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ABSTRACT

Purpose: The main purpose of this study was to assess the reliability of shape and
heterogeneity features in both Positron Emission Tomography (PET) and low-dose
Computed Tomography (CT) components of PET/CT. A secondary objective was to

investigate the impact of image quantization.

Material and methods: A Health Insurance Portability and Accountability Act -compliant
secondary analysis of deidentified prospectively acquired PET/CT test-retest datasets of
74 patients from multi-center Merck and ACRIN trials was performed. Metabolically
active volumes were automatically delineated on PET with Fuzzy Locally Adaptive
Bayesian algorithm. 3DSlicer™ was used to semi-automatically delineate the anatomical
volumes on low-dose CT components. Two quantization methods were considered: a
quantization into a set number of bins (quantizations) and an alternative quantization
with bins of fixed width (quantizationw). Four shape descriptors, ten first-order metrics
and 26 textural features were computed. Bland-Altman analysis was used to quantify
repeatability. Features were subsequently categorized as very reliable, reliable,
moderately reliable and poorly reliable with respect to the corresponding volume

variability.

Results: Repeatability was highly variable amongst features. Numerous metrics were
identified as poorly or moderately reliable. Others were (very) reliable in both modalities,
and in all categories (shape, 18-, 2"d- and 3"-order metrics). Image quantization played
a major role in the features repeatability. Features were more reliable in PET with

quantizations, whereas quantizationw showed better results in CT.



Conclusion: The test-retest repeatability of shape and heterogeneity features in PET
and low-dose CT varied greatly amongst metrics. The level of repeatability also
depended strongly on the quantization step, with different optimal choices for each
modality. The repeatability of PET and low-dose CT features should be carefully taken

into account when selecting metrics to build multiparametric models.
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INTRODUCTION

The crucial role of positron emission tomography/computed tomography (PET/CT) with
fluorine-18 fluorodeoxyglucose (FDG) for diagnosis and staging of non-small cell lung
cancer (NSCLC) is established (1). Tumor metabolism is usually quantified with
standardized uptake value (SUV) metrics (e.g., maximum and mean) in PET, whereas
the low-dose CT component’s role is limited to PET attenuation correction and
anatomical localization.

Radiomics denotes the extraction of intensity, shape and heterogeneity features from
medical images (2). Its application to PET (3) and CT (4) has gained interest for
characterizing NSCLC tumors quantitatively, with potentially higher value than standard
metrics, with the opportunity to combine features from both PET and low-dose CT

components (5).

A first challenge is that numerous features can be calculated, most of which are
sensitive to image noise, segmentation or reconstruction settings (7—11). Their use for
therapy response monitoring and early prediction faces another challenge: repeatability.
Because metrics calculated in pre-, mid- and post-therapy images need to be compared,
test-retest repeatability allows determining the cut-off above which a change is attributed
to response or progression. This has been estimated at +15% to 30% for SUV and
volume (12,13). Regarding shape and heterogeneity metrics, several studies have
investigated their repeatability in PET with FDG or fluorine-18 fluorothymidine (8,14-17)
and in diagnostic CT (18,19), dosimetry CT (4,18), contrast-enhanced CT (CE-CT)
(18,20) or cone-beam CT (CBCT) (21). These studies exploited small single-center

cohorts [n=8 CE-CT (20), n=10 CBCT (21), n=11 FDG-PET (8,15,17), n=11 fluorine-18



fluorothymidine-PET (16), n=16 FDG-PET (14), n=20 CT and 13 CE-CT (18) and n=31
CT (4,19)] and never reported on the repeatability of features from the low-dose CT from

PET/CT, which is important when combining features from both components (5).

Finally, it has been shown recently that the image quantization step in the
calculation of textural features can have an impact on the relationship to other

parameters (3) and on the repeatability (17,22).

The primary goal of the present work was to evaluate the repeatability of shape
and heterogeneity metrics from both PET and low-dose CT components in a large
prospective multi-center cohort. A secondary goal was to evaluate the impact of the

quantization step.

MATERIALS AND METHODS

Patient cohort and imaging

Patients with stage IlIB-IV NSCLC were prospectively included in the multi-center
Merck MK-0646-008 (40 patients in 17 sites) and American College of Radiology
Imaging Network (ACRIN) 6678 (34 patients in 14 sites) trials (NCT00424138 and

NCT00729742, respectively) (23). Centers had to conform to the criteria of ACRIN PET

qualification (www.acrin.org/6678 protocol.aspx) to participate. Merck used a similar
accreditation program. PET/CT protocols were designed in accordance with National
Cancer Institute guidelines (24). The institutional review board of each participating site
approved the study, and all subjects signed a written informed consent form. The whole
cohort of 74 patients has been previously included in (23), but only SUV measurements

were analyzed whereas in this present analysis, texture features and shape parameters



were also computed both on PET and CT images. The present secondary analysis of
deidentified PET/CT images from these trials was approved by ACRIN and was

performed in compliance with the Health Insurance Portability and Accountability Act.

PET and CT analysis

In both test-retest datasets, the PET and the low-dose CT images were
processed independently. In PET, the metabolically active volumes (MAV) of the primary
tumor and up to three additional lesions were segmented with the Fuzzy Locally
Adaptive Bayesian algorithm previously validated for accuracy and robustness (25,26).
In low-dose CT, the anatomical volume (AV) of primary tumors were delineated with a
validated semi-automatic approach using 3D Slicer™ (27). Additional lesions were

analyzed if they could be reliably delineated.

The following metrics were calculated on the delineated volumes. Table 1
contains a glossary. All features are described with their calculation formulae (3) in the

Supplemental Material.

3D shape descriptors were included, such as sphericity, irregularity or major axis

(4,28).

1st-order metrics (not accounting for spatial distribution of voxels) in both
Hounsfield units (low-dose CT) and SUV (PET) include maximum and mean values, as
well as histogram-derived skewness, kurtosis, energy, entropynist or the area under the
curve of the cumulative histogram (CHauc) (29). These metrics do not require
quantization as a prior step. Quantization (not to be confused with quantification) is an

intensity resampling step applied to the image prior to building textures matrices on



which 2" and 3 order features rely. These matrices dimensions are determined by the
number of intensity values obtained after this resampling. Several different quantization

approaches have been proposed (3).

2"d-order metrics from grey-level co-occurrence matrix (GLCM) and neighborhood
grey-tone difference matrix (NGTDM), and 3"-order metrics from grey-level zone size
matrix were calculated in a single matrix considering all 13 orientations simultaneously
(30,31). Quantization was performed in a set number of bins B (denoted from here

onwards quantizations), as previously recommended (14,18,30,32) using equation 1:

I =1,
Iz = Bx—T7—(1)

Imax - Imin

Where Imax and Imin denote maximum and minimum intensity (Hounsfield units in low-
dose CT and SUV in PET), and B is the number of bins (here B=64). Choosing a
different B value can have an impact on the repeatability of features (14). Results
obtained with B=8 to 128 are in the Supplemental Material. It has been suggested that
an alternative quantization using fixed-width bins (e.g., 0.5 SUV) can have an important
impact (17,22). Results using this approach (denoted from here onwards quantizationw)

following equation 2 were also generated.

=[g]-mn(f) 10

Where W is the bin width (here 0.5 SUV for PET (22) and 10 Hounsfield units for low-
dose CT). Note that W=0.25 SUV and W=5 Hounsfield units were also tested but no

significant differences were observed. Supplemental Figure 1 shows a NSCLC tumor



with both PET and low-dose CT, and the corresponding quantization results and

histograms.
Statistical analysis

Statistical analyses were performed with MedCalc™ (MedCalc Software,
Belgium). The repeatability of each metric was assessed with Bland-Altman analysis by
reporting the mean and standard deviation (SD) of the differences between the two
measurements. Lower and upper repeatability limits were calculated as £1.96xSD after
log-transformation when not normal. Bland-Altman analysis was preferred over intra-
class correlation coefficients based on previous recommendations (33). Intra-class
correlation coefficients are nonetheless provided in the Supplemental Material.
Correlations between metrics were assessed with Spearman rank coefficients (rs).

Each metric was also categorized with respect to the repeatability (SD) of the
corresponding volume of interest (VOIepSD): very reliable (£0.5xVOIrpSD), reliable
(>0.5%xVOIlrepSD  and <1.5%xVO0IlepSD), moderately reliable (>1.5%xVOlepSD  and

<2xVOlIrepSD) and poorly reliable (>2xVOlrepSD).

RESULTS

The analysis was performed in 73 datasets because one was not available. In the
PET images, 73 primary tumors and 32 additional lesions (nodal or distant metastases)
were analyzed. Mean MAV was 47.8 cm?® (median 24.9 cm?3, SD 55.4 cm?3). In the low-
dose CT, 2 patients were excluded because visual assessment of images indicated that

repeatable volume delineation could not be ensured (Supplemental Fig. 2). Seventy-one



primary tumors and 5 additional lesions were analyzed. Mean AV was 52.4 cm?® (median

37.5cm3, SD 53.0 cm?). .

Figure 1 displays repeatability results of volume determination in both modalities,
while Figures 2, 3 and 4 display repeatability of 15-order metrics and shape descriptors,
2"d- and 3" -order textural features, respectively. Tables containing all results with also

other quantization values are in the Supplemental Material.

PET and low-dose CT volumes

As shown in Figure 1, MAV determination had a repeatability of -1.4+11.1%, with
upper and lower repeatability limits of +20.3% and -23.2%, which was dependent on
MAV, smaller volumes exhibiting significantly (rs=-0.41, p<0.0001) poorer repeatability.
The AV determination had a similar repeatability of -0.4£10.5%, with upper and lower
repeatability limits of +20.3% and -21.0%. Repeatability was less dependent on volume

(rs=-0.32, p=0.006).

PET (respectively low-dose CT) features were thus categorized with similar
thresholds for reliability: <5.6% (respectively 5.3%), >5.6% (respectively 5.3%) and
<16.7% (respectively 15.8%), >16.7% (respectively 15.8%) and <22.2% (respectively

21%) and >22.2% (respectively 21.0%).

PET features

Shape descriptors and 1st-order metrics

Overall, the shape features in PET were very repeatable (Fig. 2). Irregularity and

sphericity were very reliable, with only 4.8% SD. 3D surface and major axis were reliable



although with higher variability (9.0% and 8.4%, respectively). Amongst intensity-based
1st-order features, the most repeatable were CHauc (-0.2 + 3.6%) and entropynist (-0.2 +
3.6%), whereas the least repeatable were energy (-1.2 + 23.8%) and skewness (-1.1 £
33.7%). Mean (SUVmean) and max (SUVmax) values were moderately reliable, with upper

and lower repeatability limits of -30.4% and 36.3%, and -34.3% and 41.3%, respectively.

2"d.order metrics

As shown in Figure 3, with quantizations, amongst GLCM features, entropycLcm (-
0.1 £ 2.6%), sum entropy (-0.2 + 2.1%) and difference entropy (-0.2 + 3.0%) were the
most repeatable, whereas most other features fell in the reliable category. Five were
categorized as moderately reliable and 3 as unreliable. For correlation the very poor
repeatability is due to a few outliers for values around zero, to which Bland-Altman is
very sensitive. After excluding them, correlation had reproducibility limits below +20%
and could be re-categorized as moderately reliable. The five NGTDM features were less
repeatable than the best GLCM features although still categorized as reliable, all

achieving SD ~14-17%, except contrastnctom (27.6%).

The use of the alternate quantizationw changed both the above hierarchy and the
absolute repeatability of the features. Overall, features calculated after quantizationw
were much less reliable with notably more outliers, all exhibiting a higher variability than

MAV.

3nd.order metrics

As shown in figure 4, amongst 3"-order metrics, quantization had a similar

impact: with quantizationw all grey-level zone size matrix features were categorized as



poorly reliable, whereas with quantizations two were very reliable (small zone size
emphasis and zone size percentage with SD <4%) and 3 reliable (large zone size
emphasis, gray-level non-uniformity and zone size non-uniformity with SD ~11-14%).
Amongst the least repeatable features were those focusing on small zones and/or low

grey values (e.g., LZLGE, SZLGE and LGLZE).

Low-dose CT features

Shape descriptors and 15t-order metrics

As shown in Figure 2, morphological irregularity, sphericity and 3D surface were
the most repeatable (SD 3.3%, 10.0% and 11.6%, respectively). Major axis was less

reliable (3.8 + 18.4%).

On the one hand, four histogram metrics showed poor reliability such as maximum (4.7
+ 38.6%) and mean (-4.2 + 43.6%) intensity, kurtosis (4.8 + 37.4%) and skewness (11.1
1t 202.2%). On the other hand, entropynist and CHauc were very reliable (-0.1 £ 2.5%

and 0.7 £ 9.1%).

2"d.order metrics

The repeatability depended strongly on the quantization, quantizationw improving
the repeatability compared to quantizations (Fig. 3). Amongst GLCM metrics, the most
repeatable (for quantizations vs. quantizationw, respectively) were entropycLem (-1.9 %
12.0% vs. -0.4 £ 5.2%), sum entropy (-1.4 + 10.0% vs. 0.1 £ 0.4%) and difference
entropy (-2.3 £ 13.1% vs. -0.3 £ 1.9%). To a lesser extent, the same was observed for

NGTDM, with higher repeatability using quantizationw. Complexity was the only



parameter with variability <15.8% and categorized as reliable (0.5 £ 14.3% and -0.5

12.3% with quantizations and quantizationw, respectively).

3nd.order metrics

The quantization method also had an important impact (Fig. 4). Eight parameters
were categorized as moderately reliable or better with quantizationw and only two with
quantizations. Small zone size emphasis (-0.6 + 4.8% vs. -0.5 £ 2.6% with quantizations
and quantizationw, respectively) and zone size emphasis (-2.8 + 17.4% vs. -0.9 £ 11.9%)

were the most repeatable features (Figs. 4D and 4E).

Impact of quantization method

Overall, the inverted impacts of the quantization method observed in PET and
low-dose CT can be explained by the different correlative relationships between the
features and the corresponding volume and maximum intensity. In PET, we observed
that quantizationw features were correlated with SUVmax and not with MAV. On the
contrary, features calculated with quantizations were correlated with MAV but not
SUVmax. The higher repeatability obtained with quantizations can thus be explained by
the fact that MAV repeatability was much higher than that of SUVmax. Contrary to PET,
features in low-dose CT were correlated with both volume and maximum intensity using
quantizations, whereas they were less or not correlated with either volume or intensity
using quantizationw. Because maximum intensity had a much worse repeatability than
volume in CT, quantizations thus led to worse repeatability. This is illustrated in Figure 5
for the feature dissimilarity. Note the relative inversion of relationships with volume and

SUVmax for quantizations compared to quantizationw in the case of the PET component.



On the contrary for the low-dose CT component, quantizations led to a higher correlation
with maximum intensity than volume, but quantizationw led to lower correlation with

volume and non-significant correlation with maximum intensity.

DISCUSSION

In the present work, 73 test-retest PET/CT acquisitions from 31 centers (17 for

ACRIN in the USA and 14 for Merck in Asia and Europe) were analyzed for repeatability.

A similar variability of volume delineations was observed for both modalities. MAV
from PET were slightly smaller than AV measured in CT, mostly due to the fact that
more lymph nodes and metastases were delineated in PET than in CT, and some large
CT volumes had parts without FDG uptake. Regarding SUVmean and SUVmax, our results
differ slightly from those previously published in the same cohort (23). Only lesions with
SUVmax>4 were included in the previous analysis, whereas we did not restrict it. By
restricting to SUVmax>4, our test-retest results for SUVmax were similar to those

previously reported.

Regarding shape and heterogeneity features, our results confirm prior findings in
PET (8,14-17). To the best of our knowledge, our study is the first to report on the

repeatability of these features in the low-dose CT component.

Overall, the geometric features (shape descriptors) were found reliable (some
with high repeatability) in both modalities, which can be related to the high repeatability
of segmentation. This is in line with previous findings for PET (8,17) and with

morphological shape in other CT modalities (4). We emphasize that only one



segmentation by one expert was considered. The variability might be higher when

considering different segmentation approaches and/or several observers.

Regarding 1s-order metrics and textural higher-order features, our results confirm
that the repeatability varies greatly amongst metrics. On the one hand, several features
were confirmed to be unreliable in both modalities and should be systematically avoided,
e.g., 1%-order skewness, 2"-order Angular Second Moment, contrastcicm and
contrastnetom, and 3-order metrics quantifying low grey values and/or small zones. On
the other hand, it should be emphasized that several features were identified as reliable,
in all three categories and for both modalities. In between, other features with moderate
repeatability should be used with caution as they exhibit larger variability than the

corresponding volume determination.

We compared two different quantization methods. Quantizations is most often
used. The impact of choosing another B value has been evaluated previously (14) and
our results confirm these findings. Although B=64 is a good compromise and most
features exhibited similar repeatability with different values, repeatability of some metrics
depended on B. We observed a different impact in PET and low-dose CT for
quantizationw, as it led to worse repeatability in PET but better repeatability in low-dose
CT. This was explained by the different relationships between the features and the
corresponding volume and maximum intensity. With more control over data acquisition
and higher repeatability of SUVmax, quantizationw may lead to higher repeatability. These
results highlight the major impact of the quantization step and its variable impact

depending on image modality that should thus not be overlooked.



Our results confirm that studies building clinical models by combining features
from PET/CT images should carefully account for repeatability. This is mandatory when
calculating evolution of features across pre-, mid- and/or post-therapy images. This is
nonetheless an important factor when building models based on single time-point
images, as models built using robust and repeatable features are more likely to be
generalizable and achieve good performance in external/testing cohorts. Repeatability is
not the only criterion on which feature selection needs to be based, as discriminative

power, robustness and redundancy have to be considered also.

Our study has limitations. Low-dose CT and PET images were analyzed
separately using different segmentation processes performed independently on the test
and re-test images. The repeatability evaluation therefore includes the intrinsic
repeatability of the segmentation. We used robust segmentation approaches that should
minimize variability. Another approach would consist in defining the volume on the test
image and register it on the re-test image, which however requires accurate registration
and raises other issues (34). In a clinical environment, the use of less accurate and less
robust segmentation could lead to a lower repeatability, especially for volume-correlated

features.

We chose to categorize the repeatability levels of each metric with respect to that
of the corresponding volume. The repeatability acceptance was similar for both
modalities (reliability in PET was defined as SD below 16.5%, compared to 15.8% for
low-dose CT). These thresholds are arbitrary and choosing different values would

change the categorization of several metrics, but without changing their hierarchy.



Finally, respiratory gating was not applied. In NSCLC this may lead to different
levels of quantitative bias between the test and retest images, as well as between PET
and low-dose CT. The repeatability we reported are therefore larger than what could
ideally be obtained in other body regions where motion is less important, or if respiratory

motion correction was applied (35).

CONCLUSION

Test-retest repeatability of shape and heterogeneity features in both components
of PET/CT varied greatly amongst metrics. The repeatability also depended on the
quantization step, with different optimal choices for PET or low-dose CT, because of
different relationships of the metrics with volume or intensity. The repeatability of
PET/CT features should be carefully accounted for when choosing metrics to combine in

multiparametric models.
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Figure 1: Bland-Altman analysis and correlation between volume and repeatability for

MAYV and AV determination.
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column) and low-dose CT (second column) components, depending on the quantization

approach.



Table 1. Glossary

MAV Metabolically active volume (PET)
AV Anatomical volume (low-dose CT)
CHauc Area Under the Curve of the Cumulative Histogram
ASM Angular Secondary Moment

IDM Inverse Different Moment

ID Inverse Difference

SOSV Sum Of Square Variance

SAVE Sum AVErage

SVAR Sum VARiance

SENT Sum ENTropy

DVAR Difference VARiance

DENT Difference ENTropy

IC Information Correlation

TS Texture strength

CP Cluster Prominence

SZSE Small Zone Size Emphasis

LZSE Large Zone Size Emphasis

ZSNU Zone Size Non-Uniformity

GLNU Gray-Level Non-Uniformity

ZSP Zone Size Percentage

LGLZE Low Grey Level Zone Emphasis
HGLZE High Grey Level Zone Emphasis
SZLGE Small Zone / Low Grey Emphasis
SZHGE Small Zone / High Grey Emphasis
LZLGE Large Zone / Low Grey Emphasis
LZHGE Large Zone High Grey Emphasis




List of features and formulas.
1. Shape descriptors.

1. Sphericity

~ 3zenv2
Sphericity = ——

Where V is the volume and S the surface.
2. Irregularity

Yo, ixd(i)
Yo d()

Irregularity =
with d(i) the number of voxels having i neighbor voxels in the surrounding background
3. Major axis

Maijor axis = max(distance(p1,p2))

With p7 and p2 two different voxels within the tumor.

4. 3D surface

3D surface = number of voxels spatially connected with the surrounding background.

2. Histogram-based (first order) metrics.

The histogram is a column vector h with each entry indexed by the grey level values and whose
values is the number of voxels in the region of interest with that grey level value. Thus grey level
value i appears within the ROI h; times.

Note: Materka (1) and others use the information-theoretic logarithm based 2 in the entropy
calculations. We suggest the use of natural logarithm in all calculations.

1. Mean
Gmax
U= z {i-h;}
i=1
2. Variance
Gmax
07 = Y (- w7 hy)
i=1
3. Skewness — set to 0 when o=0
Gmax

1
W= Y A= % hy)

4. Excess Kurtosis — set to 0 when 0=0 (NOTE: “Kurtosis” and “Excess Kurtosis” differ in
that Excess Kurtosis = Kurtosis — 3).



Gm ax

1
R DRI EE

5. Energy

Gmax

Ene = Z {[h%

6. Entropyrist (NOTE: We will differentiate between the various entropy calculations in this
document, specifying the distribution from which the entropy is computed)

Gmax

Ent = — Z (h - In[h])
i=1

3. Grey-level co-occurrence matrix GLCM (also called grey tone spatial dependence
matrix GTSDM).

Let p be the normalized (sum all of matrix entries is one) Grey level co-occurrence matrix.

Notes: Haralick (2) ambiguously states that Ng is the “number of distinct grey levels in the
quantized image”. However, the equations indicated that Ng is not the number of distinct values
present in the image, but rather the maximum possible quantized value (called Gmax in the
following formulas).

For the metrics calculations we use the following:

Gmax Gmax

p =Y (i} n = Y {oi))
j=1 j=1

px+y(n) = Z {pi,j} ;N E{2,3..,2 Gpayxl)

i+j=n
px—y(n) = Z {pi,j} ;n€{0,1.., Gpax — 1}
li—jl=n

Gmax—1

Uy—y = Z {Tl ) px—y(n)}

n=0

Physics and Information theory dictates that 0 -log(0) = 0 for entropy calculations. This differs
from Haralick (2) where an arbitrary € is recommended.

GLCM metrics (n° 1 to 14, from Haralick (2)).

1. Angular Second Moment (ASM) is called Energy in Soh (3) and Uniformity in Clausi (4).

Gm ax Gm ax

EDRDR(CHE

i=1 j=1
2. ContrasteLem: the first formula from Haralick (2) and the second version from Clausi (4)
are equal to each other.



Gmax—1 Gmax (Gmax

> ey} = Y Y (G- b
n=0 i=1 \ Jj=1

3. Correlation: the first version corresponds to equations from Haralick (2) and Soh (3)
which are equal to each other. The second one is from Clausi (4), the two are equivalent.

ZiG;nlax{ Gmax{l j pl]}} Uy " Uy _ Zfﬁax{szax (i— /Jx) (] ”y) ’ pi,j}}

Oy " Oy Oy " Oy

3=

Ux, My, Ox, and oy, are only loosely hinted at in Haralick (2). Taking the means and variances of
the px could be interpreted as taking the mean of the values of px as a set of numbers, rather
than the distribution mean. This would be an incorrect interpretation, and computing the mean of
the distribution is the correct interpretation. This is corroborated by Bharati (5). The following
definitions are taken from Bharati (5):

Gmax Gmax Gmax Gmax
Uy = Z i Z {pij}ein = Z J- Z {ri,}
i=1 =1 =1 i=1
Gmax Gmax 1/2 Gmax Gmax 1/2
Oy = Z (i— .ux)z ) Z {pi,j} y Oy = z U- nuy)z ’ Z {pi,j}
=1 j=1 j=1 i=1

4. Sum of Squares Variance: ambiguous, as y was not defined.

Gm ax Gm ax

fa= Z z {(i—w? 'pi,j}
=1

i=1

We use the following definition for y:

D Dy )

(Gmax)
5. Inverse Different Moment (IDM) (is called Homogeneity in Soh (3)).

Gmax Gmax

e

i=1 | j=1

6. Sum Average (SAVE).

2:Gmax

fo= D {n prny )

n=2
7. Sum Variance (SVAR): the formula is Haralick (2) incorrectly uses fs, an error that has
propagated into many other papers and code implementations.

2-Gmax

fr= D 0= Py ()

8. GLCM Sum Entropy (SENT).



2-Gmax

fo== ) (Prry @) In[pery )]}

9. EntropycLewm.

Gmax Gmax

fo=~— Z Z {pi; - In[py,]}

i=1

10. Difference Variance (DVAR): the equation from the Murphy lab code was incorrect (mean
was not subtracted) and is equal to ContrastcLcm (f2 above). This error has propagated
into several code implementations.

Gmax_ 1

fo== > {(r=ney) ey}

n=0
11. GLCM Difference Entropy (DENT)

Gmax_l

fu== D {pey() nlpey ()]}
n=0

12.Information Correlation (IC): set to infinity if the denominator is zero.

_ ﬁa_'Entxyl
max{Entx; Enty}

fiZ

13. Autocorrelation

Gmax Gmax

fi3 = Z Z {i'j'Pi,j}

i=1
14.Dissimilarity
Gmax Gmax

fia = Z Z {li —JI 'pi,j}

i=1 j=1
15. Cluster Prominence (CP)

Gmax Gmax

fis = Z Z {(l +J — Ux —liy)4 'pi.j}

i=1 | j=1

16. Maximum Probability (MaxProba)



fie = max{p;}
17.Inverse Difference (ID) (Clausi (4))

Gmax Gmax

fio= 24 2 g vl

i=1 j=1

4. Neighborhood grey tone difference matrix (NGTDM).

Let s be the NGTDM vector, indexed s;, and p; be the probability of a voxel value for voxels that
are used in the computation of the NGTDM. Ny is the number of unique grey levels present in
the image (not necessarily equal to the highest grey level value Gmax, since some values may
not be present in the image). When a grey level is not present, the corresponding s;is zero.

Notes: no ¢ is added to the coarseness or textures strength computation. Rather, if the
denominator is zero, the value is set to infinity.

For contrast and complexity, the normalization factor n is meant to be the number of voxels that
are used in the computation of the neighborhood difference matrix.

For Busyness, Amadasun (6) does not have the absolute value within the denominator. This
would lead to a denominator that is always zero if implemented according to the equation given
in Amadsun (6). Materka (7) shows the absolute value in the denominator in the busyness
equation, a form that we recommend.

1. Coarseness

Gmax -1

91 = Z{pi-si}

2. Contrastnetom. Set to -1 if there is only a single grey level (no contrast can be computed)

Gmax Gm ax Gmax

g2 = mz > tocwy G- | D s

j=1 i=1
3. Busyness

Zf;”f"{pi “ 5}
sima s imed|i - p, — j - py}

g3z = };Pi¢oipj¢0

4. Complexity



Gmax Gmax

Z Z li—jl-(pi-si+pj-sj)}
ga { n'(pi+pj) pi p]

i=1 | j=1

5. Texture Strength (TS)

Yimaxtymaxl(p, +p;) - (i — )2
oo 11{]1{27;” i) }};piiﬂ;pj;tO
Zi:l {Si}

5. Grey Level Zone Size Matrix (GLZSM)

Let p be the grey level zone size matrix (GLZSM) indexed by p;;with rows i indicating grey levels
and columns j indicating zone sizes. The largest zone size (the number of columns) will be
denoted Smax. The total number of unique connected zones is n,. The total number of voxels is
ny. The following metrics are taken from Tang (8).

1. Small Zone Size Emphasis (SZSE)

1 Gmax Smax
w235
n, & J

2. Large Zone Size Emphasis (LZSE)

Gmax S max

1
Zy=—" z Z{pi,j'jz}
n, &

i=1
3. Low Grey Level Zone Emphasis (LGLZE)

1 Gmax Smax

_ Pij

Z=0 ) 1 2 1
Z =1 =1

4. High Grey Level Zone Emphasis (HGLZE)

Gmax S max

Zomg A D o

i=1 | j=1

5. Small Zone / Low Grey Emphasis (SZLGE)

1 Gmax Smax

_ bi,j

= 2 2
Z =1 =1

6. Small Zone / High Grey Emphasis (SZHGE)



1 Gmax (Smax o
. .IL
Zo=—- {E {p”.z }}
z j

i=1 |\ j=1

7. Large Zone / Low Grey Emphasis (LZLGE)

Gmax (Smax .2
P z Z PijJ
7T, i2

i=1 |\ j=1

8. Large Zone High Grey Emphasis (LZHGE)

1 Gmax Smax
Zg=—-" z Z{pi,j'iz'jz}
n, &

i=1

9. Gray-Level Non-Uniformity (GLNU)



Supplemental Table 1: Test-retest repeatability of features computed on FDG PET component

Quantization Bland-Altman analysis
Feature ICC
Method | Value Mean (%) | SD (%) | LRL (%) | URL (%)
Volume
MAV | n/A | 14 | 111 | 232 | 203 | 0997
Shape descriptors
Sphericity 1.1 4.8 -8.3 10.5 0.969
Irregularity N/A -0.5 4.8 -9.9 8.9 0.848
3D Surface -2.1 9 -19.6 15.5 0.994
Major axis -0.6 8.4 -17 15.9 0.993
1%t order (histogram) metrics
Maximum 3.5 19.3 -34.3 41.3 0.964
Mean 3.0 17.0 -30.4 36.3 0.97
Zzav?:t?;i D) 3.8 21.5 -38.4 46.1 0.961
Skewness N/A -1.1 33.7 -67.1 64.9 0.865
Kurtosis 0.8 19.1 -36.8 38.3 0.940
Energy -1.2 23.8 -47.9 45.5 0.973
Entropymist 0.1 4.0 -7.9 8.0 0.991
CHauc -0.2 3.6 -7.3 6.9 0.812
2" order metrics
GLCM
8 1.2 23.3 -44.4 46.7 0.934
16 1.1 20.7 -39.5 41.6 0.945
ASM B 32 1 21.7 -41.5 43.6 0.832
64 -0.5 18.6 -37 36.1 0.949
128 -0.8 19 -38.1 36.5 0.958
w 0.5 -11.3 41.8 -93.3 70.7 0.904
8 0.5 7.3 -13.8 14.9 0.973
16 0 9.4 -18.5 18.5 0.973
DM B 32 0 11.5 -22.6 22.6 0.97
64 -0.8 16.8 -33.8 32.2 0.958
128 -2.1 23.5 -48.1 44 0.935
w 0.5 -5.0 16.4 -37.1 27.1 0.964
8 -0.8 7.5 -15.4 13.8 0.911
16 -0.4 4.1 -8.4 7.7 0.941
B 32 -0.3 3.6 -7.4 6.8 0.955
Entropyeiem
64 -0.1 2.6 -5.1 4.9 0.984
128 0 2.5 -4.9 4.8 0.992
W 0.5 5.7 22.6 -38.7 50.1 0.969
8 2.9 104.6 -202 207.9 0.978
Correlation B
16 2.4 115.6 -224.2 229.1 0.977




32 0.3 115.9 -226.9 227.6 0.978
64 0.7 114.4 -223.5 225 0.977
128 0.6 112.1 -219 220.3 0.977
0.5 7.6 107.1 -202.3 217.5 0.969
8 0.5 5.4 -10 10.9 0.972
16 0 6.4 -12.5 12.5 0.973
32 0.1 7.2 -14 14.2 0.973
® 64 -0.4 9.3 -18.7 18 0.968
128 -0.8 11.3 -23 213 0.964
0.5 -3.6 11.9 -27.0 19.8 0.964
8 -0.6 10.4 -21.1 19.9 0.971
16 -0.3 10.2 -20.2 19.6 0.97
Dissimilarity 32 -0.4 9.9 -19.9 19.1 0.972
64 -0.3 9.8 -19.6 19 0.972
128 -0.3 9.9 -19.6 19 0.972
0.5 10.0 31.7 -52.1 72.1 0.974
8 -0.8 17.6 -35.3 33.8 0.967
16 -0.6 18.3 -36.4 35.1 0.963
Contrasteicu 32 -0.7 18.2 -36.4 35.1 0.964
64 -0.7 18.1 -36.2 34.9 0.965
128 -0.6 18.2 -36.2 35 0.964
0.5 14.9 47.4 -77.9 107.7 0.982
8 -0.2 16.5 -32.6 32.2 0.914
16 -0.3 17.9 -35.3 34.8 0.910
oSV 32 -0.5 18.8 -37.2 36.3 0.905
64 -0.4 18.9 -37.5 36.6 0.907
128 0.1 1.8 -3.5 3.7 0.575
0.5 11.4 39.1 -65.3 88.1 0.994
8 0.1 9.1 -17.7 17.8 0.923
16 0 10.2 -19.9 19.9 0.921
SAVE 32 -0.1 10.9 -21.5 21.3 0.917
64 -0.1 111 -21.8 21.6 0.919
128 -0.5 19.1 -37.9 37 0.906
0.5 5.2 19.3 -32.7 43.1 0.984
8 -1.4 15.5 -31.9 29.1 0.899
16 -1.3 15.9 -32.5 29.9 0.892
SVAR 32 -1.3 16 -32.6 30 0.89
64 -1.3 15.9 -32.4 29.8 0.892
128 -0.1 11.2 -22.2 21.9 0.918
0.5 12.5 46.6 -78.9 103.9 0.988
8 -0.7 6.1 -12.8 11.3 0.884
SENT 16 -0.4 3.8 -7.9 7.1 0.910
32 -0.4 3.5 -7.3 6.5 0.905
64 -0.2 2.1 -4.4 4 0.959




128 -1.3 15.9 -32.5 30 0.890

0.5 4.3 19.5 -33.8 42.4 0.972

8 -0.2 14.8 -29.2 28.8 0.970

16 -0.6 16.1 -32.2 31 0.966

DVAR 32 -0.6 16.7 -33.3 32.2 0.963
64 -0.7 16.7 -33.3 32 0.963

128 -0.2 2.2 -4.5 4.1 0.965

0.5 11.7 42.5 -71.7 95.1 0.983

8 -0.6 6.8 -13.9 12.8 0.941

16 -0.3 4.5 -9.2 8.5 0.961

DENT 32 -0.3 4.1 -8.4 7.8 0.949
64 -0.2 3.0 -6.1 5.7 0.961

128 -0.6 16.7 -33.4 32.2 0.963

0.5 4.3 17.6 -30.2 38.9 0.970

8 0.5 29.7 -57.7 58.6 0.981

16 0.5 225 -43.5 44.6 0.961

32 -0.6 15.3 -30.6 29.3 0.945

Ic 64 -1 13.3 -27.1 25 0.960
128 -0.2 2.6 -5.3 4.9 0.957

0.5 -1.0 32.0 -63.6 61.7 0.944

8 0 17.9 -35 35 0.900

16 -0.2 19.8 -39.1 38.7 0.895

Autocorrelation 32 -0.4 21.1 -41.8 41 0.890
64 -0.4 21.4 -42.3 41.6 0.892

128 0 0.0 0 0 0.834

0.5 9.8 37.2 -63.0 82.7 0.995

8 -2.5 23.9 -49.4 44.5 0.853

16 -2.3 25.4 -52.2 47.5 0.835

Prominence 32 -2.2 26.1 -53.4 48.9 0.823
64 -2.4 26 -53.3 48.6 0.826

128 -30.8 225.5 -472.8 4111 0.875

0.5 19.0 74.5 -127.0 165.1 0.993

8 -0.2 27 -53.1 52.8 0.956

16 1.5 30.9 -59 62.1 0.924

MaxProba 32 2.5 34.2 -64.5 69.5 0.833
64 -2.1 34.3 -69.4 65.2 0.933

128 -2.2 26.1 -53.4 48.9 0.824

0.5 -7.3 35.5 -76.9 62.3 0.946

NGTDM

8 0.9 16 -30.4 32.2 0.964

16 1 14.5 -27.3 29.3 0.977

Coarseness 32 0.8 15 -28.6 30.2 0.969
64 14 14.3 -26.6 29.4 0.968

128 -5.6 40.9 -85.7 74.5 0.851




0.5 -0.6 37.7 -74.4 73.2 0.841
8 -0.2 29.6 -58.2 57.8 0.649
16 1.1 25.2 -48.2 50.4 0.883
Contrastueron 32 0.3 26.3 -51.2 51.9 0.927
64 0.6 27.6 -53.5 54.7 0.985
128 2.4 13.4 -23.9 28.7 0.970
0.5 15.4 45.7 -74.2 105.1 0.669
8 -4.7 22.2 -48.2 38.8 0.994
16 -2.5 18.6 -38.9 33.9 0.993
Busyness 32 -1.3 17.5 -35.6 33 0.993
64 -1.9 15 -31.3 27.6 0.992
128 -0.8 29 -57.7 56.1 0.990
0.5 -9.6 55.5 -118.4 99.3 0.361
8 -0.2 14.7 -28.9 28.5 0.880
16 -0.1 15.5 -30.4 30.3 0.948
Complexity 32 0.3 16.1 -31.3 31.9 0.962
64 -0.3 16.5 -32.6 32 0.981
128 -2.6 13.1 -28.3 23.1 0.993
0.5 10.7 39.6 -66.9 88.3 0.924
8 -1.4 14.7 -30.2 27.3 0.993
16 -1.4 14.6 -29.9 27.1 0.993
32 -1.3 14.6 -30 27.3 0.992
T 64 -1.3 14.6 -29.8 27.2 0.992
128 -1.1 17 -34.5 32.3 0.982
0.5 6.6 29.6 -51.5 64.7 0.996
3™ order metrics
GLZSM
8 1.6 12.9 -23.6 26.8 0.665
16 0.6 5.9 -11 12.1 0.836
S7SE 32 0.3 3.6 -6.8 7.4 0.861
64 0.2 2.8 -5.3 5.7 0.746
128 0 2 -3.8 3.9 0.622
0.5 -2.6 37.7 -76.6 71.3 0.910
8 1.7 53.6 -103.4 106.8 0.961
16 2.8 38.1 -71.9 77.5 0.416
L7SE 32 -0.7 21.7 -43.2 41.7 0.791
64 -0.8 11.1 -22.6 21 0.878
128 -0.3 7.4 -14.8 14.2 0.765
0.5 -14.6 63.2 -138.5 109.3 0.943
8 -1.3 23.2 -46.8 44.1 0.980
16 -1 16.8 -33.9 31.8 0.992
ZSNU 32 -0.3 15.3 -30.4 29.7 0.991
64 -1.1 13.7 -28 25.8 0.995
128 -2.4 13.3 -28.5 23.6 0.995




0.5 2.1 -55.3 59.5 0.988
8 1.1 -73.4 75.6 0.933
16 0.2 -45.5 46 0.982
32 -0.2 16.5 -32.5 32 0.993
GLNU
64 -0.4 13.6 -27.1 26.3 0.996
128 -11 13.9 -28.3 26.1 0.998
0.5 9.2 -82.5 100.9 0.991
8 -0.1 20.1 -39.5 39.3 0.951
16 0.4 -18.1 18.8 0.954
32 0.3 -11 11.6 0.920
ZSP
64 0.3 -6.8 7.4 0.839
128 0.1 -4.9 5.1 0.693
0.5 6.5 -58.7 71.8 0.945
8 -0.8 14.3 -28.9 27.2 0.709
16 1.4 20.7 -39.2 42 0.763
32 1.7 -65.8 69.2 0.733
LGLZE
64 3.6 -84.5 91.6 0.669
128 3.9 -97.3 105.2 0.684
0.5 -1.7 -55.4 521 0.954
8 -0.6 16.4 -32.8 315 0.793
16 0.2 17.8 -34.6 35 0.841
32 0.1 19 -37.2 374 0.874
HGLZE
64 -0.4 19.4 -38.3 37.6 0.884
128 -0.1 -39.3 39.2 0.885
0.5 7.4 -69.8 84.6 0.993
8 0 -44.3 44.3 0.379
16 3.8 -47.5 55 0.602
32 3 -68.9 74.9 0.599
SZLGE
64 4.6 -90.7 99.8 0.428
128 4.1 -106.1 114.3 0.392
0.5 -3.1 -96.6 90.4 0.670
8 1 22.1 -42.2 44.3 0.863
16 1 19.9 -38.1 40.1 0.859
32 0.6 19.8 -38.3 39.5 0.876
SZHGE
64 -0.3 19.5 -38.6 37.9 0.887
128 0 20.2 -39.6 39.6 0.886
0.5 3.6 -121.2 128.4 0.993
8 -11 -131.4 129.2 0.957
16 1.2 -113.5 115.9 0.347
32 0.9 -103.5 105.3 0.544
LZLGE
64 1.7 -99.8 103.3 0.744
128 5.8 -100.5 112 0.785
0.5 -18.7 -168.5 1311 0.945
LZHGE 8 4.4 -86.6 95.3 0.978




16 2.5
32 -1
64 -0.5
128 -0.5
0.5 -3.0

-60.1 65.1 0.969
-45.7 43.6 0.940
-44.4 43.4 0.861
. -40.7 39.7 0.863
-108.3 102.3 0.931




Supplemental Table 2: Test-retest repeatability of features computed on low-dose CT component

Feature Quantization Bland-Altman analysis Icc
Method | Value Mean(%) | sD(®%) | RL(%) | URL(%)
Volume
AV | n/A | 04 | 105 | 210 | 203 | o997
Shape descriptors
Sphericity 0.3 10.0 -19.4 20.0 0.946
Irregularity N/A 1.3 3.3 -5.2 7.7 0.948
3D surface -0.6 11.6 -23.4 22.2 0.988
Major axis 3.8 18.4 -32.3 39.9 0.972
1%t order metrics (histogram)
Maximum 4.7 38.6 -70.9 80.3 0.539
Mean -4.2 43.6 -89.7 81.3 0.865
Zg::::;: 0.1 12.0 237 23.5 0.866
Skewness N/A 11.1 202.2 -385.2 407.4 0.213
Kurtosis 4.8 37.4 -68.6 78.1 0.034
Energy 0.6 12.3 -23.5 24.7 0.915
Entropymuist -0.1 2.5 -5.1 4.8 0.914
CHauc 0.7 9.1 -17.0 18.5 0.851
2" order metrics
GLCM
8 5.8 45.2 -82.7 94.4 0.543
16 7.7 52.4 -95.1 110.5 0.356
B 32 7.8 54.2 -98.4 114.0 0.219
ASM 64 7.6 54.3 -98.7 114.0 0.159
128 8.1 52.0 -93.8 110.0 0.163
W 10 1.9 24.3 -45.7 494 0.921
8 1.7 10.8 -19.4 22.9 0.823
16 1.9 17.5 -31.3 37.2 0.800
B 32 3.8 23.4 -42.0 49.6 0.757
oM 64 4.5 27.6 -49.6 58.5 0.689
128 5.0 29.9 -53.7 63.7 0.623
W 10 1.3 8.2 -14.9 17.4 0.951
8 -4.9 31.8 -67.3 57.4 0.791
16 -3.4 21.6 -45.6 38.9 0.777
B 32 -2.5 15.5 -32.9 27.9 0.763
Entropyeicm
64 -1.9 12.0 -25.4 21.6 0.742
128 -1.5 9.4 -19.9 16.8 0.713
W 10 -0.4 5.2 -10.6 9.9 0.934
8 3.0 24.6 -45.2 51.3 0.829
16 3.0 24.0 -44.2 50.1 0.840
Correlation B
32 3.4 24.2 -44.0 50.7 0.845
64 35 24.1 -43.8 50.7 0.847




128 3.6 -43.9 51.0 0.848
10 3.5 - -44.1 51.1 0.842
8 1.5 9.2 -16.6 19.5 0.811
16 2.2 13.0 -23.3 27.7 0.795
D 32 2.8 16.4 -29.4 34.9 0.770
64 3.2 19.4 -34.7 41.2 0.738
128 3.7 46.2 0.708
10 0.9 11.9 0.951
8 -6.7 66.8 0.856
16 -5.9 59.2 0.861
Dissimilarity 32 -5.7 57.3 0.863
64 -5.6 57.3 0.863
128 -5.7 57.4 0.863
10 -1.7 19.6 0.949
8 -9.0 85.2 0.889
16 -8.9 93.4 0.887
Contrasteicu 32 -9.2 96.4 0.889
64 -9.2 97.5 0.889
128 -9.3 97.9 0.889
10 -2.8 37.5 0.937
8 -6.0 84.7 0.787
16 -6.0 914 0.791
SOSV 32 -6.2 95.6 0.791
64 -6.1 97.7 0.791
128 -6.2 98.6 0.791
10 0.1 3.6 0.916
8 -3.4 46.5 0.760
16 -3.5 50.8 0.765
SAVE 32 -3.7 54.1 0.764
64 -3.7 55.7 0.763
128 -3.7 56.4 0.764
10 0.0 2.3 0.918
8 -7.3 90.2 0.877
16 -6.8 95.7 0.877
SVAR 32 -6.9 97.2 0.878
64 -6.9 97.7 0.878
128 -7.0 98.0 0.878
10 0.9 11.9 0.829
8 -4.2 52.0 0.743
16 -2.6 17.8 -37.6 32.3 0.747
SENT 32 -1.8 12.6 -26.4 22.8 0.752
64 -1.4 10.0 -21.0 18.2 0.749
128 -1.2 8.3 -17.5 15.1 0.745
10 0.1 0.4 -0.8 0.9 0.865




8 8.3 70.8 0.886
16 8.4 85.2 0.888
AR 32 9.1 92.5 0.889
64 9.2 94.9 0.889
128 9.3 95.5 0.890
10 14 17.9 0.820
8 5.1 49.4 0.803
16 34 19.3 413 34.4 0.812
et 32 28 15.7 336 28.0 0.803
64 23 13.1 -28.0 23.4 0.791
128 2.0 10.9 233 19.4 0.783
10 03 35 0.822
8 8.4 915 0.797
16 8.9 89.5 0.848
32 8.7 85.0 0.841
I 64 741 71.1 0.880
128 33 54.7 0.957
10 6.7 74.8 0.846
8 58 84.7 0.784
16 5.8 91.7 0.787
Autocorrelation 32 6.0 26.0 0.787
64 5.9 98.3 0.787
128 5.9 99.2 0.787
10 0.4 6.8 0.856
8 8.0 134.1 0.853
16 76 140.1 0.849
32 78 141.1 0.847
cP 64 78 141.3 0.847
128 7.8 141.5 0.847
10 1.4 16.7 0.856
8 3.7 82.6 0.677
16 7.7 105.6 0.557
oxprops 32 7.9 107.5 0.330
64 3.7 107.2 0.173
128 4.2 106.8 0.255
10 15 42.8 0.879
NGTDM
8 0.5 -62.0 63.0 -
16 23 20.9 43.2 38.6 0.9883
Conreenecs 32 28 20.1 421 36.5 0.9888
64 2.9 19.8 4138 36.0 0.9861
128 2.7 20.8 435 38.1 0.977
10 2.7 19.5 -41.0 35.6 0.9743
Contrastysrom 8 99 | 648 | 1371 1172 | 0.8199




16 -8.3 1154 0.8366
32 -5.9 112.2 0.8419
64 -4.5 107.1 0.8476
128 -5.2 101.1 0.8424
10 1.6 37.5 0.8823
8 0.0 58.1 0.9803
16 3.4 47.3 0.9701
Busyness 32 4.0 53.1 0.949
64 4.2 55.2 0.9378
128 4.1 55.1 0.9335
10 1.6 36.8 0.9937
8 -3.0 46.5 0.6031
16 0.0 12.3 -24.2 24.2 0.8403
Complexity 32 0.5 134 -25.8 26.7 0.8382
64 0.5 14.3 -27.6 28.5 0.8148
128 0.3 14.7 -28.5 29.1 0.7823
10 -0.5 12.3 -24.5 23.5 0.7293
8 -3.5 -75.6 68.5 0.9864
16 -2.9 -69.2 63.4 0.9877
32 -2.9 -69.8 63.9 0.9876
1 64 -2.9 -70.1 64.3 0.9871
128 -3.0 -70.2 64.3 0.9871
10 1.7 17.9 -33.3 36.8 0.9931
3" order metrics
GLZSM
8 -0.5 7.2 0.876
16 -0.2 7.6 0.842
S7SE 32 -04 9.6 0.845
64 -0.6 8.9 0.784
128 -0.6 6.5 0.709
10 -0.5 4.6 0.910
8 12.5 169.8 0.044
16 8.0 228.9 0.050
LZSE 32 6.5 163.2 -
64 7.1 88.0 -
128 4.3 55.2 0.013
10 0.8 1355 0.323
8 -2.4 67.9 0.973
16 0.3 48.3 0.997
2SNU 32 1.8 46.6 0.989
64 3.0 55.7 0.976
128 5.2 64.5 0.964
10 1.9 39.3 0.994
GLNU 8 -5.9 92.6 0.919




16 -3.1 87.1 0.968
32 -2.2 72.8 0.989
64 -1.9 57.3 0.993
128 -0.6 46.2 0.994
10 0.4 41.0 0.998
8 -7.4 84.4 0.911
16 -5.2 74.8 0.859
75p 32 -3.7 51.3 0.785
64 -2.8 31.3 0.673
128 -1.5 l6.1 0.608
10 -0.9 22.4 0.949
8 4.4 65.1 0.677
16 4.9 96.7 0.494
LGLZE 32 5.0 98.1 0.384
64 1.7 92.3 0.480
128 1.0 96.9 0.673
10 -2.3 36.1 0.926
8 -3.6 65.6 0.715
16 -5.6 87.6 0.764
HGLZE 32 -6.2 94.8 0.772
64 -6.3 97.3 0.774
128 -6.3 98.3 0.776
10 1.1 33.0 0.827
8 2.4 58.5 0.635
16 4.4 88.1 0.552
S7LGE 32 4.9 91.8 0.443
64 14 88.8 0.533
128 1.1 95.4 0.704
10 -2.7 344 0.936
8 -3.1 66.5 0.727
16 -5.3 89.1 0.767
SZHGE 32 -6.4 99.6 0.781
64 -6.7 102.0 0.780
128 -6.5 101.0 0.779
10 0.7 35.2 0.833
8 14.1 203.1 -
16 10.7 236.6 -
LZLGE 32 6.0 177.3 -
64 3.6 120.5 -
128 1.8 110.4 -
10 -0.3 120.7 0.330
8 8.4 127.1 0.588
LZHGE 16 5.9 210.8 0.629
32 3.6 141.9 -




64 3.8
128 -1.3
10 0.8

-67.6 75.2 -
-83.7 81.1 0.753
-38.3 139.8 0.332




Supplemental Figure 1: The different quantization approaches with different values for B (number of bins) or W

(bin width) and corresponding histograms, in (top row) low-dose CT and (bottom row) FDG PET components. Red
contours correspond to the tumor delineation.
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Supplemental Figure 2: patient with clearly non-repeatable volume delineation
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