 84–99.

    Article  PubMed  Google Scholar 

  2. Yeh SD, Imbriaco M, Larson SM, Garza D, Zhang JJ, Kalaigian H, et al. Detection of bony metastases of androgen-independent prostate cancer by PET-FDG.Nucl Med Biol 1996; 23: 693–697.

    Article  PubMed  CAS  Google Scholar 

  3. Gendreau V, Montravers F, Philippe C, Talbot JN. Reevaluation of the usefulness of systematic bone scanning in initial staging and follow-up of small cell lung carcinoma, taking into account the serum levels of neuron-specific enolase.Int J Biol Markers 1997; 12: 148–153.

    PubMed  CAS  Google Scholar 

  4. Maffioli L, Florimonte L, Pagani L, Butti I, Roca I. Current role of bone scan with phosphonates in the follow-up of breast cancer.Eur J Nucl Med Mol Imaging 2004; 31 Suppl 1:S143–148.

    Article  Google Scholar 

  5. Fogelman I, Cook G, Israel O, Van der Wall H. Positron emission tomography and bone metastases.Semin Nucl Med 2005; 35: 135–142.

    Article  PubMed  Google Scholar 

  6. Schrevens L, Lorent N, Dooms C, VansteenkisteJ. The role of PET scan in diagnosis, staging, and management of nonsmall cell lung cancer.Oncologist 2004; 9: 633–643.

    Article  PubMed  Google Scholar 

  7. HustinxR. PET imaging in assessing gastrointestinal tumors.Radiol Clin North Am 2004; 42: 1123–1139.

    Article  PubMed  Google Scholar 

  8. Zhuang H, Kumar R, Mandel S, Alavi A. Investigation of thyroid, head, and neck cancers with PET.Radiol Clin North Am 2004; 42: 1101–1111.

    Article  PubMed  Google Scholar 

  9. Higashi T, Saga T, Nakamoto Y, Ishimori T, Fujimoto K, DoiR, et al. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET)—usefulness and limitations in “clinical reality.”Ann Nucl Med 2003; 17: 261–279.

    Article  PubMed  Google Scholar 

  10. Higashi T, Tamaki N, Honda T, Torizuka T, Kimura T, et al. Expression of glucose transporters in human pancreatic tumors compared with increased FDG accumulation in PET study.J Nucl Med 1997; 38: 1337–1344.

    PubMed  CAS  Google Scholar 

  11. Higashi T, Tamaki N, Torizuka T, Nakamoto Y, Sakahara H, et al. FDG uptake, GLUT-1 glucose transporter and cellularity in human pancreatic tumors.J Nucl Med 1998; 39: 1727–1735.

    PubMed  CAS  Google Scholar 

  12. Higashi T, Saga T, Nakamoto Y, Ishimori T, Mamede MH, Wada M, et al. Relationship between retention index in dual-phase18F-FDG-PET, hexokinase-II and glucose transporter-1 expression in pancreatic cancers.J Nucl Med 2002; 43: 173–180.

    PubMed  CAS  Google Scholar 

  13. Smith TA: FDG uptake, tumour characteristics and response to therapy: a review.Nucl Med Commun 1998; 19: 97–105.

    Article  PubMed  CAS  Google Scholar 

  14. Cheran SK, Herndon JE2nd, Patz EF Jr. Comparison of whole-body FDG-PET to bone scan for detection of bone metastases in patients with a new diagnosis of lung cancer.Lung Cancer 2004; 44: 317–325.

    Article  PubMed  Google Scholar 

  15. Bury T, Barreto A, Daenen F, Barthelemy N, Ghaye B, Rigo P. Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer.Eur J Nucl Med 1998; 25:1244–1247.

    Article  PubMed  CAS  Google Scholar 

  16. Uematsu T, Yuen S, Yukisawa S, Aramaki T, Morimoto N, Endo M, et al. Comparison of FDG PET and SPECT for detection of bone metastases in breast cancer.AJR Am J Roentgenol 2005; 184: 1266–1273.

    PubMed  Google Scholar 

  17. Ohta M, Tokuda Y, Suzuki Y, Kubota M, Makuuchi H, Tajima T, et al. Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with99Tcm-HMDP bone scintigraphy.Nucl Med Commun 2001; 22: 875–879.

    Article  PubMed  CAS  Google Scholar 

  18. Yeh SD, Imbriaco M, Larson SM, Garza D, Zhang JJ, Kalaigian H, et al. Detection of bony metastases of androgen-independent prostate cancer by PET-FDG.Nucl Med Biol 1996; 23: 693–697.

    Article  PubMed  CAS  Google Scholar 

  19. Abe K, Sasaki M, Kuwabara Y, Koga H, Baba S, Hayashi K, et al. Comparison of18FDG-PET with99mTc-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer.Ann Nucl Med 2005; 19: 573–579.

    Article  PubMed  Google Scholar 

  20. Hamacher K, Coenen HH, Stocklin G. Efficient stereo-specific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution.J Nucl Med 1986; 27: 235–238.

    PubMed  CAS  Google Scholar 

  21. Kitano H, Magata Y, Tanaka A, Mukai T, Kuge Y, Nagatsu K, et al. Performance assessment of O-18 water purifier.Ann Nucl Med 2001; 15: 75–78.

    Article  PubMed  CAS  Google Scholar 

  22. Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by18FDG PET: Differing metabolic activity in osteoblastic and osteolytic lesions.J Clin Oncol 1998; 16: 3375–3379.

    Google Scholar 

  23. Shreve PD, Grossman HB, Gross MD, Wahl RL. Metastatic prostate cancer. Initial findings of PET with 2-deoxy-2-[F-18]fluoro-d-glucose.Radiology 1996; 199: 751–756.

    PubMed  CAS  Google Scholar 

  24. Morris MJ, Akhurst T, Osman I, Nunez R, Macapinlac H, Siedlecki K, et al. Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer.Urology 2002; 59: 913–918.

    Article  PubMed  Google Scholar 

  25. Marom EM, McAdams HP, Erasmus JJ, Goodman PC, Culhane DK, Coleman RE, et al. Staging non-small cell lung cancer with whole-body PET.Radiology 1999; 212: 803–809.

    PubMed  CAS  Google Scholar 

  26. Bury T, Barreto A, Daenen F, Barthelemy N, Ghaye B, Rigo P. Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer.Eur J Nucl Med 1998; 25:1244–1247.

    Article  PubMed  CAS  Google Scholar 

  27. Rudoni M, Antonini G, Favro M, Baroli A, Brambilla M, Cardani G, et al. The clinical value of prostate-specific antigen and bone scintigraphy in the staging of patients with newly diagnosed, pathologically proven prostate cancer.EurJ Nucl Med 1995; 22: 207–211.

    Article  CAS  Google Scholar 

  28. Sheth H, Javed SS, Hilson AJ, Buscombe JR, Davidson BR. Radioisotope bone scans in the preoperative staging of hepatopancreatobiliary cancer.Br J Surg 2005; 92: 203–207.

    Article  PubMed  CAS  Google Scholar 

  29. Fukutomi M, Yokota M, Chuman H, Harada H, Zaitsu Y, Funakoshi A, et al. Increased incidence of bone metastases in hepatocellular carcinoma.Eur J Gastroenterol Hepatol 2001; 13: 1083–1088.

    Article  PubMed  CAS  Google Scholar 

  30. Nielsen OS, Nielsen OS, Munro AJ, Tannock IF. Bone metastases: pathophysiology and management policy.J Clin Oncol 1991; 9: 509–524.

    Google Scholar 

  31. Nakamoto Y, Osman M, Wahl RL. Prevalence and patterns of bone metastases detected with positron emission tomography using F-18 FDG.Clin Nucl Med 2003; 28: 302–307.

    Article  PubMed  Google Scholar 

  32. Sugawara Y, Fisher SJ, Zasadny KR, Kison PV, Baker LH, Wahl RL. Preclinical and clinical studies of bone marrow uptake of fluorine-1-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy.J Clin Oncol 1998; 16: 173–180.

    PubMed  CAS  Google Scholar 

  33. Koizumi M, Yoshimoto M, Kasumi F, Ogata E. Comparison between solitary and multiple skeletal metastatic lesions of breast cancer patients.Ann Oncol 2003; 14: 1234–1240.

    Article  PubMed  CAS  Google Scholar 

  34. Stafford SE, Gralow JR, Schubert EK, Rinn KJ, Dunnwald LK, Livingston RB, et al. Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy.Acad Radiol 2002; 9: 913–921.

    Article  PubMed  Google Scholar 

  35. Corcoran RJ, Thrall JH, Kyle RW, Kaminski RJ, Johnson MC. Solitary abnormalities in bone scans of patients with extraosseous malignancies.Radiology 1976; 121 (3 Pt. 1): 663–667.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Higashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimoto, R., Higashi, T., Nakamoto, Y. et al. Diagnostic accuracy of bone metastases detection in cancer patients: Comparison between bone scintigraphy and whole-body FDG-PET. Ann Nucl Med 20, 399–408 (2006). https://doi.org/10.1007/BF03027375

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027375

Key words

Navigation