Early experience of rechallenge ¹⁷⁷Lu-PSMA radioligand therapy after an initial good response in patients with advanced prostate cancer

Andrei Gafita¹, Isabel Rauscher¹, Margitta Retz², Karina Knorr¹, Matthias Heck², Hans-Jürgen Wester³, Calogero D'Alessandria¹, Wolfgang A Weber¹, Matthias Eiber¹*, Robert Tauber²*

¹Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Germany ²Department of Urology, Klinikum rechts der Isar, Technical University Munich, Germany ³Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Germany

Corresponding author:	Andrei Gafita, MD							
	Department of Nuclear Medicine, Klinikum rechts der Isar							
	Technical University Munich							
	Ismaninger Straße 22							
	81675 Munich, Germany							
	Tel.: +49 (0) 89-4140-2963							
	Fax.: +49 (0)89-4140-4950							

E-mail: andrei.gafita@tum.de

* joint senior authorship

Word count: 2500

Running title: ¹⁷⁷Lu-PSMA rechallenge in prostate cancer

Financial support: M.E. received funding from the SFB 824 (DFG Sonderforschungsbereich 824, Project B11) from the Deutsche Forschungsgemeinschaft, Bonn, Germany.

ABSTRACT

Aim: To retrospectively evaluate the feasibility of rechallenge ¹⁷⁷Lu-Prostate-specific membrane antigen (¹⁷⁷Lu-PSMA) radioligandtherapy (RLT).

Material&Methods: Rechallenge RLT was defined as subsequent treatment with ¹⁷⁷Lu-PSMA after initial exposure with excellent response followed by progression. Biochemical, radiographic, clinical antitumor response and adverse events were analysed. Prostate-specific antigen progression-free survival (PSA-PFS) and overall survival (OS) were calculated.

Results: Eight patients underwent a median of 2 (range:1-4) cycles of ¹⁷⁷Lu-PSMA-I&T rechallenge. Maximum PSA-decrease of 50% was achieved in 3 (37.5%) of patients. Radiographic response was favorable in 3 patients, whilst 4 exhibited progressive disease. Eastern-Cooperative-Oncology-Group (ECOG) Performance-Status was stable during therapy in all patients. No grade 4 toxicity was noticed and grade 3 toxicity occurred in 3 (37.5%) patients. The median PSA-PFS and OS were 3.2 (95%CI:2.6-3.7) and 14.0 (95%CI:6.2-21.8) months, respectively.

Conclusion: In a small patient cohort with initial excellent response ¹⁷⁷Lu-PSMA rechallenge is still active, with lower efficacy and increased toxicity levels.

Keywords: PSMA, ¹⁷⁷Lu-PSMA, rechallenge, radioligand therapy, prostate cancer

INTRODUCTION

Metastatic castration-resistant prostate cancer (mCRPC) is the lethal phenotype of the disease. Despite several new agents having been approved, more than 250.000 men still die of prostate cancer worldwide each year (*1*). In recent years, prostate-specific membrane antigen (PSMA) became an attractive target for both diagnosis and treatment of prostate cancer (*2*). The application of PSMA-ligands labelled with radionuclide ¹⁷⁷Lu has demonstrated encouraging efficacy and good safety profile for ¹⁷⁷Lu-PSMA radioligand therapy (RLT) (*3*,*4*). Rechallenge of docetaxel in patients with mCRPC who initially responded to docetaxel chemotherapy regimen was described as a potential treatment option after docetaxel-free interval. Available data indicate reasonable antitumor response at moderate toxicity (*5*,*6*).

So far, data for rechallenge of ¹⁷⁷Lu-PSMA RLT in patients after prior effective treatment followed by progressive disease after ¹⁷⁷Lu-PSMA-free interval has not been published. Therefore, we aimed to retrospectively assess the efficacy and safety profile of ¹⁷⁷Lu-PSMA rechallenge in this specific patient cohort.

MATERIAL AND METHODS

All patients who underwent ¹⁷⁷Lu-PSMA-I&T RLT in a rechallenge setting at our institution between October 2014 and February 2018 were extracted. The rationale to consider initial ¹⁷⁷Lu-PSMA-I&T accomplished and inclusion criteria for ¹⁷⁷Lu-PSMA rechallenge are detailed in Supplement (*3*,*7*). Rechallenge treatment was applied every 6-8 weeks including a ⁶⁸Ga-PSMA-11 PET/CT every two cycles. All patients signed a written informed consent and were treated under a compassionate use. The institutional review board approved the analysis (reference 115/18S).

Non-hematological and hematological adverse events (AEs) were graded according to Common Terminology Criteria for Adverse Events v5.0. Biochemical response was determined using Prostatespecific antigen (PSA) decline \geq 30%, \geq 50%, and \geq 90% during initial and rechallenge treatment. For radiographic response ⁶⁸Ga-PSMA-11 PET/CTs were assessed as described recently (8). Clinical response was assessed by Eastern Cooperative Oncology Group (ECOG) Performance-Status and changes in bone pain from the Brief-Pain-Inventory. Overall survival (OS) and PSA progression-free survival (PSA-PFS) were calculated according to guidelines of the Prostate Cancer Trials Clinical Working Group 3 (9).

PSA-PFS and OS were determined using the Kaplan-Meier curve method with corresponding 95% confidence intervals (95%CI). Statistical analyses were performed using IBM SPSS Statistics v22.0 (IBM Corp., Armonk, USA).

RESULTS

Eight patients with ¹⁷⁷Lu-PSMA-I&T RLT in a rechallenge setting were analyzed. One patient even underwent a third course of treatment. Details on patient characteristics including mCRPC pretreatment regimes, number of cycles and tumor sites are given in Supplement and Table 1.

Safety Profile

Specific non-hematological and hematological parameters for all patients at baseline and after ¹⁷⁷Lu-PSMA-I&T rechallenge are presented in Supplemental Table 1 and Figure 1. Adverse events graded according to Common Terminology Criteria for Adverse Events v5.0 are shown in Table 2. No grade 4 AEs were noticed. Grade 3 AEs occurred in three (37.5%) patients, two of them with thrombocytopenia and one with anemia. Grade 1 increase in creatinine serum was observed in one (12.5%) patient. Grade 1 xerostomia was noticed in two (25%) patients. Note, that nearly all patients with grade 2 or grade 3 toxicities have presented with grade 1 toxicity at the start of ¹⁷⁷Lu-PSMA-I&T rechallenge.

Antitumor Response

Biochemical. At initial treatment with ¹⁷⁷Lu-PSMA-I&T, all patients achieved a maximum PSAdecline of at least 50% of whom 75% (6 of 8) had at least a 90% PSA-decline. During ¹⁷⁷Lu-PSMA-I&T rechallenge, a maximum PSA-decline of at least 30%, 50%, and 90% was achieved in 75.0% of patients (6 of 8), 37.5% (3 of 8), and 12.5% (1 of 8), respectively. Table 1 presents intraindividual PSA-responses and PSA-levels at baseline and after ¹⁷⁷Lu-PSMA-I&T, both at initial and rechallenge treatment. Figure 2 shows the waterfall plot of maximum PSA-responses at rechallenge treatment.

Radiographic. Radiographic antitumor response was assessed in seven patients. One patient did not undergo the follow-up ⁶⁸Ga-PSMA-11 PET/CT due to progressive disease and deterioration of the general condition. According to adapted PERCIST 1.0 (*10*), three patients had a partial response, whilst four patients exhibited progressive disease due to new lesions.

Clinical. At baseline, an ECOG score of 0, 1 and 2 was present in one (12.8%), six (75%) and one (12.8%) patients, respectively. ECOG Performance-Status remained stable in all patients during the course of rechallenge treatment. At baseline, six patients had pain related to bone metastases. Of these, two (33%) reported complete resolution of pain, one (16%) had partial remission, two (32%) reported no changes and one (16%) patient reported worsening bone pain.

Time on Treatment and Survival Curve Analyses

Swimmer plot (Fig. 3) displays intraindividual mCRPC therapies duration and maximum PSA response at ¹⁷⁷Lu-PSMA-I&T rechallenge. Treatment was discontinued in four patients due to AEs (3x thrombopenia, 1x renal function impairment) and in three patients due to biochemical or radiographic progression. In one patient ¹⁷⁷Lu-PSMA rechallenge was halted after four cycles due to exceptional response

and restarted the thirds course after an additional ¹⁷⁷Lu-PSMA-free interval. One case example is displayed in Supplemental Figure 1.

Median OS was 23.1 (95%CI: 19.5-26.7) months after first initiation of ¹⁷⁷Lu-PSMA-I&T and 14.0 (95%CI: 6.2-21.8) months after initiation of rechallenge treatment. Three patients (37.5%) were alive at last follow-up. The median PSA-PFS was 12.4 (95%CI: 10.4-14.3) months from the beginning of the initial ¹⁷⁷Lu-PSMA-I&T RLT and 3.2 (95%CI: 2.6-3.7) months from the beginning of rechallenge treatment.

DISCUSSION

To our knowledge, this is the first report assessing efficacy and safety profile of 177 Lu-PSMA rechallenge in patients with mCRPC. Exposing a patient to the same oncological treatment, which was effective during primary application is an increasingly used concept, e.g. for docetaxel (5,6).

In our selected group of patients with excellent response to initial ¹⁷⁷Lu-PSMA-I&T, the median PSA-PFS at first therapy course was 12.4 (95%CI: 10.4-14.3) vs. 3.3 (95%CI: 2.6-3.7) months at treatment rechallenge and also much shorter compared to an unselected cohort of patients at initial ¹⁷⁷Lu-PSMA-I&T treatment (median PSA-PFS 5.8 (95%CI: 1.2-10.5) months (*3*)). Only 37.5% of patients achieved 50% PSA-decline during rechallenge. In a similar setting involving patients who had an initial good response to docetaxel, a 50% PSA-decline was reported in 28-40% of patients at rechallenge treatment (*5,6*). These results outline rechallenge treatment offers antitumor activity, but to a lower extent comparing to initial treatment.

The benefits of ¹⁷⁷Lu-PSMA rechallenge have to be weighed against the risk of cumulative toxicity. All three patients with grade 3 AEs exhibited impaired lab results prior to ¹⁷⁷Lu-PSMA rechallenge (Fig. 1). Furthermore, both patients with grade 3 thrombopenia had substantial tumor progression during rechallenge treatment. Therefore, discriminating bone marrow failure etiology (progression vs. treatment-related) is difficult. There are no guidelines for the optimum number of cycles of ¹⁷⁷Lu-PSMA in patients who show good response. Currently, in our institution, the initial treatment with ¹⁷⁷Lu-PSMA is typically discontinued after a maximum number of six cycles. Usually, patients who undergo RLT are heavily pretreated with other mCRPC therapies including second-line androgen receptor target treatments or taxane-based regimens. In our study, patients underwent a mean of four (range: 2-8) mCRPC pretreatments lines. Chemotherapy with Cabazitaxel and radiopharmaceutical Radium-223-dichloride are two common therapeutic choices after initial ¹⁷⁷Lu-PSMA RLT discontinuation. When compared, the median OS were 14.5 (95%CI: 13.5-15.3), 14.5 (95%CI: 13.5-15.3) and 14.0 (95%CI: 6.2-21.8) months for 3-weekly 25mg/m² Cabazitaxel, Radium-223 and our small cohort of ¹⁷⁷Lu-PSMA-I&T rechallenge, respectively (*11,12*). However, with only eight patients in our analysis, caution is warranted for comparison with survival data of other treatments. Notably, in a recent abstract describing ¹⁷⁷Lu-PSMA-617 in a rechallenge setting 75% of patients achieved any PSA-decrease at acceptable toxicity level (*13*).

Our analysis has limitations. First, we report only a small cohort of eight patients. Consequently, our results have to be interpreted with caution and further analyses (e.g. predictor factors) were not possible. However, ¹⁷⁷Lu-PSMA RLT has been introduced only recently and the number of patients with an excellent response is limited. Second, due to a missing established system to evaluate response on PSMA PET, we adopted PERCIST 1.0 as described (*8*). The validation of PERCIST for non-FDG application is still under discussion.

CONCLUSION

Our results in a small patient cohort with initial excellent response during ¹⁷⁷Lu-PSMA RLT indicate that this treatment is still active in a rechallenge setting, but with lower efficacy and increased toxicity levels. The present study proposes ¹⁷⁷Lu-PSMA rechallenge as a potential therapeutic option in this palliative setting with a lack of alternatives. Its benefits have to be weighed against the risk of cumulative toxicity.

Further prospective studies including larger patient cohorts are warranted to investigate the clinical outcome for mCRPC patients undergoing ¹⁷⁷Lu-PSMA rechallenge.

CONFLICT OF INTEREST

No potential conflicts of interest relevant to this article exist.

REFERENCES

1. Center MM, Jemal A, Lortet-Tieulent J, et al. International variation in prostate cancer incidence and mortality rates. *Eur Urol*. 2012;61:1079-1092.

2. Eiber M, Fendler WP, Rowe SP, et al. Prostate-specific membrane antigen ligands for imaging and therapy. *J Nucl Med.* 2017;58:67s-76s.

3. Heck MM, Retz M, D'Alessandria C, et al. Systemic radioligand therapy with (177)Lu labeled prostate specific membrane antigen ligand for imaging and therapy in patients with metastatic castration resistant prostate cancer. *J Urol.* 2016;196:382-391.

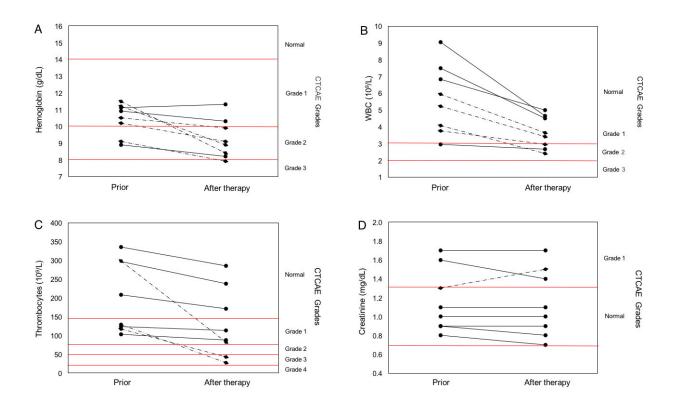
4. Hofman MS, Violet J, Hicks RJ, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. *Lancet Oncol.* 2018;19:825-833.

5. Heck MM, Thalgott M, Retz M, et al. Rational indication for docetaxel rechallenge in metastatic castration-resistant prostate cancer. *BJU Int*. 2012;110:E635-640.

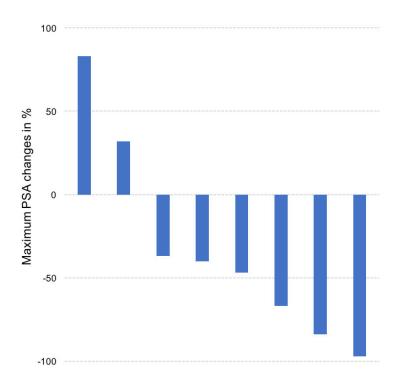
6. Oudard S, Kramer G, Caffo O, et al. Docetaxel rechallenge after an initial good response in patients with metastatic castration-resistant prostate cancer. *BJU Int*. 2015;115:744-752.

7. Okamoto S, Thieme A, Allmann J, et al. Radiation dosimetry for (177)Lu-PSMA I&T in metastatic castration-resistant prostate cancer: absorbed dose in normal organs and tumor lesions. *J Nucl Med.* 2017;58:445-450.

8. Seitz AK, Rauscher I, Haller B, et al. Preliminary results on response assessment using (68)Ga-HBED-CC-PSMA PET/CT in patients with metastatic prostate cancer undergoing docetaxel chemotherapy. *Eur J Nucl Med Mol Imaging*. 2018;45:602-612.


9. Scher HI, Morris MJ, Stadler WM, et al. Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the prostate cancer clinical trials working group 3. *J Clin Oncol.* 2016;34:1402-1418.

10. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. *J Nucl Med.* 2009;50(Suppl 1):122s-150s.


11. Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. *N Engl J Med*. 2013;369:213-223.

12. Eisenberger M, Hardy-Bessard AC, Kim CS, et al. Phase III study comparing a reduced dose of cabazitaxel (20 mg/m(2)) and the currently approved dose (25 mg/m(2)) in postdocetaxel patients with metastatic castration-resistant prostate cancer-PROSELICA. *J Clin Oncol.* 2017;35:3198-3206.

13. Yordanova A, Essler M, Hauser S, Feldmann G, Ahmadzadehfar H. Re-challenge [177Lu]Lu-PSMA617 in patients with advanced prostate cancer: outcome and safety [abstract]. *J Nucl Med.* 2018;59(Suppl 1):526.

Fig. 1. Comparison of the hematological lab results Hb (A), WBC (B) Thrombocytes (C) and Creatinine (D) values prior and after ¹⁷⁷Lu-PSMA-I&T rechallenge

Fig. 2. Waterfall plot of maximum PSA responses during ¹⁷⁷Lu-PSMA-I&T rechallenge as compared to baseline levels.

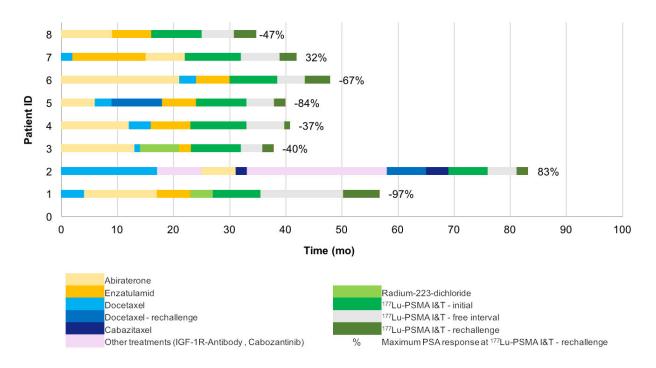


Fig. 3. Swimmer plot demonstrating mCRPC treatments time duration and the maximum PSA responses

at ¹⁷⁷Lu-PSMA-I&T rechallenge

Table 1. Patients characteristics

	Primary diagnosis			Prior treatments			¹⁷⁷ Lu-PSMA-1&T Initial treatment			¹⁷⁷ Lu-PSMA-I&T Free-interval			¹⁷⁷ Lu-PSMA-1&T Rechallenge										
ID	Date	iPSA	GS	Mets.	Primary therapy (RP/RT)	mCRPC th Drugs	nerapies Lines	Baseline PSA (ng/mL)	No. of cycles	Post- therapy PSA (ng/mL)	Max. PSA Resp.	Time (m)	Other therapies	Age	ECOG score	Sites	s of metas LN	stases Visceral	Baseline PSA (ng/mL)	No. of cycles	Max. PSA Resp.	PSMA PET/CT Resp.†	Therapy discontinuation
1	2008	40	9	LN	+/+	Docetaxel Abiraterone Enzalutamide Radium 223	4	605	4	<0.03	-100%	14.7	ADT	72	0	+	+	-	5	4	-97%	PR	Therapy break after excellent response
2	2001	6	9	-	+/+	Docetaxel‡ Cabazitaxel Abiraterone Others*	8	97	4	16	-78%	5.1	ADT	67	1	+	+	Lungs	54	2	83%		Tumor progress
3	2002	24	6	Bones	-/-	Docetaxel Abiraterone Enzalutamide Radium 223	4	1193	4	18	-98%	3.8	ADT	73	1	+	-	-	66	2	-40%	PR	Toxicity
4	2012	26	7a	LN Bones	-/+	Docetaxel Abiraterone Enzalutamide	3	227	6	5	-96%	6.7	ADT	75	1	+	+	Adrenal glands	50	1	-37%	PD	Toxicity
5	2004	29	9	LN	+/+	Docetaxel‡ Abiraterone Enzalutamide	4	176	6	1	-98%	4.9	ADT	70	1	+	-	-	51	2	-84%	PR	Toxicity
6	2008	7	9		+/+	Docetaxel Abiraterone Enzalutamide	3	950	6	35	-94%	4.9	ADT	62	2	+	+	-	2328	3	-67%	PD	Tumor progress
7	2005	72	9	LN	+/+	Docetaxel Abiraterone Enzalutamide	3	63	6	8	-87%	6.9	ADT	75	1	+	+	-	34	2	32%	PD	Tumor progress
8	2006	14	7b	-	+/+	Abiraterone Enzalutamide	2	124	6	3	-97%	5.7	ADT	77	1	-	+	-	110	2	-47%	PD	Toxicity

* IGF-1R-Antibody (NCT00313781), Cabozantinib (COMET-1-Trial, NCT01605227)

 \uparrow PR = Partial Response, PD = Progressive Disease \ddagger patients underwent initial docetaxel and docetaxel rechallenge

Abbreviations: iPSA = initial PSA; GS = Gleason Score; Mets. = metastases; LN = lymph nodes; RP = radical prostatectomy; RT = local radiotherapy; ADT = continuous-androgen-deprivation-therapy

				enge grade
	Grade 1	Grade 2	Grade 3	Grade 4
Anemia		4	1	
Leucopenia	2	2		
Thrombopenia	1		2	
Renal function	1			
impairment				
Xerostomia	2			

Table 2. Adverse events at ¹⁷⁷Lu-PSMA-I&T rechallenge graded according to Common Terminology Criteria for Adverse Events v5.0