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Abstract	
	
Purpose:	To	evaluate	the	effect	of	androgen	receptor	(AR)	inhibition	on	Prostate	

Specific	Membrane	Antigen	(PSMA)	uptake	imaged	using	68Ga‐PSMA‐11	Positron	

Emission	Tomography	(PET)	in	a	mouse	xenograft	model	and	in	a	patient	with	

castration	sensitive	prostate	cancer.	

Procedures:	We	imaged	three	groups	of	four	mice	bearing	LNCaP‐AR	xenografts	

before	and	seven	days	after	treatment	with	ARN‐509,	orchiectomy	and	control	

vehicle.		Additionally,	we	imaged	one	patient	with	castration	sensitive	prostate	

cancer	before	and	four	weeks	after	treatment	with	androgen	deprivation	

therapy	(ADT).		Uptake	on	pre‐	and	post‐treatment	imaging	was	measured	and	

compared.	

Results:	PSMA	uptake	increased	1.5	to	2.0	fold	in	the	xenograft	mouse	model	after	

treatment	with	both	orchiectomy	and	ARN‐509,	but	not	with	vehicle.		Patient	

imaging	demonstrated	a	seven‐fold	increase	in	PSMA	uptake	after	the	initiation	

of	ADT.		13	of	22	lesions	in	the	imaged	patient	were	only	visualized	on	PSMA	

PET	after	treatment	with	ADT.		

Conclusions:	Inhibition	of	the	AR	can	increase	PSMA	expression	in	prostate	cancer	

metastases	and	increase	the	number	of	lesions	visualized	using	PSMA	PET.		The	

effects	seen	in	cell	and	animal	models	can	be	recapitulated	in	humans.			Further	

work	needs	to	be	done	to	better	understand	temporal	changes	of	PSMA	

expression	in	order	to	leverage	this	effect	for	both	improved	diagnosis	and	

therapy.	
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INTRODUCTION	

Prostate	Specific	Membrane	Antigen	(PSMA)	is	a	100‐kD	transmembrane	

glycoprotein	which	is	over	expressed	on	nearly	all	prostate	cancers,	particularly	

poorly	differentiated	and	metastatic	lesions	(1‐3).		During	the	past	two	years	the	

literature	contains	over	1,000	patients	imaged	using	PSMA‐ligands,	which	have	

focused	on	the	ability	to	detect	metastases	in	patients	with	biochemical	recurrence,	

demonstrating	an	improved	detection	rate	compared	to	choline	PET	or	other	

conventional	imaging	modalities	(4‐9).			

Unlike	fluorodeoxyglucose,	PSMA	expression	is	not	positively	correlated	with	

disease	progression.		In	fact,	cellular	PSMA	expression	is	regulated	by	the	androgen	

receptor	(AR),	which	is	frequently	targeted	during	prostate	cancer	treatments	and	

can	therefore	confound	interpretation.		Opposite	of	PSA	levels,	PSMA	expression	on	

the	cell	surface	increases	with	AR	inhibition	(10‐12).		Previous	work	by	Evans	et	al	

in	mice	bearing	PSMA	expressing	xenografts	demonstrated	that	PSMA	expression	is	

increased	with	both	orchiectomy	and	enzalutamide	(11),	which	has	recently	been	

reproduced	in	multiple	prostate	cancer	cell	lines	and	circulating	tumor	cells	(13,14).	

	 We	hypothesize	that	inhibition	of	the	AR	will	result	in	a	transient	increase	in	

PSMA	expression	on	prostate	cancer	cells.		First	we	evaluated	the	effect	of	AR	

targeted	therapies	in	a	xenograft	model	using	68Ga‐PSMA‐11.		Second,	since	over	

90%	of	patients	initially	respond	to	androgen	deprivation	therapy	(ADT),	we	chose	

a	patient	with	castration	sensitive	metastatic	disease	as	an	in	vivo	test	of	our	

hypothesis	that	AR	inhibition	will	increase	PSMA	expression	(15).	
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MATERIALS	AND	METHODS	

Labeling	Procedure	of	68Ga‐PSMA‐11		

68Ga	was	obtained	by	eluting	a	68Ge/68Ga	generator	(iTG)	yielding	radioactivity	in	

the	range	of	15	to	30	mCi	during	synthesis.		The	syntheses	were	conducting	using	

iQS®	Ga‐68	Fluidic	Labeling	Module.		Precursor	(DKFZ‐PSMA‐11)	or	Glu‐NH‐CO‐

NH‐Lyx(Ahx)‐HBED‐CC	where	HBED‐CC	=	(N,N’‐Bis[2‐hydroxy‐5‐(carboxyethyl)‐

benzyl]ethylenediamine‐N‐N’‐diacetic	acid,	was	purchased	from	ABX	Advanced	

Biochemical	Compounds	(Radeberg,	Germany).		All	reagents	for	formulating	final	

product	were	provided	in	a	kit	from	ABX.	

Precursor	was	dispensed	into	5	ug	aliquots	dissolved	in	100	uL	of	0.25M	

sodium	acetate	buffer	and	stored	in	‐20C	freezer	until	use.		The	precursor	(made	up	

to	a	total	of	1mL	with	sodium	acetate	buffer)	was	added	to	the	preheated	reaction	

vessel	(100‐110C)	and	the	generator	is	immediately	eluted	into	the	reaction	vessel.		

The	contents	were	heated	for	5	minutes	after	which	they	were	pushed	through	an	

activated	C18	seppak	lite	cartridge	and	the	contents	were	directed	to	a	waste	vial.		

The	reaction	vessel	was	further	washed	with	5mL	saline	and	directed	to	waste	vial.		

The	product	was	then	eluted	with	1mL	of	60%	ethanol/water	followed	by	10mL	

saline	and	passed	through	a	sterilizing	filter.		Typical	yields	range	from	85	to	90%	

based	on	total	68Ga	eluted.	

	

Animal	Studies	

Our	prior	data	showing	that	upregulation	of	PSMA	can	be	quantified	with	PET	was	

demonstrated	with	64Cu‐labeled	J591.		Since	J591	is	a	full	sized	monoclonal	antibody	
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with	a	long	residence	time	in	blood,	it	was	not	obvious	that	changes	in	PSMA	could	

be	measured	with	a	more	rapidly	clearing	agent	like	68Ga‐PSMA‐11.		Therefore	we	

measured	relative	changes	in	PSMA	expression	with	68Ga‐PSMA‐11	in	mice	bearing	

LNCaP‐AR	xenografts.	A	total	of	twelve	3‐5	week	old	male	nu/nu	mice	obtained	from	

Charles	River	were	studied,	four	treated	with	vehicle,	four	with	orchiectomy	and	

four	with	Apalutamide	(ARN‐509),	which	is	a	non‐steroideal	competitive	AR	

inhibitor.			Mice	were	inoculated	with	5	x	107	LnCAP‐AR	cells	subcutaneously	into	

one	flank	in	a	1:1	mixture	(vol/vol)	of	media	and	Matrigel	(Corning).	Tumors	were	

palpable	within	20‐30	days	after	injection.	Surgical	castration	was	performed	

according	to	our	Institutional	Animal	Care	and	Use	Committee	approved	protocol	

under	anesthesia	with	isoflurane.	Separate	treatment	arms	were	treated	with	daily	

oral	gavage	of	vehicle	or	ARN‐509	(10	mg/kg/day)	for	seven	days.	

	

Small‐Animal	PET/CT	

Positron	Emission	Tomography	(PET)	imaging	was	conducted	using	a	Siemens	

Inveon	microPET/Computed	Tomography	(CT)	scanner	at	two	time	points,	once	

before	treatment	and	once	seven	days	after	treatment.	Mice	were	injected	with	

approximately	7.4	MBq	of	68Ga‐PSMA	via	the	tail‐vein.		One	hour	post	injection,	mice	

were	anesthetized	with	2%	isoflurane	and	imaged	for	10	to	20	min	to	acquire	~20	

million	coincident	events.		In	the	ARN‐509	treated	cohort,	PET	scans	were	timed	at	

approximately	6	hours	after	the	final	gavage.	Acquisitions	were	collected	within	an	

energy	window	of	350‐650	keV	and	a	coincidence‐timing	window	of	3.432	ns.	The	

data	was	converted	into	2‐dimentional	histograms	and	images	were	reconstructed	
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by	filter	back‐projection.	After	the	PET	acquisition,	a	co‐registered	CT	scan	was	

acquired	within	approximately	10	minutes.		Mean	Standardized	Uptake	Values	

(SUVmean)	were	calculated	for	each	xenograft	using	manually	segmented	regions	of	

interest,	and	the	ration	of	the	SUVmean	after	treatment	to	the	SUVmean	before	

treatment	was	calculated	for	each	animal.	

	

Human	experiments	

This	study	was	approved	by	the	local	institutional	review	board	and	informed	

consent	was	obtained	from	the	patient.	The	patient	was	imaged	at	two	time	points,	

once	prior	to	the	initiation	of	ADT	and	a	second	time	four	weeks	(29	days)	after	the	

initiation	of	ADT.		He	was	imaged	on	a	3.0T	GE	Signa	PET/Magnetic	Resonance	

Imaging	(MRI)	(GE	Healthcare,	Waukesha,	WI),	and	was	injected	with	207	±	22	MBq	

of	68Ga‐PSMA‐11,	and	PET/MRI	began	an	average	of	97	min	after	injection.		A	six	

bed‐position	whole	body	acquisition	was	performed	from	mid‐thighs	to	vertex	for	3	

minutes	at	each	bed	position.	PET	data	was	reconstructed	using	a	time‐of‐flight	

reconstruction	with	Ordered	Subset	Expectation	Maximization	using	two	iterations	

and	28	subsets,	and	a	matrix	size	of	256	×	256.	The	PET	transaxial	and	z‐axis	field	of	

view	are	600	and	250	mm,	resulting	in	a	voxel	size	of	2.3	×	2.3	mm.	Axial	slices	were	

reconstructed	at	2.78	mm	in	thickness.		Attenuation	correction	was	performed	using	

a	two‐echo	Dixon	fat‐water	separation	algorithm	for	the	body	while	the	lung	was	

segmented	using	a	region	growing	algorithm,	which	is	standard	on	the	scanner	(16).	

	

Patient	image	analysis	
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All	segmentable	lesions	at	both	time	points	were	segmented	using	a	semi‐

automated	method.		For	each	lesion,	the	SUVmax	was	calculated.		For	lesions	seen	

only	on	pre	or	post‐therapy	imaging,	and	volume	of	interest	was	placed	in	the	same	

location	as	the	other	time	point	and	the	SUVmax	was	recorded.		SUVpeak	and	SUVmean	

were	not	calculated	as	many	lesions	were	only	seen	on	one	time	point,	and	therefore	

comparing	SUVpeak	and	SUVmean	across	two	imaging	studies	was	not	feasible.		All	

measurements	were	performed	using	an	Advantage	Workstation	5.0	(GE	

Healthcare).	

	

Statistical	analysis	

A	paired	student’s	t‐test	was	used	to	compare	SUVmax	before	and	after	ADT	in	the	

patient	and	mouse	xenografts.		A	non‐paired	student’s	t‐test	was	used	to	compare	

the	ratio	of	change	in	SUVmean	in	mouse	xenografts	between	treatment	groups	and	

vehicle.	

	

RESULTS	

Animal	experiments	

No	change	in	tumor	SUVmean	was	observed	in	the	group	treated	with	vehicle	(Fig.	1:	

ratio	=	0.90	±	0.14,	p=0.85).		Castration	using	orchiectomy	resulted	in	an	increase	in	

SUVmean	(ratio	=	1.55	±	0.57,	p=0.007).		Treatment	with	ARN‐509	resulted	in	the	

largest	increase	in	SUVmean	(ration	=	1.85	±	0.44,	p=0.013).	

	

Human	imaging	
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We	imaged	a	51	year‐old	man	with	Gleason	5+5	prostate	cancer	on	biopsy,	who	had	

castration	sensitive	metastatic	prostate	cancer	before	and	four	weeks	(29	days)	

after	the	initiation	of	ADT.		The	patient	received	no	treatment	before	the	first	PSMA	

PET	study.		For	ADT	treatment,	the	patient	received	a	single	7.5	mg	intragluteal	

injection	of	leuprolide	acetate	(Lupron,	AbbVie,	Lakebluff,	IL).		The	patient	also	

received	50	mg	of	bicalutamide	(Casodex,	AstraZeneca,	Wilmington,	DE)	daily	for	30	

days.		His	PSA	decreased	from	66.8	ng/mL	to	9.0	ng/mL	four	weeks	after	the	

initiation	of	ADT.		Imaging	demonstrated	an	increase	in	68Ga‐PSMA‐11	uptake	after	

the	initiation	of	ADT	(Fig.	2),	with	an	increase	in	SUVmax	across	22	measureable	

lesions	from	2.9	±	3.0	to	11.8	±	6.9	resulting	in	a	percent	increase	of	707	±	689%	

(p<0.001).		13	of	the	22	lesions	were	visible	on	PET	only	on	post‐ADT	imaging,	

although	these	lesions	in	retrospect	were	present	on	MR	imaging	at	the	first	time	

point	(Fig	3).	

	

DISCUSSION	

We	have	reconfirmed	that	AR	inhibition	can	increase	PSMA	expression	in	a	mouse	

xenograft	model	using	PSMA	PET,	and	for	the	first	time	have	shown	that	such	an	

effect	can	be	demonstrated	in	humans.			

The	increased	uptake	in	the	patient	was	seven‐fold	higher	on	the	post‐ADT	

imaging	time	point	compared	to	pre‐treatment	imaging.		These	findings	suggest	that	

determining	the	optimal	imaging	time	point	after	AR	inhibition	when	PSMA	

expression	is	highest	will	be	critical.		Two	processes	are	likely	going	on,	first	there	is	

an	increase	in	PSMA	expression	due	to	AR	inhibition,	as	exhibited	in	our	patient	and	
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has	been	suggested	recently	using	99mTc‐MIP‐1404	PSMA.(17)		Second,	there	is	cell	

death	due	to	therapeutic	effect,	which	decreases	the	cell	mass	in	the	tumors	

reducing	the	overall	PSMA	uptake	measured	in	the	lesions.		Previous	work	has	

shown	that	PSMA	PET	can	image	decreased	tumor	mass	four	months	after	

treatment	with	ADT.(18)	While	over	80%	of	patients	respond	to	ADT	and	chemical	

castration	is	typically	achieved	in	3‐4	weeks,(15,19‐21)	the	precise	temporal	

relationship	between	initiation	of	ADT	and	PSMA	expression	is	unknown,	as	is	the	

variation	in	this	relationship	between	individual	patients.		Further	work	to	serially	

image	patients	after	AR	inhibition	using	68Ga‐PSMA‐11	is	needed.	

The	temporal	relationship	between	PSMA	expression	and	initiation	of	ADT	

treatment	may	explain	the	different	results	in	detection	sensitivity	of	68Ga‐PSMA‐11	

in	biochemical	recurrence	patients.		Afshar‐Oromieh	et	al	initially	reported	that	

detection	sensitivity	was	increased	in	patients	being	treated	with	ADT	(8),	while	

Eiber	et	al	did	not	demonstrate	a	difference	in	detection	rate	in	patients	treated	with	

ADT	(7).		A	third	paper	looked	at	a	subpopulation	of	four	patients	with	castration	

sensitive	disease	treated	with	ADT	with	falling	PSAs,	similar	to	our	patient,	and	all	

four	demonstrated	positive	disease	on	PSMA	PET	(5).	

These	findings	have	a	number	of	important	implications.		If	it	is	possible	to	

upregulate	PSMA	expression	in	patients	with	prostate	cancer	by	inhibiting	the	

androgen	receptor,	then	one	could	increase	the	detection	sensitivity	of	metastases	

using	PSMA	PET	in	biochemical	recurrence	patients,	which	is	supported	by	our	

results	demonstrating	13	additional	lesions	were	visualized	on	PSMA	PET	only	after	

pretreatment	with	ADT.		Additionally,	one	could	increase	the	uptake	of	PSMA	in	
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patients	being	treated	with	177Lu‐PSMA	(22‐24).		Groups	have	already	demonstrated	

that	PSMA	targeted	therapies	can	have	increased	efficacy	when	paired	with	AR	

targeted	treatments	(25).	Additionally,	one	might	be	able	to	use	changes	in	PSMA	

expression	to	interrogate	the	efficacy	of	second	and	third	generation	AR	targeted	

therapies.		

	

CONCLUSION	

Inhibition	of	the	androgen	receptor	can	markedly	change	PSMA	expression	both	in	a	

mouse	xenograft	model	as	well	as	in	clinical	patients	with	castration	sensitive	

prostate	cancer	when	imaged	using	68Ga‐PSMA‐11.	
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FIGURES	

Figure	1:	68Ga‐PSMA‐11	PET	demonstrates	increased	PSMA	expression	in	prostate	

cancer	xenografts	with	inhibition	of	the	androgen	receptor.		The	ratio	of	SUVmean	at	

day	7	to	day	0	increased	an	average	of	72%	with	orchiectomy	and	105%	with	ARN‐

509	compared	to	vehicle	(A,	*	p=0	.07,	**	p=0.006).		Visual	assessment	of	the	68Ga‐

PSMA‐11	PET	demonstrates	a	clear	increase	in	uptake	in	the	xenografts	in	response	

to	ARN‐509	(B,	middle	row)	and	orchiectomy	(B,	bottom	row),	compared	to	controls	

treated	with	vehicle	(B,	top	row).	
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Figure	2:	Coronal	MIP	images	of	a	patient	with	castration	sensitive	metastatic	

prostate	cancer	imaged	using	68Ga‐PSMA‐11	before	ADT	(A)	and	after	ADT	(B)	

demonstrate	a	marked	increase	in	uptake	in	the	lesions.		Each	lesion	visualized	

demonstrated	an	increase	up,	with	an	average	increase	of	over	7	times	the	initial	

uptake	(C).		Numerous	lesions	(13	of	22	lesions)	were	only	visualized	on	post‐

treatment	imaging,	for	example	an	upper	thoracic	osseous	metastases	(axial	PET	

images	of	lesion	1,	D	and	E).		Other	lesions	increased	in	size	and	had	increased	

uptake	compared	to	pre‐ADT	imaging	(axial	PET	images	of	lesions	2,	F	and	G).	
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Figure	3:	Example	lesion	seen	only	on	post‐ADT	PSMA	PET.		Pre‐treatment	PET	(A	

and	B)	demonstrates	a	single	lesion	in	the	right	acetabulum	(B,	black	circle).		An	

additional	lesion	right	acetabulum	lesion	is	is	seen	on	the	same	MR	image	just	

lateral	to	the	larger	lesion	(A,	red	arrow),	which	does	not	demonstrate	PSMA	

avidity.		On	post‐ADT	PET	(C	and	D),	numerous	additional	lesions	are	seen	on	the	

PET	including	the	adjacent	acetabular	lesion	(D,	red	arrow),	which	are	again	

demonstrated	on	post‐contrast	T1‐weighted	images	(C,	red	arrow).		

	

	


