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ABSTRACT 

Radiomics analysis of 18F-FDG-PET/CT images promises for an improved in-vivo disease characterization. 

To date, several studies reported significant variations in textural features due to differences in patient 

preparation, imaging protocols, lesion delineation and feature extraction. Our objective was to study 

variations of features prior to a radiomics analysis of 18F-FDG-PET data and to identify those feature 

extraction and imaging protocol parameters that minimize radiomic feature variations across PET imaging 

systems. Methods. A whole-body National Electrical Manufacturers Association image quality phantom 

was imaged with 13 PET/CT systems at 12 different sites following local protocols. We selected 37 

radiomic features related to the four largest spheres (17-37 mm) in the phantom. Based on a combined 

analysis of voxel size, bin size and lesion volume changes, feature and imaging system ranks were 

established. A 1-way analysis of variance (ANOVA) was performed over voxel size, bin size and lesion 

volume subgroups to identify the dependency and the trend change of feature variations across these 

parameters. Results. Feature ranking revealed that the gray-level co-occurrence matrix (GLCM) and shape 

features are the least sensitive to PET imaging system variations. Imaging system ranking illustrated that 

the use of point-spread function (PSF), small voxel sizes and narrow Gaussian post-filtering helped 

minimize feature variations. ANOVA subgroup analysis indicated that variations of each of the 37 features 

and for a given voxel size and bin size parameter can be minimized. Conclusions. Our study provides 

guidance to selecting optimized features from 18F-FDG-PET/CT studies. We were able to demonstrate that 

feature variations can be minimized for selected image parameters and imaging systems. These results can 

help imaging specialists and feature engineers in increasing the quality of future radiomic studies involving 

PET/CT. 
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INTRODUCTION 

Radiomics refers to the process of extracting and analyzing in-vivo features from medical images for 

disease characterization (1). The radiomics approach was originally conceived for morphological images 

only (2,3), but recently was adopted also for the analysis of 18F-FDG-PET/CT images with promising results 

in various patient cohorts (4–9). It has been shown that several features, e.g., textural indices, employed in 

the radiomics approach are affected by e.g., variations of biological factors (10), imaging and reconstruction 

protocols (11,12), delineation approaches (13–15) or feature extraction methods (12,16–18).  

Feature variations challenge the reproducibility of radiomics assessments, and, therefore, standardized 

protocols related to patient preparation, imaging and feature engineering, are needed (18,19). In this context, 

Vallières and colleagues recently pointed to the importance of standardized image processing and feature 

computation for better addressing the “statistical quality of the radiomics analysis” (20). While individual 

feature computations in light of variable image resolutions (12,21–26) or bin sizes (27–32) have been 

investigated, optimized feature extraction following the combined analysis of image resolution (aka voxel 

size), bin size and lesion volume changes has not yet been reported. Instead, the choice of protocol 

parameters is still driven largely by the wish to maximize individual predictive performance. This is in 

contrast to the need for standards in radiomics analysis at the level of individual feature extraction 

parameters. 

Our hypothesis is that feature extraction optimization can be performed through the analysis of 18F-

FDG-PET image features derived from multiple scans of a standard phantom. We utilize multi-center data 

to provide a general solution to optimize feature extraction applicable mono- or multi-centrically. We 

perform an in-depth analysis of features regarding voxel size, bin size and lesion volume changes to support 

feature extraction optimization.  
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MATERIALS AND METHODS 

Phantom Acquisition 

The data used for this study were acquired in the context of a multi-center study across 12 PET imaging 

centers, involving 13 imaging systems in Austria (33). A National Electrical Manufacturers Association 

(NEMA) Image Quality (IQ) phantom was filled with a background activity concentration of ~5.3 kBq/mL 

as recommended by the NEMA NU2-2012 standard (34). The phantom contains six spheres (10 mm - 37 

mm) that were filled with an activity concentration of four times the background concentration (Fig. 1). All 

phantom acquisitions and image reconstructions were performed by the same expert according to the on-

site clinical standards for whole-body 18F-FDG PET/CT imaging (Table 1). 

Delineation 

The delineation process was performed using the Hermes Hybrid 3D software ver. 2.0 (Hermes Medical 

Solutions, Stockholm, Sweden). First, a cuboid volume of interest (VOI, 5 x 5 x 5 voxels) was defined in 

the background area of each PET image. Then, the four largest spheres (sphere 1-4 with diameters 37mm, 

28mm, 22mm and 17mm, respectively) that were visually identifiable in all image volumes were delineated 

using a semi-automatic region growing tool to generate corresponding VOIs (S37, S28, S22 and S17). Only 

voxels with values higher than the mean of the background VOI were included in a given VOI. The VOIs 

(S37-S17) were dilated by five voxels by an automated dilatation tool (DS37, DS28, DS22 and DS17 VOIs; see 

Fig. 2). This step was performed to avoid interpolation artifacts at border voxel positions in the S37-S17 

VOIs during the resampling.  

Feature extraction 

For each acquisition, features were extracted from resampled images with three different voxel sizes (1 

mm, 2 mm, 4 mm) and combined with four different bin sizes (0.01, 0.025, 0.05, 0.1 in units of tumor-to-

background ratios). The combination of the image resolution and bin size parameters resulted in 12 feature 
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extraction configurations ( = ,… , ) (Fig. 3). The use of absolute bin sizes resulted in a variable 

number of bins (27) (Fig. 4).  

In order to perform the feature extraction, the voxel values in the dilated VOIs (DS37-DS17) were 

normalized to the mean of the respective background VOI to calculate tumor-to-background ratio values 

(35,36). The resampling to the given target resolution was then performed on the dilated VOIs (DS37-DS17) 

by ordinary Kriging interpolation (36,37). The feature extraction was performed from the normalized, 

resampled DS VOIs, where the resampled S37-S17 VOIs served as binary masks to identify voxels for the 

feature extraction (Fig. 4). 

Of the 37 features extracted from each of the four spheres (36), 34 were textural (3,18), while three 

features were shape-related and selected as independent features from binning (18,31,38) for reference 

comparison (Table 2). The feature extraction was performed by an in-house developed program (for details, 

see Supplemental A: Feature extraction implementation properties). 

Feature and PET/CT system ranking 

All 37 features and 13 PET/CT systems were ranked by a coefficient of variation (COV) analysis 

(39,40), where COV describes the standard deviation of samples divided by their mean. 

For each feature-PET/CT system pair an individual COV was calculated over the 12 configurations ( ). 

This step was performed for all four spheres, thus, resulting in four feature-PET/CT system COV matrices. 

The ranking of the features was calculated for each sphere/VOI as the average COV over all PET/CT 

systems. Similarly, the ranking of the PET/CT systems was calculated for each sphere/VOI as the average 

COV across the respective 37 features (Fig. 5). 

Feature dependency on voxel size, bin size and volume  

To assess the dependency of the features on voxel size, bin size and sphere volume together, the COV 

of each of the 37 features was calculated across the 13 imaging systems for each sphere size and each of 
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the 12 configurations ( ). This resulted in 48 (12 configuration x 4 sphere) COV values. The COVs were 

subsequently grouped according to (a) voxel size, (b) bin size and (c) sphere volume (Table 3). For each 

set of subgroups (a, b and c) a 1-way analysis of variance (ANOVA) (27,41) was performed and the 

corresponding p-value was used as a measure of dependence. 

Feature extraction optimization 

For each feature, the behavior of the COV changes of the three subgroups (a, b and c) as a function of 

voxel size, bin size and volume were assessed. In order to characterize the behavior trends, increasing (↑), 

decreasing (↓), inconsistent (X) and constant (-) COV trend scenarios were considered. Last, the mean of 

S37-S17 multi-center COVs for each of the 12 feature extraction configurations ( ) was calculated. The 

configuration resulting in the smallest mean COV of the given feature was chosen as optimal parameter set 

for feature extraction (Fig. 5). 

RESULTS 

Feature and PET/CT system ranking 

Information correlation (GLCM) and Shape features were least sensitive to feature extraction parameter 

( ) changes followed by Sum entropy (GLCM) and Correlation (GLCM). The features that were most 

sensitive to feature extraction parameters were: Contrast and Difference variance (GLCM), Contrast 

(NGTDM), followed by four GLZSM features (Table 4, Supplemental Tables 1-4).  

Table 5 summarizes the ranking of the 13 PET/CT imaging systems together with their standard imaging 

protocols (Table 1). The use of point spread function (PSF) modeling, narrow Gaussian post-reconstruction 

filter (2-4 mm full width half maximum together with large matrix sizes (192-256) led to higher imaging 

ranks of the individual PET/CT systems (Table 5). Imaging systems with time-of-flight (TOF) capability 

did not generally rank higher. Likewise, the number of iterations, subsets and time per bed position (Table 

1) did not affect the imaging system ranks (Table 5). High-ranked imaging systems had lower background 
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noise variation (Table 1 and 5). In contrast, the low-ranked imaging systems represented no noticeable 

correlation with background noise variations with the exception of the lowest ranked system (PCS10), which 

had the largest background variability of 7.3% (Table 1 and 5). 

Feature dependency on voxel size, bin size and volume  

Features independent of the voxel size were mainly from the GLCM category (Table 2): for example, 

Correlation, Sum variance and Cluster prominence had p-values of 1.0, 0.995 and 0.992, respectively. In 

contrast, features most sensitive towards changes in voxel size were: Maximum probability (GLCM), 

Angular second moment (GLCM) and Compactness (Shape) with p <0.001 (Supplemental Table 5). 

Features from the GLCM category such as Correlation, Contrast and Cluster shade (p ~ 1) were 

independent from the bin size, while GLZSM-based features were more dependent (Supplemental Table 

6). Furthermore, Large zone low gray emphasis (p = 0.79), Large zone size emphasis (p = 0.48) and Zone 

size percentage (p = 0.44) were less dependent on sphere volume. Dependencies on volume increased for 

GLCM features, such as Cluster prominence, Contrast or Sum variance with p-values near to zero 

(Supplemental Table 7). Overall, the volume subgroup p-values were considerably lower than p-values of 

the voxel size and bin size subgroups (Supplemental Table 5-7). See Fig. 6 for an example subgroup 

representation. 

Feature extraction optimization 

Following the use of optimized feature extraction parameters, only seven features resulted in small COV 

(<5%), while 3, 3 and 27 were in the moderate (5%≤COV<10%), elevated (10%≤COV<20%) and large 

(COV≥20%) categories respectively (Table 6).  

DISCUSSION 

Quantitative radiomics analysis is challenged in multiple ways (20,42). In this study we presented a 

holistic approach for analyzing and optimizing the process of feature extraction. By using a standard image 
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quality phantom, we ranked 37 popular radiomic features and 13 PET/CT imaging systems with regard to 

their stability. The imaging system ranks (Table 5) indicate that the influence of using PSF, a narrow 

Gaussian post-filter and a large matrix size have a larger impact on radiomics variations than the type of 

image reconstruction algorithms. Furthermore, we were able to demonstrate that multi-center feature 

variations can be minimized by pre-selecting feature-specific individual voxel size and bin size parameters 

based on their COV trends (Supplemental Tables 5-7, Table 6). With our feature optimization approach, 

seven of our investigated features had COV<5% and three of them had COV<10%. Without optimization, 

only one feature had COV<5% and four had COV<10% (Table 6). The ANOVA subgroup analysis revealed 

that lesion volume was the most contributing factor of feature variations compared to voxel size and bin 

size changes (Supplemental Tables 5-7). Nevertheless, the multi-centric variations of radiomic features 

generally vary as a function of activity distribution in the lesions. Furthermore, partial volume effects 

(15,43,44) inherently increase heterogeneity in smaller lesions as well. 

The clinical implications of our results are manifold. Since we involved 13 imaging systems applying 

clinical standard protocols, our trend analysis tables (Supplemental Tables 5-7) can serve as general lookup 

tables to understand the behavior of radiomic features as a function of voxel size, bin size and volume 

changes. This information supports researchers to build up more stable radiomic models in their studies. 

Although our results are based on tumor-to-background ratio values, the fixed bin size approach preserved 

relative value range differences of our lesions, thus, our results are applicable to PET SUV units as well. 

With the help of our optimized COV table (Table 6), researchers can identify robust, reproducible features, 

while our imaging system ranks (Table 5) support imaging specialists to establish new, radiomic-conform 

PET acquisition protocols. In general, reducing feature variability supports the notion of standardizing the 

computation of radiomic features through standardized image processing, as suggested by the IBSI 

consortium (42). Accordingly, we consider our report as a potential amendment to the IBSI guidelines. 

To date, a wide range of studies focused on the multi-center analysis of radiomic feature repeatability 

in PET (20,28,45–47). Fried et al. assessed the robustness of PET-based radiomic features when varying 
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image reconstruction settings across three PET/CT systems in lung cancer versus IQ phantom acquisitions 

(48). Features that were reported as “reasonably robust” were contrast (GLCM), Energy (GLCM), Standard 

deviation and Uniformity. In our study, Contrast GLCM was one of the worst reproducible feature (56% 

COV) even with optimized parameters (Table 6). However, Fried et al involved three imaging systems only 

with variable reconstruction parameters and they did not incorporate different bin sizes in their analysis. 

Last, their textural feature equations are unknown, thus, differences in calculations may be present (18).  

Similarly, Yan et al (23) investigated the variation of 55 textural features in light of different image 

reconstruction parameters in 20 lung cancer patients following 18F-FDG PET/CT imaging. They reported 

Inverse difference and Low gray-level zone emphasis as robust features, while, Skewness, Cluster shade, 

and Zone percentage were the least robust (COV>20%). In our study, we found similar results for Cluster 

shade and Zone percentage (COV>20%). However, Inverse difference moment (29.8% COV) and Low 

gray-level zone emphasis (49.7% COV) were both highly variable. We consider two reasons for these 

discrepancies: First, Yan et al applied a different delineation method, and second, they utilized a fixed 

number of bins (32, 64 and 128), while we used fixed bin sizes (36). In another study by Orlhac et al, six 

textural features were investigated in simulated and real patient data, including 10 sphere models with 

different activity distributions and 54 breast cancer PET/CT cases (12). The authors showed that all textural 

features were sensitive to voxel size differences (up to 86%) and edge effects (up to 29%). Our study 

confirmed that voxel size differences affect all features except GLCM Correlation (Table 6). Shiri et al (24) 

investigated variations of different intensity and radiomic features in two PET/CT systems using phantom 

acquisitions. The majority of the textural features were reported to be sensitive (COV>20%) with regards 

to voxel size changes, which we reconfirmed for features present in both studies (Supplemental Tables 5 

and 6). 

Lu et al investigated the impact of delineation and binning methods including 40 18F-FDG patient 

studies, five delineation methods and 88 features (29). Half of the features depicted higher intra-class 

correlation coefficient (ICC ≥0.8) with respect to segmentation, while 23% features showed an ICC ≥0.8 
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with regard to binning. Even though we did not compare different segmentation methods, our study 

reconfirmed that binning affects all textural features (Supplemental Table 6). Desseroit and colleagues 

studied the repeatability of shape and textural features of both, low-dose CT and PET by means of a 

different binning methodologies in a multi-center cohort of 74 18F-FDG-PET/CT lung cancer patients (31). 

Based on their variable number of bins, they reported all GLZSM features as poorly reliable as well as 

angular second moment GLCM, contrast GLCM and contrast NGTDM as the least repeatable, which was 

reconfirmed by our results (Table 6). 

Altazi et al (32) investigated 79 radiomic feature variations in light of different segmentation, 

reconstruction and binning parameters in 88 cervical cancer patients having 18F-FDG PET acquisitions. 

They reported Inverse difference moment, Entropy, Difference entropy and Sum entropy (all GLCM) to be 

the most reproducible regarding binning variations, while none of the GLZSM and NGTDM features 

appeared to be reproducible. In our study the above GLCM parameters were moderately reproducible as a 

function of binning variations (Supplement TABLE 6), while GLZSM and NGTDM features were 

represented with lower reproducibility. Nevertheless, they used fixed number of bins, which underestimates 

COV compared to the fixed bin size approach (31). 

The effect of tumor size, image resolution and noise levels in 66 18F-FDG-PET radiomic features was 

investigated by van Velden and colleagues (22) who have shown that 37% and 73% of features were 

sensitive on resolution and volume changes, respectively. Our study reconfirmed that compared to voxel 

size, bin size and volume changes, latter one had the highest effect on feature variations (Supplemental 

Tables 5-7). 

It appears more appropriate to date, to follow a rigid methodological approach towards sourcing robust 

and meaningful radiomic features (18). Our study addresses important quality factors in radiomic studies 

that relate to feature engineering. Specifically, we assessed the variability of popular radiomic features in 

light of clinically relevant combinations of quantification, image acquisition and reconstruction settings 

(Table 1). As a result, we propose that radiomic studies should entail the dedicated selection of individual 
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data processing configurations per feature, so that feature variations are minimized (Table 6). In general, a 

methodological, high-quality approach to feature extraction should be preferred over reporting study-

specific, fine-tuned performance results. In that regard, multi-centric standardization efforts in compliance 

with responsible radiomics guidelines (20,42,49) should be promoted. Furthermore, we suggest that those 

features that had a high COV even after optimization, shall be normalized in the feature domain by methods 

such as ComBat, proposed by Orlhac et al (17). Features that do not benefit from such approaches, shall be 

excluded from future studies. In the future, the selection of features that benefit from standardized feature 

extraction and feature normalization could contribute to the establishment of a type of “Radiomics NEMA” 

protocol in line with pre-established IBSI guidelines (42) that could represent one step towards the era of 

clinical Radiomics. 

CONCLUSIONS 

Our results help optimizing radiomics studies by selecting a priori features with known data acquisition 

and processing parameters that minimize individual feature variations. Our imaging system rank analysis 

aids imaging specialists in optimizing imaging protocol parameters to support repeatable radiomics analysis 

of 18F-FDG PET/CT images. By selecting robust features that are aligned to the above concept and by 

following a responsible radiomics workflow we can support the establishment of standardized radiomics 

approaches in clinical studies. 
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TABLES 
 

TABLE 1: Image acquisition and reconstruction protocols for NEMA IQ phantom studies using 13 PET/CT systems 

(PCS 1-13) (33). PSF=Point spread function, TOF=time-of-flight, FWHM=full-width-half-maximum, SUB=subsets, 

IT=iterations, BckVar (%)=Background variability calculated according to NEMA NU2-2012, Ga=Gaussian, 

Un=Unknown. All imaging systems operated with uniform voxel sizes. 

PET/CT 
system Algorithm PSF TOF IT SUB Filter FWHM 

Voxel 
size 
(mm) 

Time/ 
bed 

(min) 
BckVar 

(%) 

PCS1 Blob-OS-TF NA Yes NA NA Un NA 4.00 1:15 2.80 

PCS2 OSEM No No 4 8 Ga 5 4.06 3:00 2.50 

PCS3 OSEM No No 2 8 Ga 5 5.31 2:00 2.97 

PCS4 LOR-RAMLA No No NA NA Un NA 4.00 1:30 4.51 

PCS5 TrueX Yes No 3 21 Ga 2 4.07 2:00 2.72 

PCS6 TrueX Yes No 4 21 none NA 4.07 3:00 3.19 

PCS7 TrueX Yes No 4 21 none NA 4.06 3:00 3.21 

PCS8 TrueX Yes No 3 21 Ga 2 4.07 2:00 3.22 

PCS9 TrueX (HD PET) Yes No 3 21 Ga 2 3.18 2:00 3.07 

PCS10 VUE Point No No 2 21 Ga 6 5.47 2:00 7.30 

PCS11 VUE Point FX Yes Yes 4 18 Ga 4 3.27 2:00 2.65 

PCS12 VUE Point FX No Yes 2 32 Ga 6.4 5.47 2:00 2.51 

PCS13 VUE Point HD Yes No 2 24 Ga 4 2.73 3:00 2.81 
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TABLE 2: Extracted features from the four largest spheres of each PET acquisition. For details of feature calculations 

see (18,36). GLCM=gray-level co-occurrence matrix, GLZSM=gray-level zone-size matrix, NGTDM=neighborhood 

gray-tone difference matrix. 

Feature category Feature name 

GLCM (18) 

Angular second moment, Auto correlation, Cluster prominence, Cluster shade, Contrast, 
Correlation, Difference entropy, Difference variance, Dissimilarity, Entropy, Information 
correlation, Inverse difference, Inverse difference moment, Maximum probability, Sum 
average, Sum entropy, Sum of squares variance, Sum variance 

GLSZM (11) 

Gray level non-uniformity, High gray level zone emphasis, Large zone high gray 
emphasis, Large zone low gray Emphasis, Large zone size emphasis, Low gray level 
zone emphasis, Small zone high gray emphasis, Small zone low gray emphasis, Small 
zone size emphasis, Zone size non-uniformity, Zone size percentage 

NGTDM (5) Busyness, Coarseness, Complexity, Contrast, Texture Strength 

Shape (3) Compactness, Spheric dice coefficient, Volume 
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TABLE 3: Subgroups of the coefficient of variation (COV) values of each feature for the 1-way analysis of variance 

(ANOVA) analysis. 

Groups Voxel size Bin size Volume 

Subgroups 3 (1 mm, 2 mm, 4 mm) 4 (0.01, 0.025, 0.05, 0.1) 4 (S37, S28, S22 and S17) 

Subgroup elements 16 (4 Volumes x 
4 Bin sizes) 

12 (4 Volumes x 
3 Voxel sizes) 

12 (3 Voxel sizes x 
4 Bin sizes) 
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TABLE 4: Feature ranks with regards to the average absolute COV for the four largest spheres (S37-S17). Smaller rank 
values correspond to smaller COV feature variations across their 12 feature extraction configurations and imaging 
systems. Symbols for COV thresholds: α: COV<5%, β: 5%≤COV<10%, γ: 10%≤COV<20%. COV≥20% is without 
symbol. 

Feature Feature Category 
S37 COV 

rank 
S28 COV 

rank 
S22 COV 

rank 
S17 COV 

rank 
Information correlation GLCM 0.00 α 0.00 α 0.00 α 0.00 α 

Compactness Shape 0.01 α 0.02 α 0.02 α 0.03 α 

Volume Shape 0.02 α 0.02 α 0.03 α 0.03 α 

Spheric dice coefficient Shape 0.03 α 0.03 α 0.07 β 0.1 γ 

Sum entropy GLCM 0.17 γ 0.17 γ 0.18 γ 0.19 γ 

Correlation GLCM 0.14 γ 0.18 γ 0.22 0.29 

Entropy GLCM 0.19 γ 0.19 γ 0.19 γ 0.21 

Small zone size emphasis GLZSM 0.26 0.27 0.28 0.29 

Difference entropy GLCM 0.31 0.31 0.32 0.33 

Zone size percentage GLZSM 0.53 0.53 0.56 0.62 

Inverse difference GLCM 0.57 0.59 0.58 0.56 

Coarseness NGTDM 0.59 0.58 0.59 0.59 

Inverse difference moment GLCM 0.78 0.81 0.80 0.76 

Sum average GLCM 0.83 0.83 0.83 0.83 

Dissimilarity GLCM 1.07 1.07 1.07 1.08 

Small zone low gray emphasis GLZSM 1.12 1.10 1.10 1.11 

Low gray level zone emphasis GLZSM 1.2 1.17 1.16 1.09 

Maximum probability GLCM 1.2 1.19 1.19 1.21 

High gray level zone emphasis GLZSM 1.37 1.34 1.3 1.28 

Angular second moment GLCM 1.35 1.34 1.32 1.31 

Auto correlation GLCM 1.35 1.35 1.35 1.36 

Texture strength NGTDM 1.56 1.39 1.29 1.26 

Sum variance GLCM 1.35 1.35 1.35 1.36 

Sum of squares variance GLCM 1.35 1.35 1.35 1.36 

Small zone high gray emphasis GLZSM 1.42 1.39 1.37 1.35 

Cluster prominence GLCM 1.68 1.69 1.69 1.7 

Cluster shade GLCM 3.56 1.63 1.61 1.61 

Zone size non-uniformity GLZSM 1.7 1.76 1.92 1.85 

Busyness NGTDM 1.73 1.79 1.78 1.7 

Complexity NGTDM 2.12 1.86 1.72 1.65 

Contrast GLCM 2.03 2.03 2.04 2.06 

Difference variance GLCM 2.03 2.04 2.05 2.07 

Contrast NGTDM 1.69 2.10 2.35 2.46 

Gray level non-uniformity GLZSM 2.1 2.12 2.17 2.21 

Large zone high gray emphasis GLZSM 2.75 2.65 2.55 2.41 

Large zone size emphasis GLZSM 3.23 3.24 3.22 3.13 

Large zone low gray emphasis GLZSM 3.29 3.28 3.26 3.21 
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TABLE 5: Imaging system (PCS) protocol parameters ranks with regards to the average absolute COV for the four 

largest spheres (S37-S17). Smaller rank values correspond to low COV variances in the given sphere volume across 

each of the 37 features and their 12 feature extraction configurations ( ). 

PET/CT system Algorithm S37 COV S28 COV S22 COV S17 COV 
PCS13 VUE Point HD 1.17 1.17 1.16 1.16 

PCS11 VUE Point FX 1.19 1.17 1.18 1.15 

PCS5 TrueX 1.18 1.18 1.16 1.18 

PCS6 TrueX 1.2 1.18 1.2 1.17 

PCS7 TrueX 1.18 1.2 1.2 1.22 

PCS8 TrueX 1.2 1.2 1.19 1.23 

PCS9 TrueX (HD PET) 1.85 1.17 1.2 1.2 

PCS1 Blob-OS-TF 1.22 1.21 1.23 1.21 

PCS4 LOR-RAMLA 1.23 1.24 1.23 1.22 

PCS2 OSEM 1.22 1.23 1.25 1.23 

PCS12 VUE Point FX 1.23 1.25 1.24 1.23 

PCS3 OSEM 1.27 1.26 1.25 1.23 

PCS10 VUE Point 1.25 1.27 1.26 1.26 
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TABLE 6: Features with their sphere S37-S17 mean ± stdev ( ± ) COV values, their optimal voxel size, bin size and 
the resulted optimized COV across imaging systems. The list is sorted by increasing optimized COV. Symbols for COV 
thresholds: α: COV<5%, β: 5%≤COV<10%, γ: 10%≤COV<20%. COV≥20% is without symbol. 

Feature Feature category COV ±  (%) Optimal 
Voxel size 

Optimal 
Bin size 

Optimized 
COV (%) 

Information correlation GLCM 0.0 ± 0.0 α 4 0.01 0.0 α 

Compactness Shape 0.6 ± 0.3 α 1 NA 0.2 α 

Small zone size emphasis GLZSM 12.3 ± 8.4 γ 4 0.01 2.0 α 

Entropy GLCM 6.9 ± 3.0 β 4 0.01 2.1 α 

Zone size percentage GLZSM 31.3 ± 27.5 4 0.01 3.6 α 

Sum entropy GLCM 5.6 ± 1.3 β 4 0.01 3.7 α 

Large zone size emphasis GLZSM 100.3 ± 75.4 4 0.01 4.9 α 

Difference entropy GLCM 11.7 ± 3.6 γ 4 0.01 6.5 β 

Spheric dice coefficient Shape 7.9 ± 1.4 β 2 NA 6.8 β 

Coarseness NGTDM 11.2 ± 4.7 γ 1 0.01 7.45 β 

Correlation GLCM 13.1 ± 0.1 γ 1 0.1 12.9 γ 

Inverse difference GLCM 21.3 ± 3.1 1 0.1 14.9 γ 

Angular second moment GLCM 56.5 ± 17.7 4 0.01 17.6 γ 

Inverse difference moment GLCM 29.8 ± 3.8 1 0.1 20.6 

Volume Shape 22.8 ± 0.5 4 NA 22.0 

Sum average GLCM 26.4 ± 0.7 2 0.01 25.3 

Low gray level zone emphasis GLZSM 49.7 ± 28.5 4 0.01 26.9 

Small zone low gray emphasis GLZSM 48.6 ± 30.5 4 0.01 27.8 

Busyness NGTDM 60.5 ± 16.8 4 0.01 27.9 

Gray level non-uniformity GLZSM 41.7 ± 3.9 4 0.01 28.7 

Contrast NGTDM 51.9 ± 12 1 0.1 29.0 

Texture strength NGTDM 43.9 ± 8.2 4 0.01 30.0 

Dissimilarity GLCM 31.4 ± 0.5 4 0.01 30.7 

Large zone low gray Emphasis GLZSM 135.3 ± 75.4 4 0.01 30.8 

Maximum probability GLCM 52.4 ± 11 4 0.01 33.4 

High gray level zone emphasis GLZSM 41.7 ± 3.9 1 0.05 35.6 

Zone size non-uniformity GLZSM 62.7 ± 17 4 0.01 38.3 

Large zone high gray emphasis GLZSM 76.6 ± 52 4 0.01 45.0 

Auto correlation GLCM 47.1 ± 0.8 2 0.01 45.7 

Sum of squares variance GLCM 47.7 ± 1.2 2 0.01 46.1 

Sum variance GLCM 47.9 ± 0.7 4 0.01 46.9 

Small zone high gray emphasis GLZSM 50.3 ± 7.8 4 0.01 47.4 

Difference variance GLCM 57.9 ± 1.3 1 0.1 54.0 

Complexity NGTDM 64.6 ± 4.8 4 0.01 55.1 

Contrast GLCM 57.1 ± 0.5 4 0.01 56.4 

Cluster shade GLCM 82.5 ± 4.7 1 0.01 76.9 

Cluster prominence GLCM 86.6 ± 1.2 4 0.01 84.7 
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FIGURES 

 
A

 

B

 

C

 
 

FIGURE 1: Central axial slices through the reconstructed PET images of the NEMA Image Quality phantom acquired 

from three of the involved 13 PET/CT imaging systems (TABLE 1). The acquisitions followed local clinical standard 

protocols as part of a previous study (33). The PET image planes demonstrate typical variations in the appearance of 

the lesions and backgrounds. Figures A-C correspond to the PCS3, PCS13 and PCS8 imaging systems, respectively in 

TABLE 1. 
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FIGURE 2: Axial slice of a reconstructed NEMA IQ PET phantom image with its overlaid delineated volumes of 

interests. The cuboid VOI (green) represents the background region. The four small sphere VOIs (red) represent the 

semi-automatically delineated spheres S17, S22, S28 and S37 from left to right. The larger, dilated VOIs (blue) are 

generated to avoid interpolation artifacts at border voxel positions in the S37-S17 VOIs during the resampling. 
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FIGURE 3: Representation of the data acquisition and feature extraction processes. The same physical IQ phantom 

is utilized to perform the acquisition of 13 18F-FDG PET/CT images from 12 imaging centers (PCS 1-13). The four 

largest visible hot spheres are delineated and analyzed. Thus, 37 radiomic features are extracted from each sphere 

with three voxel size and four bin size configurations. 
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FIGURE 4: Explanation of the resampling and binning steps that are performed for feature extraction; (A): Original 

image resolution with the S VOI (red) and the extended DS VOI (blue) regions (Fig. 2). Note, the DS VOI also 

includes S VOI voxels. The dashed frame indicates a zoom-in sub region (B). (B): Example target voxel (V in black 

frame) and the original neighboring voxels (gray frames) that are involved in the interpolation to determine V. Note, 

some of these voxels are outside of the S VOI, thus, resampling is performed from the DS VOIs. (C): Radiomics 

analysis is performed from the resampled DS VOI voxels that are inside the resampled S VOI region (red). (D): 

Profile curve of voxels present at the dashed line in (C). Binning is characterized by the choice of a bin size that 

defines which values are transformed to the same bin. Feature extraction is performed over binned voxel values. This 

process results in variable number of bins per lesion.  
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FIGURE 5: Each feature (Fx) has 13 imaging systems, four spheres and 13 configurations (three voxel size and four 

bin sizes) variants. Feature and imaging system ranks are performed from the feature-imaging system COV matrices. 

Each sphere (Si) has its own COV matrix. Here, each matrix cell corresponds to the COV of a given feature Fx and 

PET/CT imaging system (PCSy) over the different feature extraction configurations (C). The ANOVA analysis builds 

on the subgrouping of COV values over the PCS variants, as acquired by a particular configuration ( ∈ ) in 

particular spheres. The optimal voxel size and bin size parameters are selected for Fx that minimize the COV across 

the imaging systems.   
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A  B  C  
 

FIGURE 6: Coefficient of variation (COV) distributions of voxel size (A), bin size (B) and sphere volume (C) 

subgroups of feature Difference Entropy (GLCM). Each plotted sample corresponds to the COV of the given feature 

over PCS1-13 with a particular voxel size, bin size and sphere volume configuration. Sphere 1-4 corresponds to 

spheres S37-S17 respectively. Based on the trend analysis, Difference entropy has optimized voxel size of 4 mm 

(decreasing trend in the function of increasing voxel size), optimized bin size of 0.01 (increasing trend in the function 

of increasing bin size) and has a decreasing trend in the function of decreasing volume. 
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Supplemental A: Feature extraction implementation properties 

 

- Programming language:   C++, standard 11 

- Development environment (IDE):  Visual Studio Community 2013, Windows 10, 64bit 

- Compiler:    VS 2013 in-built, 64bit 

- Development status:   Active, since 2016 

- Feature equation calculations:   According to (1,2) 

- Neighborhood analysis:    3D, 3x3x3 kernel 

- Textural matrix normalization:  Yes, according to suggested calculations in (2) 

- Textural matrix precision:   Float (32bit) 

- Radiomics feature precision:  Double (64bit) 

- Binning:    On-the-fly, voxel-by-voxel, based on mapper function 

- Binning mapper function:  Fixed bin size, variable number of bins per lesion (3) 

- Multi-threading applied:   Yes, during textural matrix generation 

- Multi-threading technology:  OpenMP, pre-configured in the IDE 

- Multi-threading validation:  Yes, compared to single-threading results 

- Number of threads:   Dynamic, based on max. CPU cores 

- Feature extraction validation:  Yes, compared to manually calculated features 

- Feature extraction validation reference: Own 3D digital phantom 
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Supplemental TABLE 1: Sphere 1 (S37) COV matrix of features (rows) and imaging systems (columns) together with 

their COV across the 12 feature extraction configurations (𝐶𝐶). The table rows and columns are ordered by the 

respective mean COV across imaging sites and features respectively. The imaging system identifiers are numbered 

by their rank as defined by manuscript TABLE 1. Numeric values are in absolute COV unit (deviation/mean). Color 

code represents low (green) to high (red) COVs. Color code: COV<5%, (green), 5%≤COV<10% (yellow), 

10%≤COV<20% (orange), COV≥20% (pink). 
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Supplemental TABLE 2: Sphere 2 (S28) COV matrix of features (rows) and imaging systems (columns) together with 

their COV across the 12 feature extraction configurations (𝐶𝐶). The table rows and columns are ordered by the 

respective mean COV across imaging sites and features respectively. The imaging system identifiers are numbered 

by their rank as defined by manuscript TABLE 1. Numeric values are in absolute COV unit (deviation/mean). Color 

code represents low (green) to high (red) COVs. Color code: COV<5%, (green), 5%≤COV<10% (yellow), 

10%≤COV<20% (orange), COV≥20% (pink).
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Supplemental TABLE 3: Sphere 3 (S22) COV matrix of features (rows) and imaging systems (columns) together with 

their COV across the 12 feature extraction configurations (𝐶𝐶). The table rows and columns are ordered by the 

respective mean COV across imaging sites and features respectively. The imaging system identifiers are numbered 

by their rank as defined by manuscript TABLE 1. Numeric values are in absolute COV unit (deviation/mean). Color 

code represents low (green) to high (red) COVs. Color code: COV<5%, (green), 5%≤COV<10% (yellow), 

10%≤COV<20% (orange), COV≥20% (pink).
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Supplemental TABLE 4: Sphere 4 (S17) COV matrix of features (rows) and imaging systems (columns) together with 

their COV across the 12 feature extraction configurations (𝐶𝐶). The table rows and columns are ordered by the 

respective mean COV across imaging sites and features respectively. The imaging system identifiers are numbered 

by their rank as defined by manuscript TABLE 1. Numeric values are in absolute COV unit (deviation/mean). Color 

code represents low (green) to high (red) COVs. Color code: COV<5%, (green), 5%≤COV<10% (yellow), 

10%≤COV<20% (orange), COV≥20% (pink).
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Supplemental TABLE 5: Features sorted by decreasing ANOVA p value over voxel size 1, 2 and 4 mm feature 

subgroups. The subgroup mean COV trend is in reference to increasing voxel size (1 to 4 mm). Higher p values 

correspond to more similar resolution subgroups, indicating that the given feature is less dependent from resolution. 

Feature Feature Category P Trend 
Correlation GLCM 1.000000 - 
Sum variance GLCM 0.995004 ↓ 
Cluster prominence GLCM 0.992275 X 
Contrast GLCM 0.991206 X 
Difference variance GLCM 0.975632 X 
Dissimilarity GLCM 0.951504 ↓ 
Sum entropy GLCM 0.950591 ↓ 
Auto correlation GLCM 0.922664 X 
Information correlation GLCM 0.919974 ↓ 
Sum of squares variance GLCM 0.801710 X 
Volume Shape 0.710357 X 
Inverse difference GLCM 0.676611 X 
Inverse difference moment GLCM 0.652528 X 
Sum average GLCM 0.633000 X 
High gray level zone emphasis GLZSM 0.623499 X 
Complexity NGTDM 0.577589 X 
Cluster shade GLCM 0.257873 ↓ 
Small zone high gray emphasis GLZSM 0.202858 ↓ 
Coarseness NGTDM 0.055916 X 
Texture strength NGTDM 0.033601 ↓ 
Spheric dice coefficient Shape 0.024423 X 
Zone size non-uniformity GLZSM 0.014283 ↓ 
Difference entropy GLCM 0.008004 ↓ 
Gray level non-uniformity GLZSM 0.004777 ↓ 
Large zone high gray emphasis GLZSM 0.003424 ↓ 
Entropy GLCM 0.002774 ↓ 
Small zone size emphasis GLZSM 0.002068 ↓ 
Small zone low gray emphasis GLZSM 0.001958 ↓ 
Large zone size emphasis GLZSM 0.000972 ↓ 
Contrast NGTDM 0.000830 ↑ 
Low gray level zone emphasis GLZSM 0.000672 ↓ 
Zone size percentage GLZSM 0.000634 ↓ 
Busyness NGTDM 0.000127 ↓ 
Large zone low gray Emphasis GLZSM 0.000091 ↓ 
Maximum probability GLCM 0.000028 X 
Angular second moment GLCM 0.000007 ↓ 
Compactness Shape 5.42E-12 ↑ 
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Supplemental TABLE 6: Features sorted by decreasing ANOVA p value over bin size 0.01, 0.025, 0.05 and 0.1 

feature subgroups. The subgroup mean COV trend is in reference to increasing bin size (0.01 to 0.1). Higher p values 

correspond to more similar bin size subgroups, indicating that the given feature is less dependent from binning. 

Feature Feature Category p Trend 
Compactness Shape 1.000000 - 
Spheric dice coefficient Shape 1.000000 - 
Volume Shape 1.000000 - 
Correlation GLCM 0.999978 ↓ 
Contrast GLCM 0.999971 ↑ 
Cluster shade GLCM 0.994648 ↑ 
Cluster prominence GLCM 0.993866 ↑ 
Dissimilarity GLCM 0.991842 ↑ 
Difference variance GLCM 0.990493 X 
Sum variance GLCM 0.989194 ↑ 
Sum of squares variance GLCM 0.986295 ↑ 
Auto correlation GLCM 0.983679 ↑ 
Complexity NGTDM 0.983275 X 
Sum average GLCM 0.964235 ↑ 
High gray level zone emphasis GLZSM 0.553549 X 
Zone size non-uniformity GLZSM 0.466191 X 
Texture strength NGTDM 0.442112 ↑ 
Coarseness NGTDM 0.131593 X 
Maximum probability GLCM 0.128193 ↑ 
Contrast NGTDM 0.100090 ↓ 
Angular second moment GLCM 0.096172 ↑ 
Small zone high gray emphasis GLZSM 0.089241 ↑ 
Inverse difference moment GLCM 0.069921 ↓ 
Large zone high gray emphasis GLZSM 0.025940 ↑ 
Busyness NGTDM 0.021837 ↑ 
Inverse difference GLCM 0.019988 ↓ 
Low gray level zone emphasis GLZSM 0.004272 ↑ 
Sum entropy GLCM 0.002355 ↑ 
Small zone low gray emphasis GLZSM 0.002262 ↑ 
Information correlation GLCM 0.002050 ↑ 
Difference entropy GLCM 0.000085 ↑ 
Gray level non-uniformity GLZSM 0.000044 ↑ 
Entropy GLCM 0.000020 ↑ 
Large zone size emphasis GLZSM 0.000012 ↑ 
Large zone low gray Emphasis GLZSM 0.000006 ↑ 
Zone size percentage GLZSM 1.25E-07 ↑ 
Small zone size emphasis GLZSM 1.61E-08 ↑ 
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Supplemental TABLE 7: Features sorted by decreasing ANOVA p value over sphere 1-4 (S37-S17) subgroups. The 

subgroup mean COV trend is in reference to increasing volume (S17 to S37). Higher p values correspond to more 

similar volume subgroups, indicating that the given feature is less dependent from volume. 

Feature Feature Category p Trend 
Large zone low gray Emphasis GLZSM 0.797472 X 
Correlation GLCM 0.680383 ↓ 
Large zone size emphasis GLZSM 0.482819 ↓ 
Zone size percentage GLZSM 0.449660 ↓ 
Small zone size emphasis GLZSM 0.273200 ↓ 
Coarseness NGTDM 0.211454 ↓ 
Large zone high gray emphasis GLZSM 0.138304 ↓ 
Small zone low gray emphasis GLZSM 0.110290 X 
Low gray level zone emphasis GLZSM 0.065113 X 
Information correlation GLCM 0.026789 ↓ 
Gray level non-uniformity GLZSM 0.014603 X 
Compactness Shape 0.013803 ↓ 
Zone size non-uniformity GLZSM 0.010271 ↓ 
Entropy GLCM 0.004455 ↓ 
Contrast NGTDM 0.001405 ↓ 
Maximum probability GLCM 0.000980 ↓ 
Angular second moment GLCM 0.000848 ↓ 
Busyness NGTDM 0.000484 X 
Difference entropy GLCM 0.000093 ↓ 
Small zone high gray emphasis GLZSM 8.68E-10 X 
Sum entropy GLCM 3.30E-10 ↓ 
Inverse difference GLCM 2.23E-12 ↓ 
Texture strength NGTDM 1.74E-12 ↓ 
Spheric dice coefficient Shape 4.31E-14 ↓ 
Inverse difference moment GLCM 3.71E-14 ↓ 
Cluster shade GLCM 1.06E-14 X 
High gray level zone emphasis GLZSM 8.84E-17 ↓ 
Complexity NGTDM 7.38E-19 X 
Sum average GLCM 7.89E-30 ↓ 
Volume Shape 2.11E-34 ↓ 
Sum of squares variance GLCM 1.42E-37 ↓ 
Auto correlation GLCM 3.17E-38 ↓ 
Difference variance GLCM 3.91E-40 X 
Dissimilarity GLCM 1.54E-43 ↓ 
Cluster prominence GLCM 9.95E-44 ↓ 
Contrast GLCM 2.02E-49 ↓ 
Sum variance GLCM 6.79E-52 ↓ 
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