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ABSTRACT 

The joint maximum likelihood reconstruction of activity and attenuation (MLAA) for emission-based 

attenuation correction has regained attention since the advent of time-of-flight PET/MRI. Recently, we 

improved the performance of the MLAA algorithm using an MRI-constrained Gaussian mixture model 

(GMM). In this study, we compare the performance of our proposed algorithm with standard 4-class MR-

based attenuation correction (MRAC) implemented on commercial systems. Methods: Five head and 

neck 18F-FDG patients were scanned on the Philips TF PET/MRI and Siemens mCT PET/CT scanners. 

Dixon fat and water MR images were registered to CT images. MRAC maps were derived by segmenting 

the MRI into 4 tissue classes and assigning predefined attenuation coefficients. For MLAA-GMM, MR 

images were segmented into known tissue classes, including fat, soft tissue, lung, background air and an 

unknown MR low-intensity class encompassing cortical bones, air cavities and metal artifacts. A co-

registered bone probability map was also included in the unknown tissue class. Finally, the GMM prior 

was constrained over known tissue classes of attenuation maps using uni-modal Gaussians parameterized 

over a patient population. Results: The results showed that the MLAA-GMM algorithm outperforms the 

MRAC method by differentiating bones from air gaps and providing more accurate patient-specific 

attenuation coefficients of soft tissue and lungs. It was found that the MRAC and MLAA-GMM methods 

resulted in average SUV errors of –5.4 % and –3.5 % in the lungs, –7.4 % and –5.0% in soft 

tissues/lesions, –18.4% and –10.2% in bones, respectively. Conclusion: The proposed MLAA algorithm 

is promising for accurate derivation of attenuation maps on TOF PET/MR systems. 
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INTRODUCTION 

Hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) systems have provided new 

opportunities for enhancing the diagnostic confidence of PET and MRI findings through fusion of complementary 

structural and molecular information (1). The potential of PET/MRI in establishing a new multi-parametric imaging 

paradigm has been a driving force for developing innovative solutions to tackle the challenges of these dual-modality 

systems. 

Accurate attenuation correction (AC) of PET data is one of the major challenges of quantitative PET/MRI 

imaging (2). In these systems, attenuation maps at 511 keV should ideally be derived from the acquired MR images. 

However, in contrary to x-ray computed tomography (CT), MRI signals are not correlated with electron density and 

photon attenuating properties of tissues, but rather to proton density and magnetic relaxation properties. Therefore, 

there is no unique global mapping technique to convert MRI intensities to attenuation coefficients. In addition, lung 

tissues and cortical bones, which are two important tissue types in attenuation maps, exhibit low signals on images 

acquired using conventional MR pulse sequences owing to their low water content and short transverse relaxation 

time. Therefore, the lungs, bones and air pockets, which also produce a low signal, cannot be well differentiated from 

each other for the generation of MRI segmentation-based attenuation maps. Ultra-short echo time (UTE) and zero 

echo time (ZTE) MR pulse sequences have been investigated for the detection and visualization of bones as well as 

lung parenchyma (3-5). However, UTE/ZTE MRI is timing-consuming and sensitive to magnetic field 

inhomogeneities and, as such, it is not yet clinically feasible for whole-body MRI-guided attenuation correction 

(MRAC) of PET data. Current commercial PET/MRI systems employ MRI segmentation-based approaches as the 

standard AC method. In these methods, MR images are segmented into 3 or 4 tissue classes, that is, background air, 

lung, fat and non-fat soft tissues, and predefined constant attenuation coefficients are assigned to each tissue class 

(6,7). However, inter/intra-patient heterogeneity of attenuation coefficients in the different tissue classes is ignored 

by these approaches. Moreover, since bones and air cavities cannot be well discriminated in conventional MR 

sequences, these tissue classes are often replaced by soft tissue, which can lead to significant bias in PET tracer 

uptake quantification in different organs (8,9). Hence, other AC techniques based on atlas registration, external 

transmission sources and PET emission data have been explored and revisited in PET/MRI imaging.  

In atlas registration-based approaches, co-registered MR-CT atlas datasets are used to derive a pseudo CT image 

from the patient’s MR image or to learn a mapping function that predicts a pseudo CT image (10,11). These methods 

can solve the MRAC problem, particularly in brain imaging, provided that a perfect registration between the atlas 

and different patients can be achieved. However, such a registration is rarely possible in whole-body PET/MRI, 

owing to substantial anatomical differences between patients as well as the limitations of registration algorithms. 

With advances in PET detector technology, time-of-flight (TOF) PET capability has been recently introduced in 

clinical PET/CT and PET/MRI scanners with the aim of improving lesion detectability and image quality, as well as 

reducing acquisition time and the administrated activity of radiopharmaceuticals (12). Following the recent rebirth of 

TOF-PET, transmission- and emission-based methods have been revisited for deriving patient-specific attenuation 

maps in PET/MRI, thus potentially circumventing the uncertainties and obstacles of both standard and UTE/ZTE 

MRAC methods. In transmission-based approaches, attenuation coefficients are directly measured using external 
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positron-emitting sources (13) or background radiation of LSO crystals (14) in a simultaneous transmission and 

emission acquisition mode. TOF information is then used to separate transmission from emission data. The limited 

timing resolution of current TOF PET scanners; however, does not allow for perfect separation of transmission data 

from emission data. Therefore, the calculated attenuation coefficients might be non-uniformly scaled and different 

from their expected values (13). In contrast, emission-based approaches only rely on emission data for joint 

maximum likelihood estimation of activity and attenuation maps (MLAA) (15,16). In fact, recent studies have 

demonstrated that both activity and attenuation distributions can be determined from TOF emission data, up to an 

unknown scaling factor (16,17). 

Emission-based AC methods are promising in TOF PET/MRI, where MRI anatomical information can be 

exploited to guide the estimation of the attenuation map. With the advent of sequential TOF PET/MRI systems, 

Salomon et al. (18) employed both TOF and MRI anatomical information to constrain the MLAA algorithm. In their 

approach, MR images are segmented into many regions over which the attenuation coefficients are iteratively 

estimated from the emission data. Despite the fact that this approach substantially reduces noise and cross-talk 

artifacts between activity and attenuation maps, the reconstructed attenuation maps suffer from mis-segmentation 

errors and the quantitative performance of the algorithm depends on the accurate correction of the scaling problem. 

We recently proposed an approach to employ MRI spatial and CT statistical information in the joint estimation of 

activity and attenuation using a constrained Gaussian mixture model (GMM) (19). In contrast to Salomon’s method, 

MR images are segmented into a few tissue classes and incorporated into the GMM model. This approach allows the 

derivation of continuous attenuation maps with noise suppression, cross-talk and the scale problem. In this work, we 

evaluated the performance of the proposed MLAA-GMM algorithm with standard 4-class MRAC over a patient 

population and demonstrated the potential advantage of MRI-guided emission-based AC methods over conventional 

MRI-guided segmentation based approaches. 

 

MATERIAL AND METHODS 

 
PET/MRI and PET/CT clinical data acquisition 

In this retrospective clinical study, five patients with head and neck carcinoma were scanned on the Philips Ingenuity 

TF PET/MRI and the Siemens Biograph mCT flow PET/CT scanners as part of clinical workup. The average age and 

body mass index of patients were 57 ± 5 years and 24.6 ± 5.1 kg/m2, respectively. The patients were injected with an 

average of 271 ± 9.3 MBq of 18F-FDG and following a standard uptake time of 60 minutes during which various MR 

sequences are acquired, underwent a whole-body PET/MRI scan with arms-down position. After an interval of 10-20 

minutes, the patients underwent a complementary PET/CT imaging of 10-12 minutes also with arms-down position. 

MRI acquisition was performed on the Achieva 3T MRI subsystem of the PET/MRI scanner. A whole-body scan 

was acquired in shallow breathing mode using a 3D multi-echo FFE Dixon technique using the following 

parameters: TR = 5.7 ms, TE1/TE2 = 1.45/2.6, flip angle = 10º and slice thickness of 3 mm, matrix size of 680 × 

680. PET/CT scanning was performed in continuous bed motion mode with bed speed of 1.1 mm/sec, equivalent to 3 

minutes per bed position in step and shoot mode. For CT-based attenuation correction (CTAC) of PET data, a multi-
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slice CT scan protocol was performed using the following parameters: 100-120 kVp, 150 mAs and 5 mm slice 

thickness. Supplemental Figure 1 shows a flowchart of acquisition protocol used in this study. The TOF PET data of 

the mCT scanner was used for joint reconstruction of activity and attenuation maps and the anatomical MR images 

acquired on the Ingenuity PET/MRI scanner were used for MRI-guided MLAA and 4-class MRAC methods. In-

phase (IP) MR images were deformably registered to CT images using the Elastix software (20), with 5-level multi 

resolution registration and Mattes mutual information criterion. The resulting transformation fields were then used 

for registration of fat and water images. 

 

Attenuation map generation 

MRI-guided emission-based attenuation map 

In the framework of the maximum likelihood estimation, the MLAA algorithm jointly estimates activity ( ) and 

attenuation ( ) maps by maximization of the Poisson log-likelihood of time-of-flight PET emission data, i.e. , ̂ = 	 argmax, 	 log + − +  Eq. 1 

where  is the number of prompt coincidences measured by the PET scanner along line-of-response (LOR)  in 

TOF bin ;  is the expected number of random and scattered coincidences;  is detector normalization factors; = exp −∑	  is attenuation factors;  is the geometric probability detection of annihilation events emitted 

from voxel  along LOR  in TOF bin  and  is the intersection length of LOR  with voxel  in millimeters. Since 

the activity and attenuation variables are coupled in Eq. (1), the MLAA algorithm follows an iterative alternating 

maximization approach (16). In this approach, the algorithm alternates between an emission and a transmission 

maximum likelihood image reconstruction problem, which are respectively solved by a TOF ordinary Poisson 

ordered subset expectation maximization (OSEM) algorithm and a non-TOF ordered subset maximum likelihood for 

transmission tomography (OS-MLTR) algorithm. In the proposed MLAA-GMM algorithm, we employed a 

transmission maximum-a-posteriori (MAP) image reconstruction for estimation of attenuation by exploiting a 

Markov random field smoothness function ( ) and a mixture of Gaussians model ( ), defined as follows: ) = − 2∈ −  Eq. 2 

) = log √2 exp −12 − ̅	
 Eq. 3 

 favors attenuation maps that are smooth based on the weighted ( ) differences between voxel  and its 

neighboring voxels in the neighborhood .  models the statistical distribution (histogram) of linear attenuation 

coefficients (LACs) in attenuation maps at 511-keV as a mixture of  known Gaussian functions with mean ̅ , 

standard deviation  and mixture proportion  (21). The parameters  and  weight the impact of the penalty 

functions. In the proposed MLAA-GMM algorithm, the  is iteratively approximated using a convex surrogate 

and spatially constrained by MRI anatomical information using a tissue prior map. This prior map contains known 

and unknown tissue classes, over which uni-modal Gaussians and a mixture of Gaussians are respectively imposed 



6 
 

on the estimation of LACs during OS-MLTR algorithm. Figure 1 presents the flowchart of the proposed MLAA-

GMM algorithm. In this work, the algorithm was initialized by a uniform activity map and a 4-class MRAC map.  

For generation of the tissue prior map (Figure 2), Dixon water and fat MR images are segmented into 4 known 

tissue classes including fat, soft tissue, lungs and background air, and an additional unknown tissue class 

corresponding to the regions with low MR intensity (i.e. cortical bones, air pockets and metal induced susceptibility 

artifacts). Due to partial volume averaging and incomplete Dixon water and fat separation, spongy bones might 

possess moderate MR intensities in water images and therefore be classified as known soft and fat tissue classes 

instead of the unknown class. To eliminate this misclassification, we subtracted the fat from water images and used a 

bone probability map, obtained from a co-registered average CT, to insure the inclusion of bones into the unknown 

class. The soft-tissue class was segmented by thresholding the fat-suppressed water images. The fat class was 

defined based on the voxels of the fat image whose intensities are 50% larger than the water image. The lungs and 

background air were segmented from IP MR images using a supervised seeded region-growing method implemented 

in the ITK-SNAP software (22). In the proposed MLAA method, a mixture of 4 Gaussians representing inside air, 

fat/soft mixture and bone was used to guide the attenuation estimation over the unknown tissue class. The parameters 

of the mixture model and uni-modal Gaussians were estimated from 10 whole-body CTAC maps (19). Supplemental 

Figure 2 presents the estimated parameters.  

MRI-guided segmentation-based attenuation map 

Standard 4-class MRAC maps were derived by segmenting the Dixon water and fat images into 4 tissue classes: 

background air, lung, fat, and non-fat soft tissues. The background air, lungs and fat tissue classes were obtained 

with the same procedure used for deriving the tissue prior map. The non-fat soft tissue class was then defined as the 

complement of the segmented classes. In this procedure, all bones, air pockets and susceptibility artifacts are 

assigned to the non-fat soft tissue class. Mean attenuation coefficients of 0, 0.0224, 0.0864 and 0.0975 cm–1 were 

assigned to background air, lungs, fat and non-fat soft tissue classes, respectively. The CT bed attenuation map was 

also added to the resulting MRAC maps. 

CT-based attenuation map 

For comparison of the MLAA and MRAC methods against a reference attenuation correction method, CT-based 

attenuation maps were generated for each patient using Siemens e7 tools. High-resolution CT images were down-

sampled to a resolution of 400×400. CT Hounsfield units were then converted to 511 keV attenuation values using a 

kVp-dependent bilinear mapping approach. The resulting maps were finally smoothed to the resolution of PET 

images using 4-mm FWHM isotropic Gaussian filtering. 

PET image reconstruction 

TOF PET data acquired on the mCT PET/CT scanner were reconstructed using a 3D time-of-flight OSEM algorithm 

with 3 different AC methods: MRI-guided emission-based, MR-guided segmentation-based and CT-based. PET 

images were reconstructed with 3 iterations and 21 subsets and a matrix size of 200×200 with 4×4×2 mm3 voxels. 

For the MLAA-GMM algorithm, an in-house software was developed for the native geometry of the mCT scanner 

with the following specifications: 400 radial bins, 168 azimuthal angles, 621 planes and13 TOF bins. The 
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coincidence window width and effective TOF resolution of the scanner are 4.1 and 0.58 ns, respectively. The activity 

and attenuation maps were reconstructed with 1 iteration and 2 subsets of the OSEM algorithm and 1 iteration and 3 

subsets of the OS-MLTR algorithm with 20 global iterations. As mentioned above, the algorithm was initialized with 

a 4-class MRAC map with a TOF scatter simulated using the same MRAC map. Based on our previous work (19), 

the  and  parameters (in Eqs. 2 and 3) were experimentally set to 80 and 0.015, respectively. The estimated 

attenuation maps were then used for a standard OSEM PET image reconstruction. 

Quantitative evaluation 

The relative quantification error (bias) in the standardized tracer uptake (SUV) was calculated on a volume of 

interest (VOI) basis for each patient with respect to the reference CTAC-PET as follows: 

= 100 × −
 Eq. 4 

where	  is the attenuation correction method used (MLAA or MRAC). For each patient, 14 VOIs were defined on 

normal tissue regions including the lungs (upper, middle and lower portions of left and right lungs), aorta, liver, 

myocardium, thyroid, cerebrum, 4th cervical (C4), 3rd thoracic (T3) and 4th lumbar (L4) vertebra. VOIs were also 

defined on lesions localized on CTAC-PET images. For the defined VOIs, the mean ( ), standard deviation ( ) and 

root-mean-squared error (RMSE) of bias ( + ) was calculated. The correlation between SUVMRAC and 

SUVMLAA and reference SUVCTAC was determined using Pearson correlation analysis. The concordance between the 

SUVs was evaluated using Bland-Altman plots. The statistical differences in SUV bias was also calculated using the 

paired-sample t-test. The differences were considered statistically significant for P< 0.05. 

 

RESULTS 

Figure 3 compares the CTAC map of a representative patient with the attenuation maps obtained using the proposed 

MLAA-GMM algorithm and the 4-class MRAC method. As shown, the MLAA-GMM algorithm can reasonably 

well estimate the attenuation coefficients of bones and discriminate air cavities, particularly paranasal sinuses. In 

contrast, the bones and air gaps in the MRAC maps are simply replaced by soft tissue, which can lead to 

quantification errors in the reconstructed PET images. Figure 4 shows the close-up views of the attenuation maps 

over the lungs in different displaying windows. The CTAC map shows that the lungs of this patient have a congested 

structure especially in the left lung. As indicated by the arrows, some of the condensed soft tissue structures in the 

MRAC map have been erroneously segmented into lung tissue class, whereas the MLAA-GMM algorithm 

compensates for the mis-segmentation of these structures and also retrieves lung density gradients. Note that because 

of respiratory motion of the lungs during PET acquisition and count-dependent performance of the MLAA 

algorithm, the estimated attenuation coefficients cannot preserve all local details. For this dataset, the lung 

attenuation coefficients of the CTAC, MLAA and MRAC attenuation maps, filtered by a 4-mm FWHM Gaussian 

filter, were 0.0293 ± 0.0077, 0.0301 ± 0.0075, 0.0225 ± 0.0003 cm–1, respectively. Supplemental Figure 3 compares 

the attenuation maps of another patient study, where the MLAA-GMM algorithm also compensates for a mis-

segmented pathology and accurately retrieves the lung density gradient in a continuous fashion. Figure 5 shows 
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activity and attenuation maps of another study in which the MLAA algorithm also compensated for respiratory 

phase-mismatch between activity and attenuation maps. As pointed by the arrow, the uptake at the upper lobe of the 

liver has been underestimated by CTAC and MRAC methods due to under-correction of attenuation. As shown on 

the attenuation maps and profiles, the MLAA algorithm estimates correctly the underlying attenuation experienced 

by the emission data and therefore increases liver uptake, thus improving the detection and quantification of possible 

upper-lope lesions. 

Table 1 compares the mean ± standard deviation of linear attenuation coefficients of different tissue classes of the 

CTAC, MLAA and MRAC attenuation maps calculated over all patient datasets. For these class-wise calculations, 

the lung, fat and soft tissue classes were obtained from the tissue prior map built for each patient (see Figure 2). The 

bone class was derived by thresholding CTAC images at 0.109 cm–1. As can be seen, the main difference between 

MLAA and MRAC methods sits over the lungs and bones, for which the maximum PET quantification errors occurs 

when using standard MRAC methods. The results show that the MLAA-GMM  algorithm outperforms the MRAC 

method over these tissue classes by estimating mean and standard deviation of LACs which are closer to those of the 

reference CTAC method. The proposed method, however, slightly over- and under-estimates the mean of the LACs 

of lungs and bones. In fat and soft tissue classes, both MLAA and MRAC attenuation maps have a similar mean as 

the CTAC maps, while the standard deviations of only MLAA’s LACs are close to those of CTAC maps. 

The quantitative PET performance of MRI-guided attenuation correction methods was further evaluated in 

comparison with the CTAC method using VOI-based analysis. Table 2 summarizes the mean, standard deviation and 

root-mean-squared error of SUVmean bias in VOIs defined in normal tissue and lesions. Figure 6(A) shows the errors 

in each VOI, grouped for the lung and soft tissue organs, while Figure 6(B) shows the results for VOIs defined on 

bones or soft tissues located close to bones. In this figure, the markers show the mean of bias in each VOI, while the 

horizontal bars and vertical boxes indicate the mean and two-standard deviations of the bias between VOIs in each 

region. The results show that the MLAA-GMM algorithm generally gives rise to a reduced RMSE bias over all 

regions. For VOIs defined in the lungs (n = 30), the MRAC method underestimates SUVmean by –5.4 ± 12.0 % with a 

RMSE of 13.1%, while MLAA-GMM reduces the errors to –3.5 ± 6.6 % with a RMSE of 7.5%. For the total VOIs 

defined on the aorta, myocardium, liver and thyroid (n = 20), MRAC and MLAA-GMM methods resulted in average 

SUV errors of –7.0 ± 6.6% (9.6% RMSE) and –4.9 ± 5.5% (7.4% RMSE), respectively. Over the lesions (n = 11), 

which were mainly mediastinal lymphoma, the MLAA-GMM reduced the errors from –9.0 ± 5.4% with RMSE of 

10.5% to –4.5 ± 5.3% with RMSE of 7.0%. Finally, for all regions in or near bones (n = 20), the MRAC and MLAA 

algorithms resulted in an average SUV error of –18.4 ± 7.9% (20.0% RMSE ) and –10.2 ± 6.5% (12.1% RMSE), 

respectively. The statistical analysis revealed that there is an overall significant difference (P <0.05) between the 

proposed MLAA-GMM and MRAC methods in bones, malignant lesions and most soft tissue regions. The results 

also showed that the bias differences in the lungs are insignificant. 

The SUV correlation and concordance of the MLAA and MRAC methods with reference CTAC was further 

evaluated. Figure 7 (top panel) shows the scatter plots of the SUVmean in all studied VOIs between PET-CTAC, PET-

MRAC and PET-MLAA with correlation and regression coefficients. The results show that PET-MLAA and PET-

MRAC are highly correlated with PET-CTAC with R2 values of 0.982 and 0.992, respectively. Figure 7 (bottom 

panel) shows the results of Bland-Altman concordance analysis. The limits of agreement (LA) were calculated from 
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logarithmically transformed values. Differences and LA are expressed as a function of average SUVs. As shown by 

the regression lines of the difference, MRAC and MLAA attenuation correction methods result in a systematic 

underestimation of SUV by up to 9.85% and 6.75%, respectively. However, MLAA clearly outperforms MRAC by 

reducing the errors and their dispersion. 

 

DISCUSSION 

Interest in the estimation of PET attenuation maps from emission data has recently been revived in the context of 

TOF PET/MRI attenuation correction to overcome the limitations and quantification errors of standard segmentation-

based MRAC methods (18,19). In this work, we compared the performance of our previously reported MLAA 

algorithm with the standard MRAC method to demonstrate the potential of emission-based AC methods in TOF 

PET/MRI imaging. 

In segmentation-based MRAC methods, the mis-segmentation of the lungs and the assignment of non patient-

specific lung attenuation coefficients can result in PET quantification errors. Our results demonstrated that, 

consistent with previously reported results (23), the MRAC method results in errors in the lungs of up to 26% 

(Figure 6). Due to their low proton density and short T2* relaxation time, the lungs show low signal intensity in the 

fast gradient-recalled echo (GRE) pulse sequences conventionally used in whole-body MRI acquisitions. Therefore, 

in conjunction with the limitations of segmentation-based MRAC algorithms, the soft tissue structures of the lungs, 

for example, pulmonary vessels and bronchioles, might be miss-segmented into lung class. Our results showed that 

the MLAA-GMM algorithm not only fairly compensates for the mis-segmentations but also derives more patient-

specific lung LACs (Figure 4 and Supplemental Figure 3). Hence, as reported in Table 2, the RMSE in the lungs was 

reduced from 13.1% to 7.5%. In contrary to Salomon et al (18), our proposed MLAA estimates continuous 

attenuation coefficients and thus retrieves the lung density gradients and intra-patient variability of lung attenuation 

coefficients. Continuous lung LACs can also be derived from atlas-registration-based AC methods. However, these 

approaches had a limited success owing to the low signal of the lungs (10).  

Another limitation of segmentation-based MRAC is that the identification of bones, which produce low signal 

intensity in GRE MRI pulse sequences, is very challenging. In 4-class MRAC maps, the bones are replaced by soft 

tissue, which based on our results can lead to a mean bias of –18.4%, which is consistent with the >15% errors 

reported previously (9,23). As demonstrated in this work, the proposed MLAA-GMM algorithm is capable of 

estimating bone attenuation coefficients, thus outperforming the MRAC method by reducing the mean error to –

10.2%. Bezrukov et al. reported that a combination of segmentation and atlas-registration based AC methods can 

effectively reduce bone SUV errors of the 4-class MRAC from –16.1% to –4.7% (8). However, the performance of 

these techniques depends on accurate atlas registration and robust prediction of attenuation coefficients. In contrast, 

several CT images are registered to patient’s IP MR image in our MRI-constrained MLAA algorithm to only roughly 

indicate the position of the bones. Therefore, this technique is in principle not subjected to mis-registration errors. 

As indicated in Supplemental Figure 2, we set the means of Gaussian models defined in known tissue classes to 

the mean LACs used in the 4-class MRAC maps. Therefore, for very high values of the  parameter in Eq. 3, the 

MLAA-GMM is essentially reduced to a 4-class MRAC method. The results show that the MLAA and MRAC 



10 
 

methods present similar mean LACs in fat and soft tissue classes (Table 1); however, only for MLAA the standard 

deviation (inter/intra-variability) of LACs are similar to the reference CTAC method. Combined with more accurate 

derivation of lung and bone LACs, our MLAA-GMM approach resulted in improved quantitative performance over 

soft tissue organs compared with the MRAC method (Table 2).  

The results of this feasibility study demonstrate the potential of the emission-based AC methods for accurate 

attenuation correction in TOF PET/MRI. However, it is worth highlighting the limitations of the proposed algorithm 

and the study conducted herein. Similar to other MAP reconstruction techniques, the performance of the MLAA-

GMM depends on the selection of the regularization parameters, especially the  parameter of the GMM model. In 

this work, we set the  and the  parameter in Eq. 2 to experimentally optimized values for a few simulation and 

clinical studies (19). In general, the MLAA algorithm is time consuming since it alternates between an emission and 

transmission tomographic reconstruction. The preparation of a tissue prior map can further increase the 

computational burden of the proposed MLAA-GMM method. In this first clinical study, a relatively small number of 

PET/MR/CT datasets could be included. Therefore, the statistical significance of our results might be subject to a 

degree of uncertainty. Future work will focus on further evaluation of the studied AC methods using a large clinical 

patient database acquired with different tracers to pave the way for translation of emission-based AC methods into 

the clinic.  

 

CONCLUSION 

In this work, the performance of an MRI-guided emission-based AC method was compared with the standard 

segmentation-based MRAC method using clinical studies. It was demonstrated that the proposed constrained MLAA 

algorithm is promising for deriving patient-specific attenuation maps, especially in the lungs and bones. Our results 

showed that the MRAC method resulted in average SUV errors of –5% and –18% in the lungs and bones, while the 

proposed algorithm reduced the errors to –3% and –10%, respectively. It can be concluded that emission-based 

attenuation correction is promising in clinical TOF PET/MRI imaging and presents the potential to replace 

conventional segmentation-based methods implemented on commercial systems. 
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Table 1. Mean ± standard deviation of LACs of different tissue classes of CTAC, MLAA and MRAC attenuation 

maps calculated over all clinical studies. 

 

 Lung Fat Soft tissue Bone 

CTAC 0.025 ± 0.009 0.087 ± 0.009 0.098 ± 0.008 0.118 ± 0.012

MLAA 0.027 ± 0.008 0.086 ± 0.010 0.097 ± 0.006 0.104 ± 0.012

MRAC 0.022 ± 0.001 0.086 ± 0.004 0.097 ± 0.001 0.095 ± 0.005
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Table 2. Quantification bias [Mean ± SD, (RMSE)%] of PET-MRAC and PET-MLAA in different tissues with 

respect to reference PET-CTAC. 

 

VOI MRAC MLAA P-value 

Lung –5.4 ± 12.0  (13.1) –3.5 ± 6.6  (7.5) 0.1605 

Aorta –9.5 ± 10.5  (14.1) –7.6 ± 9.3  (12.1) 0.0942 

Liver –7.4 ± 1.8  (7.6) –5.4 ± 3.2  (6.3) 0.0376 

Myocardium –9.2 ± 6.0  (11.0) –3.1 ± 6.8  (7.5) 0.0027 

Thyroid –1.9 ± 8.8  (9.0) –3.6 ± 5.1  (6.3) 0.6574 

Lesions –9.0 ± 5.4  (10.5) –4.5 ± 5.3  (7.0) 0.0237 

Cerebrum –18.5 ± 11.3  (21.6) –11.6 ± 6.0  (13.1) 0.0503 

C4 –22.9 ± 2.7  (23.1) –12.3 ± 3.1  (12.7) 0.0011 

T3 –19.8 ± 8.4  (21.5) –12.6 ± 8.6  (15.2) <0.001 

L4 –12.4 ± 4.5  (13.2) –4.2 ± 4.4  (6.1) <0.001 
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