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Abstract 

Amyloid- (Aβ) plays a key role in the pathogenesis of Alzheimer’s disease (AD) and it 

can be imaged in vivo using [18F]Florbetapir positron emission tomography (PET).  A 

composite standardised uptake value ratio (SUVr) is a commonly used outcome measure 

for quantifying the global Aβ burden however the sensitivity is sub-optimal which can 

lead to low power in clinical trials.   We introduce amyloid load, ߚܣ௅ as a novel 

biomarker to quantify the global Aβ burden along with an automated algorithm for its 

calculation (AmyloidIQ). 

 

 ௅ is evaluated on cross-sectional and longitudinal data obtained from the Alzheimer’sߚܣ 

disease neuroimaging initiative (ADNI). The cross-sectional data consisted of 769 

subjects across the disease spectrum (211 healthy controls (HC), 223 early mild cognitive 

impairment (EMCI), 204 late mild cognitive impairment (LMCI), 132 AD).  The 

distributions of ߚܣ௅ in the four different classifications were compared and the same 

analyses were applied to a composite SUVr outcome measure. The effect sizes (hedges’ 

g) between all but one classifications were higher for ߚܣ௅ than composite SUVr with the 

mean difference in effect size being 46%.  147 of the EMCI patients had a two-year 

follow-up scan and the effect size between baseline and follow-up for ߚܣ௅ was 0.49 

compared to 0.36 for a composite SUVr demonstrating an equivalent increase in power 

for longitudinal data. 
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These results provide evidence that ߚܣ௅ will be a valuable outcome measure in future Aβ 

imaging studies providing an substantial increase in power over currently employed 

SUVr methods. 
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Introduction 

Neuritic plaques are one of two pathological hallmarks of Alzheimer’s disease (AD) and 

the major constituent of these plaques is amyloid-β (Aβ)(1–3). Evidence suggests Aβ 

plays a key role in the pathogenesis of the disease(4–6).   

 

The in vivo Aβ concentration can be quantified in humans with static Positron Emission 

Tomography (PET) image using the radioligand [18F]Florbetapir. A composite SUVr 

with a grey matter cerebellum reference region is a commonly used outcome measure for 

assessing the global Aβ burden from static images. It can be calculated from a static 

[18F]Florbetapir image by dividing the mean intensity of voxels in a Aβ specific target 

region which includes the majority of the cortex by the mean intensity of voxels in the 

grey matter cerebellum where these two regions of interest have been defined using a 

combination of a grey matter probability and an anatomical atlas.   

 

Large cross-sectional, longitudinal studies have been performed with composite SUVr as 

the primary outcome measure(7–9) in order to better understand the Aβ accumulation in 

AD.  Whilst the cross-sectional studies have shown increases in composite SUVr in AD 

subjects when compared to healthy controls(7,10), the longitudinal results show high 

variability(11,12) between baseline and follow-up.  High variability in the outcome 

measure results in low power to detect biological differences in the Aβ concentration. As 

a result of this, it has been argued that only dynamic images should be used for 

quantitative imaging studies(13) but this is less cost-effective and puts more stress on 

patients. A more sensitive outcome measure from static [18F]Florbetapir PET images 
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which quantifies the global Aβ burden could reduce variability and therefore increase the 

probability of detecting real biological effects. 

 

 

In this work, we introduce a novel sensitive biomarker, ߚܣ௅ for quantifying the global Aβ 

burden from static [18F]Florbetapir PET images.  It is calculated using two previously 

derived canonical images for the non-specific binding of [18F]Florbetapir and the A 

carrying capacity(14).  ߚܣ௅ is calculated using the fully automated AmyloidIQ algorithm 

on both cross-sectional and longitudinal data from the Alzheimer’s disease neuroimaging 

initiative (ADNI) and the results from ߚܣ௅ are compared to those from composite SUVr. 
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Materials and methods 

Imaging data 

Cross-sectional data -  [18F]Florbetapir human A PET imaging data and structural 

Magnetic Resonance Imaging (MRI) data were obtained from the (ADNI) database(15) 

(adni.loni.usc.edu)  for 779 subjects (211 healthy controls (HC), 223 early mild cognitive 

impairment (EMCI), 204 late mild cognitive impairment (LMCI), 132 AD)   

 

Longitudinal data – In addition to the cross-sectional data, two year follow-up (mean 

1.96 (0.12) years) scans for 147 subjects were downloaded. 

 

The ADNI was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial MRI, PET, other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment 

and early AD. For up-to-date information, see www.adni-info.org. 

 

[18F]Florbetapir human ߚܣ PET imaging data - [18F]Florbetapir PET scans consisted of 

a 20-minute [18F]Florbetapir PET scan 50 minutes post-injection (370±37 MBq) 

according to the standardised ADNI protocol(7).  There were 3 image pre-processing 

steps applied to the data prior to entry into the ADNI imaging database (For full details, 

see http://adni.loni.usc.edu/methods/pet-analysis/pre-processing).  Briefly, 4 late-time 5 

minute frames are co-registered and averaged.  The resulting image is converted to a 

160x160x96 voxel static image with voxel dimension of 1.5mmx1.5mmx1.5mm.  
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Finally, an 8mm full width half maximum gaussian filter was applied (corresponding to 

the lowest resolution scanner used in the study). These primary data were downloaded 

from the ADNI database and used in the subsequent analyses. 

 

T1-weighted Magnetic Resonance Imaging data – All subjects underwent T1-weighted 

1.5T structural MRI which were downloaded from the ADNI imaging database.  

 

Image Processing 

Registration of images into streotactic space -  [18F]Florbetapir data were nonlinearly 

registered into Montreal Neurological Institute 152 space (MNI152 space(16)) using a 

diffeomorphic nonlinear registration (DARTEL)(17).  Initially, the structural MRI images 

were segmented into grey matter and white matter using SPM12 and registered to a group 

average template.  The group average template was then registered to MNI152 space.  

Each  [18F]Florbetapir SUVr image was registered to the their corresponding MRI using a 

rigid-body registration.  Finally, the individuals’ DARTEL flow field and template 

transformation was applied without modulation resulting in [18F]Florbetapir images in 

MNI152 space. The normalised maps were spatially smoothed (8mm full width at half 

maximum (FWHM) Gaussian kernel). Each registration was visually assessed to check 

the quality of the registration. 10 subjects were rejected which meant the cross-sectional 

dataset used included 769 subjects and the longitudinal dataset included 147 subjects. 

 

Generation of SUVr images - SUVr images for all scans were generated using the grey 

matter cerebellum as the reference region which was defined as the intersection between 
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the cerebellum ROI of the CIC atlas(18) and the grey matter atlas with p(grey matter) > 

0.3.  The mean uptake value for the grey matter cerebellum ROI was obtained and image 

intensities were divided by this to generate an SUVr image for each subject.  

 

Definition of ࡸࢼ࡭ 

Based on our prior spatiotemporal modeling work(14) we hypothesized that a 

[18F]Florbetapir SUVr (grey matter cerebellum reference) image, spatially normalised 

into MNI152 space, could be effectively modelled using a linear combination of 

previously derived canonical images for the non-specific binding NS and carrying 

capacity K(19).  Therefore, 

 

ܜܑ܎ܚ܄܃܁ ൌ ܁ۼݏ݊ ൅  ௅۹                                             (1)ߚܣ

 

where, ܜܑ܎ܚ܄܃܁ is the modelled image, NS is the non-specific binding image, K is the 

carrying capacity image, ݊ݏ is the non-specific binding coefficient and Aβ୐ is the 

amyloid load. As the carrying capacity image is the one relating to A concentration, it 

was further hypothesised, that the ߚܣ௅ would be a sensitive biomarker to quantify the 

global Aβ burden ranging from 0% in the case of a healthy brain up to 100% in the case 

of a brain with the highest level of amyloid. 

 

AmyloidIQ
 algorithm for calculating ࡸࢼ࡭ 

After spatially normalising the [18F]Florbetapir SUVr images, a fully automated 

algorithm was used to calculate ݏ݊ ,ܜܑ܎ܚ܄܃܁ and ߚܣ௅ for each image. Values for ݊ݏ and 
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 ௅ were optimised by minimising the sum of squares of residuals between the voxelߚܣ

intensities of the spatially normalised [18F]Florbetapir SUVr image and the ܜܑ܎ܚ܄܃܁ 

image.  This was achieved by forming the overdetermined system of linear equations 

shown in equation 2 and solving for ns and ߚܣ௅.  Equation 2 was optimised in MATLAB 

using QR decomposition.   

 

൥
ܰ ଵܵ ଵܭ
⋮ ⋮

ܰܵ௘௡ௗ ௘௡ௗܭ
൩ ቂ
ݏ݊
Aβ୐

ቃ ൌ 	 ൥
ଵݎܸܷܵ
⋮

௘௡ௗݎܸܷܵ
൩                             (2) 

 

where ܰ ௜ܵ,  ܭ௜ and ܷܸܵݎ௜ are the ݅th voxel intensities in the NS image, K image and 

[18F]Florbetapir SUVr image in MNI space respectively. 

 

The algorithm produces four outputs as summarised in Figure 1.  The parameter values 

ns and Aβ୐ are estimated along with the fitted image (ܜܑ܎ܚ܄܃܁) and the residual  

difference (ܚ܄܃܁ െ	ܜܑ܎ܚ܄܃܁). 

 

Comparison of ࡸࢼ࡭with composite SUVr 

In both the cross-sectional and longitudinal studies, ߚܣ௅was compared to composite 

SUVr as an outcome measure to quantify the A burden.   

 

A composite SUVr was defined to be the mean SUVr value from grey matter voxels 

(those with p(grey matter)>0.3) in 4 large cortical regions (Frontal lobe excluding 
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Sensory Motor Area and Precentral gyrus, Cingulate cortex, Parietal Lobe and Temporal 

Lobe)   taken from the CIC atlas(18).  

 

In the cross-sectional study, the effect sizes (hedges g) were calculated between each of 

the different clinical groups for both ߚܣ௅ and composite SUVr.  For the longitudinal 

study, an effect size (again hedges g) was calculated for the delta of follow-up from 

baseline for both ߚܣ௅ and composite SUVr.  
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Results 

Calculation of ࡸࢼ࡭ 

 ௅ was successfully calculated for all 769 subjects, the algorithm was completed forߚܣ

each subject in under 1 minute on a standard workstation after the PET images had been 

spatially normalised to MNI space (where the canonical images K and NS had been 

generated previously). 

 

Evaluation of ܜܑ܎ܚ܄܃܁ images 

The quality of the fit for ܜܑ܎ܚ܄܃܁ was assessed by evaluating the percentage voxels in the 

brain which satisfied |ܚ܄܃܁ െ	ܜܑ܎ܚ܄܃܁| ൐ 0.3 (see Figure 2).  The larger this percentage, 

the poorer the fit.  The mean percentage of voxels in the brain with |ܚ܄܃܁ െ	ܜܑ܎ܚ܄܃܁| ൐

0.3 across all 769 subjects was 4.6%.  96% of the 769 subjects had fewer than 20% of 

voxels which satisfied |ܚ܄܃܁ െ	ܜܑ܎ܚ܄܃܁| ൐ 0.3 meaning that over 80% of voxels in 96% 

of subjects were well modelled. The highest percentage in all the subjects was 38.0%.  

There was no correlation between the calculated ߚܣ௅ and the percentage of voxels which 

satisfied |ܚ܄܃܁ െ	ܜܑ܎ܚ܄܃܁| ൐ 0.3.  Example fittings for images with high, medium and 

low ߚܣ௅ scores can be seen in supplementary materials (Figure S1). 

 

 and composite SUVr in cross-sectional ADNI dataۺ઺ۯ

The distributions of ߚܣ௅ in the four different ADNI classifications (HC, EMCI, LMCI, 

AD) were calculated and compared to analogous distributions for the composite SUVr.  

Boxplots for each of the distributions are presented in Figure 3, the effect sizes between 

the different groups for effect sizes for composite SUVr and ߚܣ௅ are shown in Table 1 
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and  Table 2 respectively.  Both composite SUVr and ߚܣ௅ increase as the level of 

cognition declines in the ADNI population but Aβ୐ has greater sensitivity between all 

classification groups apart from EMCI to HC where the two measures were equivalent.  

The mean increase in effect size when comparing ߚܣ௅ with composite SUVr was 46% 

and the greatest increase was observed between LMCI and EMCI which increased by 

106%. 

 

The mean calculated ݊ݏ for HC was 1.06.  There was a 17% reduction in the mean 

calculated ݊ݏ for AD when compared to HC and a 10% reduction between LMCI and HC 

but no difference between EMCI and HC. Boxplots for the distributions of ݊ݏ can be seen 

in Figure 4. 

 

 and composite SUVr in longitudinal ADNI dataࡸࢼ࡭

ߚܣ௅ (baseline ߚܣ௅ subtracted from follow-up ߚܣ௅) and composite SUVr (baseline 

composite SUVr subtracted from follow-up composite SUVr) was calculated for each of 

the 147 subjects which had repeated [18F]Florbetapir. The distributions of ߚܣ௅ and 

composite SUVr are shown in Figure 5.  The increase in follow-up mean composite 

SUVr was 0.030 compared to baseline with a standard deviation of 0.12 which translates 

to an effect size of 0.36.  The increase in follow-up ߚܣ௅ compared to baseline was 2.0% 

and the standard deviation was 5.8% which translates to an effect size for ߚܣ௅ of  0.49.  

This increase in effect size shows an increased sensitivity.  There was no difference in the 

calculated ݊ݏ between baseline and follow-up (p > 0.8). 
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Discussion 
 
We have introduced the novel sensitive biomarker ߚܣ௅ to quantify the A burden in  the 

human brain using data from a static PET [18F]Florbetapir scan.  ߚܣ௅ is calculated by 

modelling an SUVr image as a linear combination of two canonical images - K and NS.  

Subsequently, ߚܣ௅ can be extracted simply as the scaling factor of the carrying capacity 

canonical image K.  In addition to defining the biomarker, we have presented an 

automated algorithm, AmyloidIQ, for calculating ߚܣ௅ which is fast and robust to execute.  

 

In this work, we calculated ߚܣ௅ and composite SUVr for 769 scans subjects ranging 

across the full spectrum of disease.  The effect sizes between the different disease 

classifications were calculated for both outcome measures with larger effect sizes 

observed for ߚܣ௅ in every comparison apart from EMCI to HC where the two measures 

were equivalent.  The mean increase in effect size between the different classifications in 

the cross-sectional ADNI data was 46%.  This increase in sensitivity would be important 

in future studies as one would require fewer subjects to detect a significant difference 

between disease groups and healthy controls.  A similar increase in power was also 

observed for the longitudinal ADNI data.  As with the cross-sectional results, the 

increased power could be important for future longitudinal studies and clinical trials.  In 

particular, interventional studies one would have greater power to detect reductions in 

baseline A.  Figure 6 illustrates this by showing power curves (calculated using the 

effect sizes in the longitudinal data) for  ߚܣ௅ and composite SUVr in a simulated clinical 

trial of an anti-A therapeutic (50 placebo, 50 drug).  The power for ߚܣ௅ reaches 80% at 

~10% reduction in baseline A whereas one would require ~20% reduction in A to 
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achieve the same when using composite SUVr as the outcome measure. This will have a 

dramatic effect on the financial cost and disruption to patients in interventional studies 

and clinical trials.  This comes at an important time as it has recently been reported that 

aducanumab reduces A in AD(20). 

 

The difference image produced by the algorithm allows one to analyse how well the 

SUVr image data was modelled.  This feature can provide useful information as to 

whether a particular scan has an abnormal ߚܣ௅ due to poor fitting (resulting from poor 

registration to MNI space or lesions) for instance rather than abnormal concentrations of 

A.   This information is lacking when using composite SUVr.   In this work, a voxel was 

considered to be poorly estimated if the absolute difference in intensity was greater than 

0.3.  96% of the SUVr fitted images had fewer than 20% of voxels which were poorly 

fitted suggesting the SUVr fitted images accurately model the majority SUVr images.   

 

The calculated ݊ݏ in the cross-sectional analysis reduced as the subjects progressed along 

the AD pathway.  It is possible that this is caused by reductions in white matter volume as 

[18F]Florbetapir binds non-specifically to white matter and this has been shown to decline 

in AD by up to 5% per year.  Further investigation would be required in order to 

characterise the relationship between the calculated ݊ݏ and white matter atrophy. 

 

There are some limitations that should be considered when using this technique in future 

studies.  In particular, for interventional studies, one should consider that if the 

intervention affects the A concentration in a spatially dependent manner (i.e., does not 
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reduce A uniformly across the brain) then scans may not be modelled effectively using a 

linear combination of NS and K after treatment.  The quality of fitting pre and post 

treatment should be investigated in future work.  Also, caution should be exercised when 

using ߚܣ௅ disease groups other than AD as the outcome measure was developed using 

templates derived from modelling the disease progression of AD.  In addition, it should 

also be noted that all the work here used SUVr images with a grey matter cerebellum 

reference region.  Recent work has showed greater effect sizes for composite SUVr when 

using a white matter composite reference region (21) and therefore the increase in effect 

size of ߚܣ௅ over this SUVr measure could be reduced.  However, as mentioned 

previously, there is a reduction in the calculated ݊ݏ as the disease progresses and the use 

of white matter as a reference region is not without complexities that will require further 

investigation. 
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Conclusion 

In conclusion, we have introduced the novel biomarker ߚܣ௅ for quantifying the global A 

burden using static [18F]Florbetapir PET data. ߚܣ௅	was tested using both cross-sectional 

and longitudinal data.  In both sets of data, ߚܣ௅ showed increased sensitivity to 

differences in A concentration.  ߚܣ௅ could prove useful by increasing the power to 

detect changes in longitudinal studies and trials of novel therapeutics targeting A.  
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Figures 

 

 

Figure 1: AmyloidIQ
  Algorithm for calculating ߚܣ௅ from a single SUVr image with 

cerebellar grey matter used a reference region. 
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Figure 2: Evaluation of the fit of SUVrfit images. Top: Percentage of voxels in the brain 

with หܷܸܵݎ െ	ܷܸܵݎ௙௜௧ห ൐ 0.3 for each subject. Bottom: SUVr image, the SUVrfit image 

and the difference image for three example subjects.  The SUVrfit image accurately fits the 

SUVr image in all three examples.  
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Figure 3: Boxplots for composite SUVr (left) and ߚܣ௅ (right)  for each of the four 

diagnosis groups in the cross-sectional data.  Effect sizes are calculated between all 

groups are larger for ߚܣ௅ than for composite SUVr apart from EMCI to HC where the 

outcome measures are equivalent (see Table 1 and Table 2). 
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Figure 4: Boxplots showing the distributions of ݊ݏ for each of the four diagnosis groups 
in the cross-sectional data.  ݊ݏ is statistically lower in the AD and LMCI groups when 

compared to healthy controls but the same in the EMCI group.  
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Figure 5: Boxplots showing the distributions of % change in composite SUVr (left) and 

% change in ߚܣ௅ (right).  A bigger effect size is demonstrated with ߚܣ௅.  
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Figure 6: Power curves for composite SUVr and ߚܣ௅ in a simulated clinical trial (50 
placebo, 50 drug) of an anti-A therapeutic calculated using the effect sizes found in the 

longitudinal ADNI data.  
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Tables 
 
 

EMCI LMCI AD 

Effect size vs HC 0.24 0.48 1.06 

Effect size vs EMCI 0.26 0.81 

Effect size vs LMCI 0.50 

Table 1: Table of effect sizes for composite SUVr 

EMCI LMCI AD 

Effect size vs HC 0.24 0.71 1.51 

Effect size vs EMCI 0.49 1.24 

Effect size vs LMCI 0.64 

Table 2: Table of effect sizes for ߚܣ௅ 

 
 


