Optimization of labeling PSMA^{HBED} with ethanol-post-processed ⁶⁸Ga and its quality control systems Elisabeth Eppard¹, Tatjana Homann², Ana de la Fuente², Markus Essler¹, Frank Rösch^{2,*} ¹Department of Nuclear Medicine, University Hospital, Bonn, Germany ²Institute of Nuclear Chemistry, Johannes Gutenberg University, Mainz, Germany # **Corresponding Author** *frank.roesch@uni-mainz.de ### ABSTRACT Radiolabeling of the prostate-specific membrane antigen (PSMA) inhibitor, Glu-NH-CO-NH-Lys (Ahx), using the ⁶⁸Ga chelator HBED-CC (PSMA^{HBED}) allows imaging of lesions of prostate cancer due to the high expression of PSMA in prostate carcinoma cells as well as bone metastases and lymph nodes related to the disease. The aim of this work was the optimization of the labeling of ⁶⁸Ga-PSMA^{HBED} using the efficient cation exchange (CEX) post-processing of ⁶⁸Ga as well as the development of a TLC-based quality control system. Labeling was optimized for online ethanol post-processed ⁶⁸Ga eluate investigating various parameters, such as buffer molarity (0.1-1 M), temperature (25-90°C), tracer amount (0.11-0.74 nmol) and labeling time. In addition purification of the crude product using a STRATA-X cartridge was tested. For radio-TLC quality control various mobile phases were analyzed using silica gel 60 plates and results were validated using HPLC. The most superior mobile phases were also applied on ITLC-SG-plates. Using optimized conditions labeling yields of > 95% were obtained within 10 min when applying the ethanol-based post-processing using PSMA^{HBED} amounts as low as 0.1 nmol. Higher precursor concentration (0.7 nmol) further increased labeling and quantitative yields to >98% within 5 min. In clinical routine patient batches (> 200 applications) with radiochemical purity > 98% and specific activities of 326 ± 20 MBq/nmol are obtained reproducibly. Performing TLC quality control on silica gel 60 plates, four mobile phases with suitable separation properties and complementary R_f values were identified. Two systems show equivalent separation on ITLC-SG-plates, with ITLC analysis finished within 5 min in contrast to the TLC system (20 min). Labeling of PSMA^{HBED} was optimized for CEX post-processing methods ensuring almost quantitative labeling and high nuclide purity of final ⁶⁸Ga-PSMA^{HBED}, making subsequent purification steps unnecessary. The new radioTLC-method allows quality control in a short time using a fast, reliable, low cost method with little equipment effort. Using this approach, the synthesis is easily adopted by automated synthesis modules such as e.g. the EZAG Modular-Lab eazy. KEYWORDS: ⁶⁸Ga, PSMA, generator post-processing, quality control, ITLC ### **INTRODUCTION** Prostate-specific membrane antigen (PSMA) is a cell surface protein with increased expression on nearly all prostate cancer cells compared to other PSMA expressing tissues such as kidney, proximal small intestine or salivary glands[1–3]. As PSMA expression is restricted to the prostate and the cell surface at all stages of disease it therefore holds promise as target for specific imaging and therapy of prostate cancer and neovasculature[4–6]. It has recently been demonstrated that low-molecular peptido-mimetic radiopharmaceuticals are clinically very attractive as it is possible to image prostate cancer lesions with high contrast and higher sensitivity compared to ¹⁸F-Choline-PET/CT[7–10]. Non-invasive imaging of increased PSMA expression provides important information related to the stage of prostate cancer and location of metastatic lesions. One of those peptidomimetic radiopharmaceuticals is Glu-NH-CO-NH-Lys(Ahx)-HBED-CC (PSMA^{HBED}, PSMA-11), showing high potential as prostate cancer imaging agent[1, 8]. It is an urea-based PSMA-inhibitor including the acyclic complex ligand N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid (HBED-CC), being recently proposed as chelator for efficient radiolabeling with generator-produced ⁶⁸Ga at room temperature[11]. In addition, the lipophilic character of the ⁶⁸Ga complex of HBED-CC was found to be a necessary feature for interaction with the PSMA binding site[1, 12, 13]. Generator-produced ⁶⁸Ga represents an attractive alternative to cyclotron-based PET nuclides, such as ¹⁸F or ¹¹C but requires protocols to provide ⁶⁸Ga suitable for medical use. Several methods have been developed for purification of ⁶⁸Ga eluate in order to fulfill regulatory requirements[13–15]. Initial publications on ⁶⁸Ga-PSMA^{HBED} used crude ⁶⁸Ga generator eluate for ⁶⁸Ga labeling of PSMA and HPLC for quality control. This report describes radiolabeling of PSMA^{HBED} using cation exchange-based (CEX) post- processing methods for manual synthesis as well as the use of an automated module followed by the development of a TLC- and ITLC-based quality control system. ### **EXPERIMENTAL PROCEDURES** Only the highest reagent grade chemicals and Trace-Select water were used. Chemicals were purchased from Sigma Aldrich and used without further purification, unless stated otherwise. ⁶⁸Ga was obtained from an initially 1.1 GBq ⁶⁸Ge/⁶⁸Ga generator (2 years old) from Cyclotron Co. Ltd. (Obninsk, Russian Federation) and from an initially 1.85 GBq ⁶⁸Ge/⁶⁸Ga generator (new) from iThemba Labs (Cape Town, South Africa). BioRad AG 50W-X4 (200 – 400 mesh) cation-exchange (CEX) resin was used to prepare a micro-chromatography column (50 mg resin, 2 mm inner diameter, 5 mm length). Also Varian Bond Elut-SCX was used. Labeling reactions were carried out in 11 mL glass vials (Mallinckrodt) using a blockthermostat (TK13, Ditabis) for temperature control and agitation. Purification was performed with 30 mg C-18 cartridges (Phenomenex Strata-X Tubes). Activity measurement was performed using a Curie-Meter (ISOMED 2010, Nuklear-Medizintechnik Dresden GmbH). pH measurement was performed using a calibrated pH-meter (SevenEasy pH, Mettler-Toledo). TLC plates (aluminum-backed silica gel 60, Merck) and ITLC-SG plates (Varian) were analyzed using a flat-bed scanner (Instant Imager, Canberra Packard; miniGita, Raytest-Isotopenmessgeräte GmbH, Straubenhardt, Germany). RP-HPLC using a LiChrosphere 100-RP18EC column (5 mm, 250 x 4 mm) was used to quantify the radiochemical purity of 68 Ga-PSMA. HPLC was equipped with a Hitachi L-7100 pump system coupled with UV (Hitachi L-7400) and radiometric (Gamma Raytest-Isotopenmessgeräte GmbH, Straubenhardt, Germany) detectors. Solvents for HPLC were obtained as HPLC grade and degassed by ultrasonication for 15–20 min before use. The gradient elution system utilized mobile phase A (deionized $H_2O + 0.1 \%$ TFA) and mobile phase B (acetonitrile) with a flow of 1 mL/min. # Manual 68Ga-labeling 68 Ga was eluted with 5 mL of 0.1 M HCl and subsequently post-processed online according to a previously published procedure[15]. For labeling with ethanol-based 68 Ga eluate (N5: 90 % ethanol/0.9 N HCl) 0.10-0.70 µg (0.11-0.74 nmol) of PSMA^{HBED} were added to a mixture of buffer and 0.1-1 mL of 68 Ga eluate. The influences of buffer (molarity, volume, pH), amount of ligand, volume of eluate, temperature and reaction time were investigated. For clinical application 0.75-5 μ g (0.79-5.28 nmol) PSMA^{HBED} were added to a mixture of 1000 μ L 1 M ammonium acetate buffer and 1 mL of ethanol-based ⁶⁸Ga eluate (1.85 GBq ⁶⁸Ge/⁶⁸Ga generator, iThemba Labs). The mixture with final pH 3.9-4.2 was heated for 5 min at 85°C in a closed 10 mL vial followed by sterile filtration and dilution with 10 mL saline solution. Synthesis without post-processing was performed as follows. 1 μ g (0.11 nmol) of PSMA^{HBED} was added to a mixture of 600 μ L of 3 M ammonium acetate buffer and 2 mL of ⁶⁸Ga in 0.6 N HCl (1.85 GBq ⁶⁸Ge/⁶⁸Ga generator, iThemba Labs). The mixture with final pH 4.2 was incubated for 5 min at 40 °C in a closed 10 mL vial. ### Automated tracer synthesis ⁶⁸Ga obtained from a 1.1 GBq ⁶⁸Ge/⁶⁸Ga generator (IGG100, Eckert & Ziegler Strahlen- und Medizintechnik AG, Berlin, Germany) with a TiO₂ matrix, was eluted with 0.1 N HCl and post-processed with ethanol/HCl solution according to literature[13, 15]. Labeling of PSMA^{HBED} was performed by adding aliquots (5, 10, 15 μ L = 5, 10, 15 μ g = 5.28, 10.56, 15.84 nmol) of a PSMA^{HBED} stock solution (1 mg/mL) to mixtures of post-processed ⁶⁸Ga eluate (800 μ L) and 1 M NaOAc solution (1.6 mL, pH 7), which corresponds to an ethanol content of 33 vol% of the crude reaction solution using the small radiolabeling synthesizer Modular LabEazy (Eckert & Ziegler Strahlen- und Medizintechnik AG, Berlin, Germany) and a temperature of 110°C. Radiochemical yields were determined after 200 and 300 s reaction time. ### Quality control TLC was performed with 1 µL aliquots on TLC or ITLC-SG plates after labeling for 1, 3, 5 and 10 min and subsequently development in different solvent systems. Analyses were performed using a flat-bed scanner (Instant Imager, Packard Canberra, Schwadorf, Austria and Rita Star, Raytest Isotopenmessgeräte GmbH, Straubenhardt, Germany). Results were compared to radioHPLC which was performed using two gradient systems depending on labeling method. The gradient elution system utilized mobile phase A (deionized H_2O containing 0.1 % TFA) and mobile phase B (100 % acetonitrile) and flow rate of 1.0 mL/min. Starting with 100 % A/ 0 % B, the gradient was increased to 100 % B over 15 min and then returned to the initial gradient conditions within 5 min. The retention time of free 68 Ga was $R_t = 2.8$ min, 68 Ga-PSMA^{HBED} eluted at 9.5 min. # **RESULTS & DISCUSSION** ### ⁶⁸Ga-labeling Currently fractionated ⁶⁸Ga eluate is regularly used for radiosynthesis of ⁶⁸Ga-PSMA^{HBED}. The disadvantage of fractionation is the content of metallic impurities such as ⁶⁸Ge generator breakthrough and stable ⁶⁸Zn generated from ⁶⁸Ga decay [16] which are decreased but, in fact, not chemically removed in this case. It is therefore desirable to find optimized conditions using post-processed ⁶⁸Ga for ⁶⁸Ga-PSMA^{HBED} labeling with the post-processed ⁶⁸Ga fraction meeting recommendations for ⁶⁸Ge/⁶⁸Ga radionuclide generator eluates as described in the monograph "Gallium (⁶⁸Ga) chloride solution for radiolabeling" of the European pharmacopeia[17]. The ⁶⁸Ga eluate contains measurable activities of the long-lived ⁶⁸Ge, which is a critical parameter in the context of the routine clinical application of ⁶⁸Ga-radiopharmaceuticals[18, 19]. The breakthrough of commercial ⁶⁸Ge/⁶⁸Ga generators varies among suppliers, over time and frequency the generators are used. Typical values of initial ⁶⁸Ge breakthrough (⁶⁸Ge present in the eluate divided by ⁶⁸Ga present in the eluate) are in the order of 0.0001-0.00001 %. Over a period of time this ratio increases due to the decreasing amount of generated and eluted 68 Ga. According to certificates of each individual generator, in particular the GalliaPharm (Eckert & Ziegler Strahlen- und Medizintechnik, Berlin, Germany) guarantees both initial and permanent 68 Ge breakthrough less than 0.001 % which is recommended by the European Pharmacopoeia for the synthesis of 68 Ga radiopharmaceuticals[17]. For 68 Ge/ 68 Ga generators with higher levels of 68 Ge breakthrough, an online or offline purification to remove 68 Ge from initial 68 Ga eluate is vital. In addition to 68 Ge breakthrough the relatively large volume, high acidity of the eluate and the presence of further metal ion contaminants e.g. Zn(II) or Fe(III) are problems addressed with these so-called post processing procedures. There are no defined limitations to metal contaminants but research has shown particularly trivalent metal cations can hinder efficient radiolabeling with 68 Ga. In addition reduced labeling yields and specific activities occur inasmuch as metal contaminants compete with the low amounts of 68 Ga (1 GBq 68 Ga \triangleq 9.731 pmol \triangleq 6.61 pg) available for complex formation with the precursor. Several methods have been developed to reduce metallic impurities and concentrate the eluate, of which variations of cation exchange (CEX) resin based post-processing have been particularly successful[13, 20]. The initial method pioneered by Zhernosekov et al. using acetone/hydrochloric acid solutions provides high recovery of ⁶⁸Ga and complete removal of ⁶⁸Ge, as well as a decreasing acidity, volume and other metallic impurities[13]. A suitable and efficient variation, is the cation-exchange based post-processing using ethanol/hydrochloric acid media[15]. It equally allows concentration of ⁶⁸Ga generator eluate, removal of metal impurities and quantitative removal of ⁶⁸Ge-breakthrough, ensuring the final injectable radiopharmaceutical fulfilling regulatory requirements relating to ⁶⁸Ge content. A recently published study confirmed the hypothesis of ethanol facilitating incorporation of the radio metal[21]. The radiolytic protection capability of ethanol additionally adds benefit to a labeling reaction being performed with high activities. Using a modified labeling method published by Eder et al. optimization was conducted as part of this study[1], resulting in 0.25 M HEPES buffer (pH 7.5) to be the most suitable system for radiolabeling of PSMAHBED at very low precursor concentration using 1 mL of post-processed eluate. Using these conditions labeling yields were found to be noticeably dependent on reaction temperature. Although HBED is a non-macrocyclic chelate, ⁶⁸Ga-complex formation yields are relatively low at ambient temperature, i.e. between 25°C and 40°C, and do not exceed 40 % after 10 minutes reaction time. In contrast, yields and complex formation kinetics are high and fast, at elevated temperatures of 60°C and 90°C. At 10 min reaction time labeling yields were equivalent for both temperatures (Figure 1). ### Figure 1 Using elevated temperatures and increasing the amount of precursor to 0.7 μ g (0.74 nmol), complex formation occurs fast and reliable. Radiolabeling yields of >90 % are achievable within 1 min and >95 % within 3 min (Figure 2). Using these conditions regulatory requirements are fulfilled without the necessity of further purification when using a reaction time of 5 min. ## Figure 2 In the context of clinical applications, HEPES is not necessarily the buffer media of choice, although it is not biologically critical and offers high incorporation of radioactivity and accordingly high specific activities. Due to the fact that there is no monograph of PSMA^{HBED} listed in the pharmacopoeia, the radiopharmaceutical has to be purified from HEPES and an additional quality control is necessary to determine the residual in the final formulation (as described as part of the monograph for ⁶⁸Ga-DOTATOC). In order to circumvent additional purification steps 1 M NH₄OAc solution was used as buffer media as part of this study. Using 900 μ L of 1 M NH₄OAc mixed with 1 mL of post-processed ⁶⁸Ga-eluate resulted in a labeling pH of 3.9-4.2. A labeling temperature of 85°C was found to be optimal for clinical routine production using ethanol post-processed ⁶⁸Ga eluate. Figure 3 shows radiolabeling kinetics depending on precursor amount using routine production conditions. When using higher activities (>1 GBq) for labeling more precursor was necessary to obtain satisfactory and reproducible radiochemical yields. Radiolabeling with less than 1 μ g (1.1 nmol/0.526 μ M) PSMA^{HED} suffers from low reproducibility (\pm 10.3 %) and low yields. The use of more than 1 μ g (1.1 nmol/0.526 μ M) PSMA^{HED} leads to radiolabeling yields > 98 % within 5 min of reaction time. In this case additional purification of the product can be omitted as it already fulfils regulatory requirements. As a variation radiolabeling of 1 μ g (1.1 nmol/0.423 μ M) PSMA^{HBED} was performed using fractionated ⁶⁸Ga eluate at elevated temperature (40°C). In this case radiolabeling yields of 75.0 \pm 5.8 % were obtained requiring additional purification of the product prior to injection. When comparing results of fractionated and ethanol-based post-processed ⁶⁸Ga the latter shows superior results. ### Figure 3 Transferring the investigated radiolabeling method without further changes to an automated module system (Modular LabEazy) was easily achieved. Taking the different heat transmission rate of the reactor into account higher temperatures are necessary compared to manual synthesis. Without further optimization of the conditions towards automatization radiolabeling yields of 93 \pm 3.2 % were obtained within 200 s (3.3 min) using the minimum amount of precursor (5 μ g/5.28 nmol) recommended by Eckert & Ziegler. An extension of reaction time up to 300 s (5 min) did not show an effect on yields (91 \pm 4.5 %). ### **TLC-Analytics** So far, quality control of ⁶⁸Ga-PSMA^{HBED} has been performed by means of RadioHPLC[1]. Keeping in mind that the time needed for QC of short-lived nuclides should not exceed the time needed for synthesis. Obtaining higher product activities by shortening time necessary for QC is a crucial parameter when developing novel routine procedures for clinical application. For example, performing a 20 minute HPLC protocol (as suggested by Eder et al.) would reduce the absolute ⁶⁸Ga-PSMA^{HBED} product radioactivity by 18 percent. In this case the use of TLC/ITLC appears as an attractive alternative as the method is generally expected to allow a faster but still reliably quality control with little equipment effort and accordingly low cost. Thus a TLC/ITLC system is required to differentiate between ⁶⁸Ga and ⁶⁸Ga-PSMA^{HBED} making use of the advantages of this quality control method. In order to find optimum conditions for TLC/iTLC QC of ⁶⁸Ga-PSMA^{HBED}, different mobile phases on Silica Gel 60 and on ITLC-SG plates were investigated. General separation ability was evaluated with Silica Gel 60 plates as stationary phase and several mobile phases. Focus was set on duration of development and separation ability of the investigated TLC systems. The documented R_f values are summarized in Table 1. ### Table 1 With the exception of acetonitrile (6) and cyclohexanone (7) mixtures, all investigated mobile phases are suitable to separate ⁶⁸Ga from ⁶⁸Ga-PSMA^{HBED} on Silica Gel 60 plates. Comparison with radioHPLC results confirmed high reliability of mobile phase 1-3. Altogether three mobile phases were found to be suitable for TLC analytics of ⁶⁸Ga-PSMA^{HBED} using Silica Gel 60 plates. Even though TLC is a reliable low-budget method, the development of the plates takes too long in order to have an advantage over the established 20 min HPLC procedure. In a second step ITLC-SG plates were investigated using mobile phases 1-3 and 5 to shorten development time of plates in the solvent chamber. All observed R_f values and development times using ITLC-SG plates as stationary phase are summarized in Table 1. Figure 4 shows radioTLC (left image) and ITLC (right image) images developed in mobile phases 1-3 and 5 with free ⁶⁸Ga (left lane) directly compared to ⁶⁸Ga-PSMA^{HBED} (right lane). As anticipated, separation depends on both the mobile phase and the stationary phase due to changes in the interaction dependent on component polarity. As a result not all investigated mobile phases are suitable for development of both TLC and ITLC as shown in Table 1and Figure 4. Altogether it was possible to find two mobile phases (No. 2, 3) which can be used with Silica Gel 60 (TLC) and ITLC-SG plates to determine the radiochemical yield of ⁶⁸Ga-PSMA^{HBED} for quality control. Completion of quality control was achieved in less than 10 min utilizing mobile phase's No. 2 and 3 with ITLC-SG plates. Compared to more than 15 min for quality control by means of radioHPLC, this is a fast and easy to handle low-budget method with high reliability. ### Figure 4 All analytical data obtained by TLC and ITLC-SG were also verified by means of HPLC (Figure 5). ### Figure 5 ### CONCLUSION ⁶⁸Ga-PSMA^{HBED} is a promising new ⁶⁸Ga-PET tracer which is increasingly applied for diagnosis of various diseases related to primary prostate cancer and other cancers, such as renal cell carcinoma which also express PSMA in the neovasculature[22]. A process of replacing previously used tracers, such as ¹⁸F-choline with ⁶⁸Ga-PSMA^{HBED} has already started based on promising results being published continuously. Compared to previous ¹⁸F-based PET tracers, the synthesis of ⁶⁸Ga-PSMA^{HBED} exemplarily demonstrates the advantages of radiometal-based PET tracers. One may soon expect the availability of kit-analogue preparations, as recently reported for a ⁶⁸Ga-octreotide derivative[23]. However, those syntheses should be robust and reliably guarantee radiochemical labeling yields > 99%, making subsequent purification steps unnecessary. In the case of ⁶⁸Ga-radiopharmaceuticals, an additional isolation of ⁶⁸Ge via post-processing procedures or quality control for ⁶⁸Ge breakthrough in the product synthesized should be made redundant. The present study was able to modify the synthesis of ⁶⁸Ga-PSMA^{HBED} by adopting established ⁶⁸Ge/⁶⁸Ga generator post-processing methods, used for, eliminating ⁶⁸Ge breakthrough prior to ⁶⁸Ga-labeling. As acetone- and ethanol-driven cationic CEX post-processing pathways are online, fast and almost quantitative, ⁶⁸Ga-PSMA^{HBED} labeling is not affected in terms of yield. Labeling yields of >99% are achieved at optimized conditions and product availability is granted within 5 minutes after generator elution – including post-processing. The synthesis is transferable to automated synthesis modules such as e.g. the EZAG Modular-Lab eazy, achieving acceptable yields even at lower pH. It was possible to develop fast and reliable TLC- and ITLC-based methods, which provide results comparable to the established HPLC method. This is very important in the context of clinical applications where rapid and stable quality control is indispensable. As the gain in product activity due to the short synthesis period would decrease whenever longer periods would be required for quality control (such as e.g. a 20 minutes HPLC protocol as suggested by Eder et al.[1]), the new ITLC quality control is of special importance and can be terminated within 5 minutes, using a fast, reliable, low cost radio ITLC-method with little equipment effort. Analytical data obtained with this ITLC system are confirmed by HPLC. It has been straight forward to adopt the initially described synthesis of the 68 Ga tracer (for non-post-processed 68 Ge/ 68 Ga generator eluates) to state-of-the-art procedures for cation exchange-based eluate purifications. Radiolabeling yields are nearly quantitative. The synthesis is completed within 5 min, providing labeling yields of >95% and specific activities of > 326 \pm 20 MBq/nmol, making subsequent product purification obsolete and could as well as the TLC/ITLC quality control methods be successfully implemented in systematic clinical protocols in over 200 patient studies. ### **AUTHOR INFORMATION** # **Author Contributions** All authors have given approval to the final version of the manuscript. ### Notes The authors declare no competing financial interest. # ACKNOWLEDGMENT The authors thank Eckert & Ziegler Eurotope GmbH (Berlin, Germany) for providing the automated system *Modular Lab Eazy*. ### **REFERENCES** - 1. Eder M, Schäfer M, Bauder-Wüst U, Hull W-E, Wängler C, Mier W, et al. 68 Ga-Complex Lipophilicity and the Targeting Property of a Urea-Based PSMA Inhibitor for PET Imaging [en]. Bioconjugate Chemistry. 2012; doi:10.1021/bc200279b. - 2. Mannweiler S, Amersdorfer P, Trajanoski S, Terrett JA, King D, Mehes G. Heterogeneity of Prostate-Specific Membrane Antigen (PSMA) Expression in Prostate Carcinoma with Distant Metastasis [en]. Pathology & Oncology Research. 2009; doi:10.1007/s12253-008-9104-2. - 3. Sweat SD, Pacelli A, Murphy GP, Bostwick DG. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases [en]. Urology. 1998; doi:10.1016/S0090-4295(98)00278-7. - 4. Elsasser-Beile U, Reischl G, Wiehr S, Buhler P, Wolf P, Alt K, et al. PET Imaging of Prostate Cancer Xenografts with a Highly Specific Antibody against the Prostate-Specific Membrane Antigen [en]. Journal of Nuclear Medicine. 2009; doi:10.2967/jnumed.108.058487. - 5. Henry M, Wen S, Silva MD, Milton M, Worland PJ. A Prostate-Specific Membrane Antigen-Targeted monoclonal Antibody-Chemotherapeutic Conjugate Designed for the Treatment of Prostate Cancer [en]. Cancer Research. 2004;64:7995–8001. - 6. Milowsky MI. Phase I Trial of Yttrium-90--Labeled Anti--Prostate-Specific Membrane Antigen Monoclonal Antibody J591 for Androgen-Independent Prostate Cancer [en]. Journal of Clinical Oncology. 2004; doi:10.1200/JCO.2004.09.154. - 7. Afshar-Oromieh A, Haberkorn U, Eder M, Eisenhut M, Zechmann C. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH [en]. European Journal of Nuclear Medicine and Molecular Imaging. 2012; doi:10.1007/s00259-012-2069-0. - 8. Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart HG, Hadaschik BA, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions [en]. European Journal of Nuclear Medicine and Molecular Imaging. 2013; doi:10.1007/s00259-012-2298-2. - 9. Barrett JA, Coleman RE, Goldsmith SJ, Vallabhajosula S, Petry NA, Cho S, et al. First-in-Man Evaluation of 2 High-Affinity PSMA-Avid Small Molecules for Imaging Prostate Cancer [en]. Journal of Nuclear Medicine. 2013; doi:10.2967/jnumed.112.111203. - 10. Hillier SM, Maresca KP, Lu G, Merkin RD, Marquis JC, Zimmerman CN, et al. ^{99m}Tc-Labeled Small-Molecule Inhibitors of Prostate-Specific Membrane Antigen for Molecular Imaging of Prostate Cancer [en]. Journal of Nuclear Medicine. 2013; doi:10.2967/jnumed.112.116624. - 11. Eder M, Wängler B, Knackmuss S, LeGall F, Little M, Haberkorn U, et al. Tetrafluorophenolate of HBED-CC: a versatile conjugation agent for ⁶⁸Ga-labeled small recombinant antibodies [en]. European Journal of Nuclear Medicine and Molecular Imaging. 2008; doi:10.1007/s00259-008-0816-z. - 12. Liu T, Toriyabe Y, Kazak M, Berkman CE. Pseudoirreversible Inhibition of Prostate-Specific Membrane Antigen by Phosphoramidate Peptidomimetics [en]. Biochemistry. 2008; doi:10.1021/bi801883v. - 13. Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of Generator-Produced ⁶⁸Ga for Medical Application [en]. Journal of Nuclear Medicine. 2007;48(10):1741–8. - 14. Meyer G-J, Mäcke H, Schuhmacher J, Knapp WH, Hofmann M. ⁶⁸Ga-labelled DOTA-derivatised peptide ligands [hr]. European Journal of Nuclear Medicine and Molecular Imaging. 2004; doi:10.1007/s00259-004-1486-0. - 15. Eppard E, Wuttke M, Nicodemus PL, Rösch F. Ethanol-based post-processing of generator derived ⁶⁸Ga towards kit-type preparation of ⁶⁸Ga-radiopharmaceuticals [en]. Journal of Nuclear Medicine. 2014;55:1023–8. - 16. Rösch F. Maturation of a Key Resource The Germanium-68/Gallium-68 Generator: Development and New Insights [en]. Curr. Radiopharm. 2012;5:202–11. - 17. Eurpoean Directorate for the Quality of Medicines and Healthcare. The European Pharmacopoeia [en]. 8th ed.; 2016. - 18. Breeman WAP, Verbruggen AM. The ⁶⁸Ge/⁶⁸Ga generator has high potential, but when can we use ⁶⁸Ga-labelled tracers in clinical routine? [en]. European Journal of Nuclear Medicine and Molecular Imaging. 2007;34(7):978–81. - 19. Breeman WAP, Blois Ed, Sze Chan H, Konijnenberg M, Kwekkeboom DJ, Krenning EP. ⁶⁸Ga-labeled DOTA-Peptides and ⁶⁸Ga-labeled Radiopharmaceuticals for Positron Emission Tomography: Current Status of Research, Clinical Applications, and Future Perspectives [en]. Seminars in nuclear medicine. 2011;41(4):314–21. - 20. Seemann J, Eppard E, Waldron BP, Ross TL, Roesch F. Cation exchange-based post-processing of (68)Ga-eluate: a comparison of three solvent systems for labeling of DOTATOC, NO2AP(BP) and DATA(m.) [eng]. Applied radiation and isotopes: including data, instrumentation and methods for use in agriculture, industry and medicine. 2015; doi:10.1016/j.apradiso.2015.01.023. - 21. Eppard E, Pèrez-Malo M, Rösch F. Improved radiolabeling of DOTATOC with trivalent radiometals for clinical application by addition of ethanol. EJNMMI radiopharm. chem. 2017; doi:10.1186/s41181-016-0010-8. - 22. Chang SS, Reuter VE, Heston W, Gaudin PB. Metastatic renal cell carcinoma neovasculature expresses prostate-specific membrane antigen. Urology. 2001; doi:10.1016/S0090-4295(00)01094-3. - 23. Waldron B, Roesch F, Seemann J, De la Fuente, A. Bifunctional DATA-based chelators: Approaching kit-type labeling of ⁶⁸Ga [en]. Journal of Nuclear Medicine Meeting abstracts. 2014;55(1_MeetingAbstracts):104. # **FIGURES** **Figure 1:** Radiolabeling yields with various reaction temperatures using ethanol post-processed 68 Gaeluate (0.1 µg/0.11 nmol/0.025 µM PSMA^{HBED}, 1 mL N5, 3 mL of 0.25 M HEPES pH 7.5, overall reaction volume = 4 mL; n = 3). Figure 2: Radiolabeling yields with various precursor amounts (T = 90° C, 1 mL N5, 3 mL of 0.25 M HEPES pH 7.5, overall reaction volume = 4 mL; n = 3). **Figure 3:** Radiolabeling yields with various precursor amounts using post-processed 68 Ga-eluate (85°C, 1 mL N5, 900 μ L of 1 M NH₄OAc, pH 3.9-4.2; n = 3). Figure 4: Images of radioTLC (left plate) and ITLC (right plate) developed in the mobile phases 1-3 and 5. $M = {}^{68}\text{Ga}$; $L = {}^{68}\text{Ga-PSMA}^{HBED}$; 1 = 0.1 M $Na_3C_6H_5O_7$ pH 4; $2 = MeOH/NH_4OAc$ 1:1; 3 = 5 % NaCl/MeOH/25 % NH_3 3:1:1; 5 = MeOH/0.9 % NaCl/1 EDTA (9:1:0.5). **Figure 5:** RadioHPLC of 68 Ga-PSMA^{HBED} for verification of TLC (left lane, 0.1 M Na₃C₆H₅O₇ pH 4) and ITLC (right lane, MeOH/ NH₄OAc 1:1) quality control. Table 1: R_f values for investigated mobile phases using Silica Gel 60 or ITLC-SG plates as stationary phase. Development times were only given for applicable solvent systems. **TABLES** | | No. | Mobile phase | Silica Gel 60 | | | ITLC-SG | | | |---|-----|----------------------------------------------|------------------------------------|---------------------------------------------|---------------|------------------------------------|---------------------------------------------|---------------| | Ν | | | R _f (⁶⁸ Ga) | R _f (⁶⁸ Ga-
PSMA) | Time
[min] | R _f (⁶⁸ Ga) | R _f (⁶⁸ Ga-
PSMA) | Time
[min] | | | 1 | o.1 M $Na_3C_6H_5O_7$ (pH 4) | 0.9-1 | 0.1 | 20 | 0.9-1 | 0.7-0.8 | - | | | 2 | MeOH/ NH ₄ OAc (1:1) | o | 0.8-0.9 | 23 | O | 0.8-0.9 | 7 | | | 3 | 5 % NaCl/ MeOH/ 25 % NH ₃ (3:1:1) | o | 1 | 18 | O | 1 | 5 | | | 4 | MeOH/ 0.9 % NaCl (9:1) | o | 1 | - | - | - | - | | | 5 | MeOH/ 0.9 % NaCl/ 1 * EDTA (9:1:0.5) | 0-0.1 | 1 | 25 | 0.9-1 | 0.9 | - | | | 6 | MeCN/ H ₂ O (1:1) | 0-1 | 0-1 | - | - | - | - | | | 7 | Cyclohexanone/ 2 M HCl (20:1) | O | О | - | - | - | - |