RT Journal Article SR Electronic T1 Comparison of Prostate-Specific Membrane Antigen–Based 18F-DCFBC PET/CT to Conventional Imaging Modalities for Detection of Hormone-Naïve and Castration-Resistant Metastatic Prostate Cancer JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 46 OP 53 DO 10.2967/jnumed.115.163782 VO 57 IS 1 A1 Steven P. Rowe A1 Katarzyna J. Macura A1 Anthony Ciarallo A1 Esther Mena A1 Amanda Blackford A1 Rosa Nadal A1 Emmanuel S. Antonarakis A1 Mario A. Eisenberger A1 Michael A. Carducci A1 Ashley E. Ross A1 Philip W. Kantoff A1 Daniel P. Holt A1 Robert F. Dannals A1 Ronnie C. Mease A1 Martin G. Pomper A1 Steve Y. Cho YR 2016 UL http://jnm.snmjournals.org/content/57/1/46.abstract AB Conventional imaging modalities (CIMs) have limited sensitivity and specificity for detection of metastatic prostate cancer. We examined the potential of a first-in-class radiofluorinated small-molecule inhibitor of prostate-specific membrane antigen (PSMA), N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-18F-fluorobenzyl-l-cysteine (18F-DCFBC), to detect metastatic hormone-naïve (HNPC) and castration-resistant prostate cancer (CRPC). Methods: Seventeen patients were prospectively enrolled (9 HNPC and 8 CRPC); 16 had CIM evidence of new or progressive metastatic prostate cancer and 1 had high clinical suspicion of metastatic disease. 18F-DCFBC PET/CT imaging was obtained with 2 successive PET scans starting at 2 h after injection. Patients were imaged with CIM at approximately the time of PET. A lesion-by-lesion analysis of PET to CIM was performed in the context of either HNPC or CRPC. The patients were followed with available clinical imaging as a reference standard to determine the true nature of identified lesions on PET and CIM. Results: On the lesion-by-lesion analysis, 18F-DCFBC PET was able to detect a larger number of lesions (592 positive with 63 equivocal) than CIM (520 positive with 61 equivocal) overall, in both HNPC and CRPC patients. 18F-DCFBC PET detection of lymph nodes, bone lesions, and visceral lesions was superior to CIM. When intrapatient clustering effects were considered, 18F-DCFBC PET was estimated to be positive in a large proportion of lesions that would be negative or equivocal on CIM (0.45). On follow-up, the sensitivity of 18F-DCFBC PET (0.92) was superior to CIM (0.71). 18F-DCFBC tumor uptake was increased at the later PET time point (∼2.5 h after injection), with background uptake showing a decreasing trend on later PET. Conclusion: PET imaging with 18F-DCFBC, a small-molecule PSMA-targeted radiotracer, detected more lesions than CIM and promises to diagnose and stage patients with metastatic prostate cancer more accurately than current imaging methods.