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ABSTRACT 

 

Respiratory gating is the standard to overcome respiration effects degrading image quality in 

positron emission tomography (PET). Data-driven gating (DDG) using signals derived from PET 

raw data are promising alternatives to gating approaches requiring additional hardware. However, 

continuous bed motion (CBM) scans require dedicated DDG approaches for axially-extended 

PET, compared to DDG for conventional step-and-shoot scans. In this study, a CBM-capable DDG 

algorithm was investigated in a clinical cohort, comparing it to hardware-based gating using gated 

and fully motion-corrected reconstructions. 

Methods: 56 patients with suspected malignancies in thorax or abdomen underwent whole-body 

18F-FDG CBM-PET/CT imaging using DDG and hardware-based respiratory gating (pressure-

sensitive belt gating, BG). Correlation analyses were performed on both gating signals. Besides 

static reconstructions, BG and DDG were used for optimally-gated PET (BG-OG, DDG-OG) and 

fully motion-corrected PET (elastic motion correction; BG-EMOCO, DDG-EMOCO). Metabolic 

volumes, SUVmax and SUVmean of lesions were compared amongst the reconstructions. 

Additionally, the quality of lesion delineation in different PET reconstructions was independently 

evaluated by three experts. 

Results: Global correlation coefficients between BG and DDG signals amounted to 0.48±0.11, 

peaking at 0.89±0.07 when scanning the kidney and liver region. In total, 196 lesions were 

analyzed. SUV measurements were significantly higher in BG-OG, DDG-OG, BG-EMOCO and 

DDG-EMOCO compared to static images (P<0.001; median SUVmax: static, 14.3±13.4; BG-

EMOCO, 19.8±15.7; DDG-EMOCO, 20.5±15.6; BG-OG, 19.6±17.1; DDG-OG, 18.9±16.6). No 

significant differences between BG-OG and DDG-OG, and BG-EMOCO and DDG-EMOCO, 

respectively, were found. Visual lesion delineation was significantly better in BG-EMOCO and 
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DDG-EMOCO than in static reconstructions (P<0.001); no significant difference was found 

comparing BG and DDG (EMOCO, OG, respectively). 

Conclusion: DDG-based motion-compensation of CBM-PET acquisitions outperforms static 

reconstructions, delivering qualities comparable to hardware-based approaches. The new 

algorithm may be a valuable alternative for CBM-PET systems. 
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INTRODUCTION 

 

Respiratory motion is a source of image degradation in positron emission tomography (PET) and 

combined PET/computer tomography (CT) of the thorax and the abdomen (1). It leads to effective 

resolution losses, image blurring, apparent decreased tracer uptake and increased volumes of 

lesions, and potentially lower detection rates for malignancies (2). 

Hardware-based gating approaches, using additional equipment to record the respiration 

of the patient, are widely considered as the reference standard to minimize these effects (3-5). 

The two most frequently utilized systems use sensors measuring pressure changes within a belt 

around the belly (6), and camera systems monitoring the motion of markers placed on the patient 

(7). 

In contrast, data-driven gating (DDG) approaches derive respiratory waveforms from PET 

raw data (8). Different DDG methods have been investigated in the past (9-13), and first clinical 

evaluations have proven their efficacy (14-17). All these studies were performed with limited 

amounts of bed positions in conventional “step-and-shoot” mode where temporal fluctuations of 

respiratory frequencies within measured data can be assumed to reflect respiratory motion. 

However, for well-established “continuous bed motion” (CBM) scans (18), this no longer holds 

true, as the moving bed introduces additional time dependencies.  

CBM offers advantages over step-and-shoot scans, e.g. more uniform axial sensitivities, 

and more freedom in scanning ranges, as scans are no longer bound to discrete numbers of bed 

positions (19). CBM also supports different speed profiles, e.g. allowing slower scans of regions 

of higher interest, and does not seem to affect motion correction outcomes compared to step-and-

shoot (20). Finally, patients seem to prefer CBM over step-and-shoot scans (21). Thus, offering 

both DDG and CBM seems desirable, potentially combining the advantages of both. However, 
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due to the additional time dependencies, conventional DDG algorithms cannot be expected to 

work properly per se, and need – at least – modifications for CBM. For example, center-of-mass-

based algorithms work well with moving tracer accumulations within the scanner (e.g., the heart 

in 18F-FDG PET scans (11)), but would fail when these enter or leave the field-of-view during CBM. 

In this study we investigated how a dedicated CBM-DDG algorithm performs in comparison 

to a conventional belt system. Originally, first implementations were developed for step-and-shoot 

acquisitions (10), but it was then extended to dynamic PET characterized by non-stationary tracer 

distributions (22). Prior investigation demonstrated its CBM compatibility (23). Additionally, it 

potentially avoids the problem of gating signal inversion inherent to DDG in step-and-shoot scans 

of adjacent bed positions (24,25). Therefore, this study assessed its performance in a cohort of 

routine patients undergoing whole-body 18F-FDG CBM-PET/CT.  
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MATERIALS AND METHODS 

 

Patient Data 

Datasets of 56 patients with suspected malignancies in thorax or abdomen who underwent 

18F-FDG CBM-PET/CT scans between December 2018 and July 2019 were included in this 

analysis. All patients gave written informed consent for retrospective examination. This study was 

approved by the ethics committee of the Ärztekammer Westfalen-Lippe and the University of 

Münster (AZ 2019-024-f-S), and performed in accordance with the 1964 Helsinki declaration and 

its later amendments. 

 

PET/CT Scan 

The patients fasted overnight before PET/CT. 18F-FDG (4 MBq/kg body mass i.v.) was 

injected ≈1 h prior to scanning. Patients were then scanned on a Biograph mCT (Siemens 

Healthcare GmbH, Erlangen, Germany) capable of time-of-flight and CBM (axial PET field-of-view, 

21.8 cm; spatial resolution at center, 4 mm full-width at half-maximum; sinogram sizes, 400x168; 

time-of-flight bins, 13) (26). Scanning was performed in supine position with the arms above the 

head. During examination, the respiratory gating system AZ-733 V (Anzai Co., Tokyo, Japan) 

recorded respiratory signals subsequently used for gating (belt gating, BG). 

Patients were scanned from head or neck down to the proximal femur. Based on 

topograms, low-dose CT scans in end-expiration were performed (tube voltage, 120 kV; effective 

current, 18 mAs; slice thickness, 3.0 mm;  duration, 10–20 s), followed by list mode PET in CBM 

(free breathing; speed, 1.1 mm/s; duration, 560–1270 s). 
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Gating and Reconstructions 

The DDG algorithm investigated is based on a spectral analysis of PET data (23). These 

were first projected into a series of 500 ms 3D volumes by histogramming each prompt event into 

the voxel corresponding to the center of the time-of-flight bin, on a grid with 32x32 transaxial 

voxels, and axially-extended to full acquisition length using 2 mm slices. Delayed events do not 

contain localized motion information and were ignored. The acquisition was then divided into 

overlapping axial regions of 80 mm length, and the spectral analysis method was used to 

determine a mask identifying which voxels were subject to respiratory motion. To this end, we 

defined an initial estimate of respiratory amplitude, 𝑟 𝑡 , as the change in anterior-posterior 

distribution of counts over time. The anterior-posterior distribution at time 𝑡 is defined as the 

standard deviation 𝑆𝐷 of the corresponding 500 ms 3D volume, 𝑔 𝑡 , projected onto the 

anterior-posterior axis: 

𝑟 𝑡 𝑆𝐷 ∑ ∑ 𝑔 𝑡 .   (1) 

The respiratory frequency was then defined as  

   𝑓 argmax 𝑅 𝑓    (2) 

for all frequencies in the range 0.125 Hz 𝑓 0.5 Hz, where 𝑅 𝑓  is the power spectrum of 𝑟 . 

Cardiac frequencies were thus excluded. The location 𝑥𝑦𝑧 for 80 mm range 𝑛 was included in the 

mask 𝜔 ,   (i.e., 𝜔 , 0) for the corresponding range if  

argmax 𝐺 , 𝑓 𝑡ℎ𝑟𝑒𝑠ℎ   (3) 

for frequencies in the range 𝑓 0.05 Hz 𝑓 𝑓 0.05 Hz, where 𝐺 , 𝑓  is the power 

spectrum of the 3D volume at range 𝑛, 𝑔 , 𝑡 , in the temporal domain, and 𝑡ℎ𝑟𝑒𝑠ℎ was 

determined iteratively such that 10% of pixels were included in the mask. 
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A weighting function was required to identify the relative direction that regions of contrast 

(edges) move (10). By assigning positive or negative weights to mask values from edges that are 

respectively opposed in the direction of motion, the net contribution from moving edges add 

constructively to the overall respiratory signal. The weighted mask value at each voxel of region 𝑛 

within the mask was defined as 

𝜔 , cos 𝜙 , Φmax,  ,   (4) 

where 𝜙 ,  is the phase angle at 𝑓resp, the peak frequency of respiration derived from the spectral 

analysis, and Φmax,  is the mode phase angle of all corresponding voxels in the mask. 

The relationship between signal gradient sign and the absolute direction of motion is arbitrary and 

independent for different axial bed positions (24,25), so for CBM acquisitions, phase angles for 

region 𝑛 were offset by the optimal angle Φ ,  which minimized the difference between weights 

in adjacent, overlapping regions: 

   Φ , argmin ∑ 𝜙 , 𝜙 ,, , .  (5) 

  To initialize equation (5), Φ ,  was set to 0 for region 𝑛 0, defined as the axially central 

80 mm region, and 𝑚 refers to the adjacent region in the direction of the axial center, 

𝑚 sgn 𝑛 |𝑛| 1 .    (6) 

The phase-weighted masks 𝜔 ,  from all 80 mm regions were combined into a single mask 

representing the entire axial extent, 𝜔 , , by averaging the non-zero values at 𝑥𝑦𝑧, i.e., 

𝜔 , Number of  with ,
∑ 𝜔 , .  (7) 

The respiratory signal 𝑥 𝑡  was obtained by summing all values in the masked time series of 

3D volumes, 𝑔 𝑡 , such that 
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    𝑥 𝑡 ∑ ω , ∙ 𝑔 𝑡, , .  (8) 

Changes in anterior-posterior motion in the volume series were used to ensure the signal 

increases/decreases during inspiration/expiration, respectively. Low frequency changes in signal 

offset and amplitude that result from large axial variations in tracer distribution were removed by 

subtracting a fitted spline, 

𝑥 𝑡 𝑥 𝑡 spline 𝑡 ,  (9) 

and normalized using a 𝑤 15 s sliding window, 

𝑥 𝑡  
:

,   (10) 

where 𝑆𝐷 is the standard deviation of the window. 

Finally, the signals were linearly interpolated to 50 Hz. BG signals 𝑥 𝑡  were recorded at 

50 Hz. 

Both 𝑥 𝑡  and 𝑥 𝑡  were corrected for baseline drifts to eliminate non-respiratory 

motion. This was done by subtracting a smoothed step function defined on intervals of 15 s length 

representing the 5th percentile of the original signal. This also ensured similar amounts of noise 

for different axial positions in amplitude-gated CBM images (although potentially resulting in 

residual blur by non-compensated baseline motion). The “optimal gates” (OG) with 35% of the 

measured PET data corresponding to the smallest signal amplitude interval were reconstructed 

(27). 

Additionally, images were reconstructed using an elastic motion correction algorithm 

(EMOCO) (28). First, motion vectors between OG and static reconstructions were determined 

using optical flow estimation. These vectors were then treated as blurring kernels in the forward 
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projection of the reconstruction, effectively de-blurring motion effects (29). This algorithm has been 

validated against an established gate-to-gate motion correction (30). 

All datasets were reconstructed using the e7 toolbox (Siemens Healthcare GmbH, 

Erlangen, Germany) by ordinary Poisson ordered subset expectation maximization (3 iterations, 

21 subsets) with point-spread-function, time-of-flight, normalization, random and scatter 

corrections, resulting in the following reconstructions: static; optimally-gated (BG-OG, DDG-OG, 

respectively); and fully motion-corrected (BG-EMOCO, DDG-EMOCO, respectively). Attenuation 

correction was based on CT data. The images comprised slices of 400x400 voxels (volume, 

2.04x2.04x2.03 mm3). No post-reconstruction filter was applied. 

 

Data Analysis 

𝑥 𝑡  and 𝑥 𝑡  were analyzed by calculating the global Pearson correlation coefficient 

𝑟global taking all time indices 𝑡 into account. 

Furthermore, regional correlation coefficients 𝑟regional were determined for these ranges: 

R0 – below bladder; R1 – bladder to right kidney; R2 – right kidney to liver dome; R3 – liver dome 

to aortic arch; R4 – aortic arch to lung apex; R5 – above lung apex (Table 1). The positions of 

these landmarks were determined from CT, and the times when they were in the center of the 

PET scanner were calculated. 

Finally, local correlation coefficients 𝑟local 𝑡  were calculated for every time 𝑡  as the 

correlation coefficient between 𝑥 𝑡  and 𝑥 𝑡  determined for 𝑡 5 𝑠 𝑡 𝑡 5 𝑠, i.e., on 

a 10 s interval around 𝑡 , resulting in a better resolved correlation metric than 𝑟regional. 

The reconstructed PET images were analyzed for lesions between bladder and lung apex. 

These were characterized individually for all reconstructions by their maximum standardized 
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uptake value SUVmax, their apparent metabolic volume V50% based on the respective 50% SUVmax 

threshold, and their mean standardized uptake SUVmean in that volume. SUVmax was determined 

in a region-of-interest manually placed over the respective lesion. Since multiple lesions were 

potentially derived from a scan, one lesion per acquisition was randomly chosen, defining a 

subgroup that was additionally analyzed. 

Finally, identically color-scaled coronal slices through the lesions of this subgroup were 

prepared for an assessment of visual differences between static reconstructions, BG-EMOCO, 

and DDG-EMOCO, and between BG-OG and DDG-OG. These slices were presented 

independently in random order to two nuclear medicine clinicians and one medical physicist who 

were asked to rate the relative quality in terms of lesion delineation without knowledge of the actual 

reconstruction method. A relative score was devised as follows: If a method was judged superior 

to another, +1 was noted, if it was judged inferior, -1 was noted; else 0 was given. The score 

values of the experts were averaged for every comparison, and rounded to the nearest integer, 

resulting in an averaged score per case and comparison. 

 

Statistical Analysis 

Correlation coefficients are given as mean values ± standard deviation, SUVmax, SUVmean 

and V50% as median values ± standard deviation. SUV and volume differences were tested using 

two-tailed Wilcoxon signed rank tests, while two-tailed sign tests were used to assess visual 

differences (calculated in MATLAB version 2013b; MathWorks, Natick, MA, USA). Bonferroni 

corrections for pairwise comparisons were applied; the family-wise error rate was 0.05. 
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RESULTS 

 

DDG signal calculation typically required 5-10 minutes on a 2.4 GHz, 16 cores, 46 GB 

RAM system. All 56 signals 𝑥 𝑡  demonstrated typical respiratory features between bladder 

and lung apex; other regions exhibited higher noise levels (Fig. 1A). This was corroborated in the 

correlation analysis between 𝑥 𝑡  and 𝑥 𝑡  (Fig. 1B). Generally, despite considerable 

individual variation, 𝑟local demonstrated values close to 0 below the bladder, increasing to 0.9 

around kidneys and liver, and decreasing to 0 above the lung apex (Fig. 2A). 

Regional correlation coefficients 𝑟regional consistently showed the highest values in region 

R2 (0.89±0.07), decreasing to smaller values in R0 and R5 (0.12±0.17 and 0.05±0.08, 

respectively); 𝑟global amounted to 0.48±0.11 (Fig. 2B; Table 1). 

In total, 196 lesions were analyzed in 45 of the 56 scans (Table 2). 26 lesions were located 

in the upper lungs, 13 in the upper mediastinum, 82 in the lower lungs, 20 in the lower 

mediastinum, 31 in the liver, and 24 in other infradiaphragmatic regions. All lesions were 

discernible in all reconstructions. 

SUVmax for all lesions was 14.3±13.4, 19.8±15.7, and 20.5±15.6 for static reconstructions, 

BG-EMOCO, and DDG-EMOCO, respectively (Figs. 3 and 4; Table 3). The respective values for 

SUVmean were 9.3±9.1, 13.5±11.6, and 13.7±11.4, while the volumes V50% were 0.5±2.4 mL, 

0.3±1.4 mL, and 0.3±1.3 mL. BG-EMOCO and DDG-EMOCO led to significantly different values 

than static reconstructions. SUVmax was 19.6±17.1 and 18.9±16.6 for BG-OG and DDG-OG, 

respectively, while SUVmean was 12.6±12.5 and 12.4±12.2 for BG-OG and DDG-OG, respectively. 

Volumes were 0.3±1.2 mL (BG-OG) and 0.3±1.3 mL (DDG-OG). No significant differences 

between BG and DDG were observed. 
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SUVmax in the subgroup of one lesion per scans (n=45) was 9.5±10.5, 13.4±13.5, and 

13.5±13.7, SUVmean 6.8±7.1, 8.9±9.4, and 8.9±9.2, and V50% 0.6±1.8 mL, 0.4±0.6 mL, and 0.3±0.6 

mL for static, BG-EMOCO, and DDG-EMOCO images, respectively (Figs. 3 and 4, big dots; Table 

4). Differences between static- and either of the EMOCO-derived parameters were highly 

significant. SUVmax was 15.2±14.6 and 14.6±12.5, SUVmean 9.5±10.2 and 9.0±8.3, and V50% 

0.3±0.8 mL and 0.3±0.7 mL for BG-OG and DDG-OG, respectively. Again, no significant 

differences between BG and DDG were seen. 

Visual inspection of the PET images demonstrated improved lesion delineation for both 

OG and EMOCO compared to static reconstructions, although OG was noticeably noisier (Fig. 5). 

Quality analysis revealed that static reconstructions was judged superior to BG-EMOCO in a 

single case, inferior in 33, and equal in 11 cases. Similarly, static reconstructions were judged 

superior to DDG-EMOCO in no case, inferior in 31, and equal in 14 cases. Both BG-EMOCO and 

DDG-EMOCO were considered significantly superior to static images (P<0.001; Fig. 6). No 

significant difference was seen between BG and DDG: 8 BG-EMOCO cases were superior to 

DDG-EMOCO, 5 cases were inferior, 32 cases revealed no difference (P=0.58); DDG-OG was 

superior to BG-OG in 10 cases, inferior in 6 cases, and equal in 29 cases (P=0.45; Fig. 6). 
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DISCUSSION 

 

First clinical studies already demonstrated that DDG methods are equivalent to hardware-

based methods in terms of image quality and lesion quantification (14,15); accordingly, vendors 

have started incorporating DDG algorithms into their PET systems (17). However, more studies 

are needed to assure that DDG works well in a wide range of applications, radiotracers, and 

scanning modes (31). 

In this respect, our study closes a gap by evaluating a novel CBM-DDG method in a larger 

patient cohort undergoing whole-body PET. In general, this algorithm resulted in motion-

compensated PET images with comparable quality and accuracy as conventional methods, 

exploiting the advantages of both CBM and DDG in routine scans. An independent study using a 

similar algorithm but smaller number of datasets (n=15) already demonstrated comparable results, 

with average regional correlation coefficients 𝑟regional of 0.15, 0.69, 0.82, 0.75, 0.46, and 0.07 for 

regions R0, R1, R2, R3, R4, and R5, respectively (32). However, SUV seemed to be smaller for 

DDG as compared to BG, contrasting our results without significant differences. 

Some results of our study are of particular interest. The comparison between 𝑥BG 𝑡  and 

𝑥DDG 𝑡  demonstrated considerable correlation even in deep abdominal regions (R0 and R1) in 

some scans, indicating the presence of respiratory motion there. Unfortunately, only 4 lesions in 

R1 were detected in our cohort, so no general conclusion can be drawn from the SUV analysis. 

However, some patients had elevated 18F-FDG uptake in several colon segments; these were 

visually better defined in both BG- and DDG-derived images than in static images (Fig. 7). A 

comparison with observations by Walker et al. confirms that respiratory motion plays a significant 

role in these regions, as they found respiratory information in raw data of regions up to 40 cm 

below the liver dome (17). 
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In general, good correlations of 𝑥BG 𝑡  and 𝑥DDG 𝑡  were found between bladder and lung 

apex, making an imaging workflow which automatically corrects for motion between these 

boundaries possible. Correlation decreases from lung base to apex can be explained by smaller 

respiratory shifts measured by the DDG algorithm towards the apex. This raises the question of 

whether motion resolution in the upper lung is still sufficient to compete with belt-derived gating. 

Surprisingly, an analysis of the lesions located in R4 (n=39) reveals slightly larger median SUVmax 

and SUVmean and smaller V50% for DDG than for BG (e.g., SUVmax: 17.1±15.9 vs. 17.8±15.4 for BG-

EMOCO and DDG-EMOCO, respectively). However, this was not statistically significant (with pre-

Bonferroni P values of 0.05–0.11 for SUV). Larger cohorts are needed to analyze DDG accuracy 

in the upper lungs. Nevertheless, this would be in line with some observations of hysteresis effects 

leading to phase differences in respiration between different body regions (33). 

Our study has some additional limitations. First, only 18F-FDG PET/CT datasets were 

included. While 18F-FDG is still the most often used radiotracer in clinical scans, other tracers like 

ligands of the prostate-specific membrane antigen (PSMA) are becoming increasingly popular for 

PET imaging. It remains to be seen how DDG performs in these scans. 

Furthermore, the observed increases in SUV and decreases in volumes are apparently 

larger than in similar studies (15,34). This highlights that lesion quantification is dependent on 

many factors, especially reconstruction parameters and spatial resolution. We chose to maximize 

image resolution in order to detect even small differences in performance between BG and DDG. 

Thus, we did not apply post-reconstruction filters, and reconstructed on a high-resolution grid, 

leading to higher SUV increases and volume decreases. These values may not represent typical 

clinical outcomes; they rather reflect maximal differences in SUV and volumes achieved by 

gating/motion correction within the settings of this study.  
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CONCLUSION 

 

The investigated DDG algorithm generated accurate respiratory signals from CBM-PET 

raw data. Gated and motion-corrected images were comparable to a conventional hardware-

based approach in terms of lesion quantification and visual quality. The proposed DDG method 

seems to be a promising motion correction alternative for routine whole-body CBM-PET scans. 
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KEY POINTS 

 

QUESTION: Is data-driven respiratory gating as accurate as hardware-based approaches in 

continuous bed motion PET? 

 

PERTINENT FINDINGS: This study demonstrates no significant difference in lesion quantification 

and visual quality between data-driven and hardware-based gating, while both methods 

outperform static reconstructions. 

 

IMPLICATIONS FOR PATIENT CARE: The presented data-driven gating method for continuous 

bed motion may replace hardware-based approaches, leading to simplifications in workflow and 

patient management.  
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TABLES 

 

Table 1: Definition of regions and correlation coefficients (mean ± standard deviation, range) 

between BG and DDG signals 

Region R0 R1 R2 R3 R4 R5 Global 

Start 
Proximal 

femur 
Bladder 

Right 

kidney 
Liver dome Aortic arch Lung apex 

Proximal 

femur 

End Bladder 
Right 

kidney 
Liver dome Aortic arch Lung apex Head/neck Head/neck 

Correlation 

coefficients 

0.12±0.17 

(-0.12–

0.61) 

0.72±0.15 

(0.35–0.96) 

0.89±0.07 

(0.68–0.97) 

0.77±0.16 

(0.26–0.94) 

0.41±0.32 

(-0.71–

0.86) 

0.05±0.08 

(-0.15–

0.21) 

0.48±0.11 

(0.30–0.75) 
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Table 2: Lesion characteristics; SUV and volumes (median ± standard deviation, range) 
determined from static reconstructions 

Region 
Number of 

lesions/patients 
SUVmax SUVmean V50% [mL] 

Upper lungs 26/14 
12.5±16.1 
(5.1–84.1) 

8.1±10.3 
(3.4–52.1) 

0.2±0.7 
(0.0–2.6) 

Upper mediastinum 13/10 
18.3±10.9 
(5.7–38.9) 

12.4±7.4 
(3.4–25.9) 

0.8±1.5 
(0.1–5.4) 

Lower lungs 82/32 
12.9±15.8 
(3.0–88.0) 

8.5±10.9 
(2.0–58.8) 

0.4±1.7 
(0.1–11.5) 

Lower mediastinum 20/16 
14.1±12.5 
(5.5–57.4) 

9.2±9.0 
(3.6–41.9) 

0.4±1.1 
(0.1–3.6) 

Liver 31/11 
14.5±6.0 

(7.1–26.9) 
9.0±3.8 

(4.4–17.6) 
1.5±3.8 

(0.1–14.4) 

Other infradiaphragmatic 
regions 

24/10 
20.4±9.3 

(7.8–43.0) 
13.6±6.1 

(4.9–28.0) 
0.8±3.0 

(0.1–12.0) 

Total 196/45 
14.3±13.4 
(3.0–88.0) 

9.3±9.1 
(2.0–58.8) 

0.5±2.4 
(0.0–14.4) 
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Table 3: Characteristics of all 196 lesions (median ± standard deviation) for all correction 
strategies 

 Static BG-EMOCO DDG-EMOCO BG-OG DDG-OG 

SUVmax 14.3±13.4 19.8±15.7 20.5±15.6 19.6±17.1 18.9±16.6 

P value to static  <0.001 <0.001   

P value to BG   0.60  0.19 

SUVmean 9.3±9.1 13.5±11.6 13.7±11.4 12.6±12.5 12.4±12.2 

P value to static  <0.001 <0.001   

P value to BG   0.65  0.11 

V50% [mL] 0.5±2.4 0.3±1.4 0.3±1.3 0.3±1.2 0.3±1.4 

P value to static  <0.001 <0.001   

P value to BG   0.87  0.50 

 

BG: belt gating, DDG: data-driven gating, EMOCO: elastic motion correction, OG: optimal gating 
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Table 4: Characteristics of the 45 randomly chosen lesions (median ± standard deviation) for all 
correction strategies 

 Static BG-EMOCO DDG-EMOCO BG-OG DDG-OG 

SUVmax 9.5±10.5 13.4±13.5 13.5±13.7 15.2±14.6 14.6±12.5 

P value to static  <0.001 <0.001   

P value to BG   0.21  0.28 

SUVmean 6.8±7.1 8.9±9.4 8.9±9.2 9.5±10.2 9.0±8.3 

P value to static  <0.001 <0.001   

P value to BG   0.44  0.20 

V50% [mL] 0.6±1.8 0.4±0.6 0.3±0.6 0.3±0.8 0.3±0.7 

P value to static  <0.001 <0.001   

P value to BG   0.71  0.33 

 

BG: belt gating, DDG: data-driven gating, EMOCO: elastic motion correction, OG: optimal gating  
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FIGURES 

 

Figure 1: Comparison of respiratory signals (A) and correlation coefficient 𝑟local (B) for a typical 

case (landmarks passing the scanner center indicated by arrows; regions designated by R0, …, 

R5).  



27 
 

 

Figure 2: Superposition of correlation coefficients 𝑟local (gray) for all scans in normalized axial 

position (0: bladder, 1: lung apex) (A; average in black); boxplot of correlation coefficients 𝑟regional 

for all scans (B; asterisks denote outliers).  
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Figure 3: Scatter plots of SUVmax (A), SUVmean (B), and V50% (C) for static, BG-EMOCO, and DDG-

EMOCO reconstructions. Subgroup of one lesion per scan denoted by big dots; black line: identity. 
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Figure 4: Scatter plots of SUVmax (A), SUVmean (B), and V50% (C) for BG-OG, and DDG-OG 

reconstructions. Subgroup of one lesion per scan denoted by big dots; black line: identity. 
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Figure 5: Typical outcome of gating (OG) and motion correction (EMOCO) using BG and DDG 

signals, compared to the static reconstruction. Visual improvements of liver lesions (arrows) are 

apparent.  
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Figure 6: Pairwise visual quality comparison between EMOCO and static reconstructions (left), 

and DDG and BG (right), respectively (n=45). White areas denote cases where method 1 was 

superior to method 2, black areas cases where method 1 was inferior; gray areas denote cases 

of equal quality.  
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Figure 7: Maximum intensity projection of a scan with elevated colon uptake (arrows; regions R1 

and R2) demonstrating better delineation with BG and DDG. 


