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ABSTRACT 

Intra-tumor uptake heterogeneity in 18F-FDG PET has been associated with patient 
treatment outcomes in several cancer types. Textural features (TF) analysis is a 
promising method for its quantification. An open issue associated with the use of TF for 
the quantification of intratumoral heterogeneity concerns its added contribution and 
dependence on the metabolically active tumor volume (MATV), which has already been 
shown as a significant predictive and prognostic parameter. Our objective was to 
address this question using a larger cohort of patients covering different cancer types. 

Methods: A single database of 555 pre-treatment 18F-FDG PET images (breast, cervix, 
esophageal, head & neck and lung cancer tumors) was assembled. Four robust and 
reproducible TF-derived parameters were considered. The issues associated with the 
calculation of TF using co-occurrence matrices (such as the quantization and spatial 
directionality relationships) were also investigated. The relationship between these 
features and MATV, as well as among the features themselves was investigated using 
Spearman rank coefficients, for different volume ranges. The complementary prognostic 
value of MATV and TF was assessed through multivariate Cox analysis in the 
esophageal and NSCLC cohorts. 

Results: A large range of MATVs was included in the population considered (3-415 cm3, 
mean=35, median=19, SD=50). The correlation between MATV and TF varied greatly 
depending on the MATVs, with reduced correlation for increasing volumes. These 
findings were reproducible across the different cancer types. The quantization and the 
calculation method both had an impact on the correlation. Volume and heterogeneity 
were independent prognostic factors (P=0.0053 and 0.0093 respectively) along with 
stage (P=0.002) in NSCLC, but in the esophageal tumors, volume and heterogeneity 
had less complementary value due to smaller overall volumes. 

Conclusion: Our results suggest that heterogeneity quantification and volume may 
provide valuable complementary information for volumes above 10cm3, although the 
complementary information increases substantially with larger volumes. 

 

Keywords: 18FDG-PET/CT, heterogeneity, textural features, metabolically active tumor 
volume, prognosis. 
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18F-FDG Positron Emission Tomography/Computed Tomography (PET/CT) is a powerful 
tool for diagnosis and staging in oncology (1). Its use in therapy assessment (2,3) is 
increasing. Within this context more and more emphasis is being given to image-derived 
indices (4). On the one hand, features extracted from PET images, including 
metabolically active tumor volume (MATV), mean standardized uptake value (SUVmean) 
and total lesion glycolysis (TLG) have provided potentially higher prognostic value than 
standard maximum SUV (SUVmax) in various cancer types (5). On the other hand, more 
recently the heterogeneity of 18F-FDG uptakes within tumors has been associated with 
treatment failure (4,6–8). Proposed approaches for the assessment of intra-tumor 
activity distribution heterogeneity include visual evaluation (9), SUV coefficient of 
variation (SUVCOV) (10), area under the curve of the cumulative histogram (CHAUC) (11), 
fractals (12) or textural features (TF) analysis (10,13). The latter can provide a number 
of parameters quantifying tumor heterogeneity at the scales of voxels or groups of 
voxels. A recent study, based on the use of one of these parameters (local entropy 
calculated from co-occurrence matrices) has suggested that a minimum MATV of 45cm3 
is required to provide an estimate of heterogeneity independent of MATV confounding 
effects (14). However, this study investigated a single heterogeneity parameter, in a 
single cancer type, and used an image quantization scheme with >150 grey levels. 
Another recent study investigating the relationship between MATV and TF (15) has 
included a relatively small number of tumors (including patients who already had distant 
metastases) and cancer types, without explicitly reporting on the lesion sizes considered 
or making conclusions regarding the minimum tumor volume that should be considered. 
In addition, this study used Pearson correlation to test linear relationship between MATV 
and TF, which would miss non-linear trends that may exist between these parameters.  

To our knowledge, the potential interaction between MATV and TF has not been 
previously considered within the context of patient outcome prognosis. 

This study was therefore designed to investigate in detail, and across a large number of 
primary tumors and cancer types, the relationship between tumor MATV and derived 
heterogeneity measurements using TF, in order (a) to determine whether a minimum 
MATV should be considered in such analyses and (b) if tumor heterogeneity quantified 
through TF could provide complementary prognostic value relative to MATV.  

 

MATERIALS AND METHODS 

FDG PET images 

Several patient cohorts were retrospectively collected in a dataset of 555 18F-FDG PET 
baseline images of different primary locally advanced tumors, excluding patients with 
distant metastases because they usually have a very different prognosis and treatment 
management. In all cohorts, patients were selected as consecutive patients with an 18F-
FDG PET/CT scan at diagnosis prior to any treatment.  

The resulting dataset consisted of 158 breast tumors with three different subtypes 
(luminal, her2+/ER-, triple negative), 45 cervix tumors, 112 esophageal tumors, 139 
head and neck (H&N) tumors, and 101 non-small cell lung cancer (NSCLC) tumors (Fig. 
1). These tumor entities were chosen because they have often been considered in the 
literature for studying FDG uptake heterogeneity. They have a wide range of tumor size, 
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significant FDG uptake, and a high rate of treatment failures. Each cohort for a given 
cancer site came from one clinical center except H&N tumors that involved two different 
University Hospitals (Supplemental Table 1). Within each cohort, all acquisitions 
followed corresponding institutional protocols. All cohorts except the 66 H&N tumors 
from McGill were acquired using the same acquisition settings and protocols: a Philips 
GEMINI PET/CT scanner, CT-based attenuation correction, reconstruction with 3D Row-
Action Maximum Likelihood Algorithm with 4×4×4mm3 voxels and 5mm full-width-at-half-
maximum Gaussian post-filtering, 6-hour fasting period, 3D whole-body acquisition 
performed 60 min after injection of 18F-FDG, and SUV normalized using body weight. 
The acquisitions for the 66 H&N tumors from McGill shared the same settings expect for 
the scanner model (a GE Discovery ST) and Ordered-Subset Expectation Maximization 
reconstruction (3.52×3.52×3.27mm3 voxels) without post-filtering.  

 

Only primary tumors (not lymph nodes) with MATVs >3cm3 (which, assuming a spherical 
shape, corresponds to ~1.8cm diameter) were included due to the limitations of PET 
imaging to characterize tracer distribution within smaller tumors because of its limited 
spatial resolution and resulting partial volume effects (PVE).  

 

The institutional review boards of each involved group in this work approved this 
retrospective study and the requirement to obtain informed consent was waived. 

 

Image Analysis 

MATVs were first delineated using the Fuzzy Locally Adaptive Bayesian (FLAB) 
algorithm (16), which has been previously validated for accuracy and robustness using 
simulated and clinical datasets, including homogeneous and heterogeneous MATVs 
(17,18). FLAB was used with two or three classes in order to adequately cover the entire 
MATV, including low uptake areas. The H&N tumors from McGill were manually 
delineated by an experienced radiation oncologist on fused PET/CT images as part of 
their radiotherapy treatment planning. 

The differences in scanner, reconstruction and delineation between the H&N McGill 
dataset and the other cohorts were taken into account by only considering features that 
were shown to be the most robust with respect to PVE and segmentation (19) or 
reconstruction settings (20), as well as test-retest reproducibility (21). 

Consequently, the present analysis included four TFs, which have been previously 
shown to have a predictive and prognostic value in different cancer types. The two local 
TFs calculated using co-occurrence matrices (13) were entropy (E) and dissimilarity (D). 
D and E were calculated according to two different methods: 1) using 13 matrices, one 
for each spatial direction, followed by averaging the values calculated separately in each 
matrix, and 2) using only one matrix taking into account all 13 directions simultaneously 
without an averaging step. From a conceptual point of view, the second method is more 
accurate, as it fully describes the 3D co-occurrence properties within the volume. The 
first method results in taking an average from fewer co-occurrence measurements, thus 
information could be lost and the complexity of the distribution of grey levels may not be 
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optimally captured. On the other hand, averaging could artificially reduce the effect of 
the residual noise from the quantization process. The parameters related to the first 
method (averaging 13 matrices) will be denoted as E13 and D13, whereas the parameters 
from the second method (1 matrix) will be denoted as E1 and D1. 

Regional TFs calculated using size-zone matrices (13) were high intensity large area 
emphasis (HILAE) and zone percentage (ZP).  

Other TFs were not included in the present analysis because of high correlation with D 
and/or E (correlation>0.8), or previously shown poor reproducibility/robustness (19–21) 
(supplemental Table 2). 

Although an optimal quantization of 64 grey levels was identified in our previous work 
concerning the reproducibility (19), we also investigated the impact of the quantization 
pre-processing step by considering values from 4 to 256.  

Finally, SUVmax, SUVmean, and SUVCOV were included for comparison purposes. 

 

Statistical Analysis 

Statistical analyses were performed using MedcalcTM (MedCalc Software, Belgium). 
Spearman rank correlation (rs) was used to study relationships between parameters, 
since such relationships are non-linear and all these parameters are frequently not 
normally distributed. In order to assess the potential complementarity and/or additional 
clinical value of MATV and derived heterogeneity parameters, a survival analysis was 
performed in the esophageal and NSCLC cohorts for which overall survival (OS), follow-
up and other clinical data were available (Supplemental Tables 3 and 4), which was not 
the case for the other cohorts. Association with OS was assessed using univariate Cox 
proportional hazard regression including features as continuous variables (i.e. no 
dichotomization). Correction for multiple testing was performed using the false discovery 
rate Benjamini-Hochberg step-up procedure. It consists in declaring positive discoveries 
at level α (here α=0.05), among the k=1…K tested variables ordered according to their 
p-values p in increasing order, those ranked above the one satisfying the condition p(k)≤ 

 × α (22). After univariate analysis, a stepwise multivariate Cox analysis (significant 

variables are entered sequentially, then removed if they become non-significant) was 
performed to identify independent prognostic factors. Kaplan-Meier survival curves (with 
optimal cut-off values determined through ROC curves analysis) were subsequently 
used to assess the prognostic value of previously identified independent factors. Median 
survival, percentage of deaths in each group and hazard ratios (HR) were reported for 
each risk factor separately and for their combination, in order to quantify any improved 
patient stratification.  

 

RESULTS 

Correlation between parameters 

To avoid confusion, absolute rs values are reported, although correlation direction 
results can be found in figure 2. Three important observations can be emphasized.  
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First, significant details regarding the grey-levels distribution are lost when using a 
quantization <32 (Fig. 3), and the quantization had an important impact on the 
correlation between volume and E1, decreasing from almost 1 for a quantization of 256, 
to <0.6 for quantization<64. Correlation with MATV was much lower for E1 compared to 
E13, except for quantization <16. In contrast, dissimilarity (either D1 or D13) was 
insensitive to the quantization value (rs~0.8) and there was no difference between D1 
and D13. The correlation of HILAE and ZP with MATV was very sensitive to the 
quantization, although contrary to entropy, rs increased from <0.5 to >0.8 with 
decreasing quantization (Fig. 3). For quantization=32, the correlation with volume was 
>0.75 and <0.85 for all TFs except E1 (0.3), whereas with quantization=64 there was a 
wider range (rs<0.2 for HILAE to rs≈1 for E13), and several TFs had a correlation <0.7, 
suggesting a higher potential of complementary information with respect to MATV for 64 
than 32. Quantization=64 was also previously shown to provide the highest TFs’ 
reproducibility (21) and robustness (19). A quantization into 64 grey-levels was thus 
considered for the rest of the analysis, as it represents the best compromise between 
sufficient sampling of voxel SUVs, preservation of original intensities information, and 
potential complementary information with respect to MATV. 

 

Secondly, significant correlations were found amongst almost all features considered. In 
addition, MATV correlated with those features, as well as with SUVmax and SUVmean (Fig. 
2). The correlation between the co-occurrence matrix-derived features themselves and 
their respective correlation with MATV were sensitive to the use of a single matrix 
compared to averaging 13 directional matrices. This was particularly true for entropy. 
The correlation between D13 and E13 was 0.76, whereas the correlation between D1 and 
E1 was 0.18. Correlation of D13 and E13 with MATV was 0.80 and 0.96, whereas it was 
0.82 and 0.56 for D1 and E1 respectively (Fig. 2).  

 

Thirdly, correlation between D1, E1, ZP, and HILAE with MATV ranged from 0.17 to 0.96, 
suggesting that a substantial amount of complementary information with respect to 
MATV may be found in some of these heterogeneity quantification features, similarly to 
SUV measurements which exhibited correlations of 0.31 to 0.42. 

 

Figures 4 and 5 provide visual representations of the distributions of TFs with respect to 
MATV. Supplemental figures 1-4 provide similar graphs for each cancer type, for other 
TFs and quantization values. The difference between E13 and E1 was important (Fig. 4A-
B), the calculation using only one matrix leading to a much tighter distribution with a 
smaller range (5.6-8 for E1 vs. 3.9-7.3 E13) of higher values (7.1±0.4 vs. 5.7±0.8), and 
with substantially lower correlation with volume (0.56 vs. 0.96). The difference between 
D13 and D1 (Fig. 4C-D) was less important but nonetheless led also to a tighter 
distribution for D1 with a smaller range (3.5-24.1 vs. 0.9-30.5) of higher values (12.6±3.8 
vs. 10.7±3.7) but with a similar correlation with MATV (0.82 vs. 0.80). 
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By restricting the analysis to larger tumor volumes (from ≥10cm3 to ≥60cm3 using 5cm3 
steps), it was found that the correlation between TFs and MATV tended to decrease 
substantially with ranges of increasing volumes (Fig. 6). This was observed for all TFs 
but was especially true for entropy. The only exception to this observation was HILAE 
since its correlation with MATV was low even when considering the entire dataset. E13 
correlation with MATV dropped from 0.96 when considering the entire range of volumes, 
to <0.3 when considering only tumors >60cm3. E1 dropped to <0.25 for volumes >10cm3. 
Similar observations were made for D13 with rs>0.8 when considering all tumors, 
dropping <0.6 in tumors >15cm3. Although the overall correlation of D1 with MATV was 
slightly higher than for D13, it was also more rapidly reduced with increasing MATV (Fig. 
6). The same analysis for ZP led to similar observations, with a reduced correlation with 
increasing MATV when considering larger tumors, from 0.68 for all tumors to 0.5 for 
those >15cm3.  

 

The relationships between MATV and TFs were similar across the different tumor types, 
although measured correlations varied: cervix tumors included mostly large tumors 
(MATV>20cm3), whereas the other tumor types included a larger number of tumors with 
MATV<10cm3 (Fig. 1). The resulting correlation between E1 and MATV was not 
significant for cervix cancer tumors (rs<0.003, P>0.9), whereas it was for esophageal, 
NSCLC, H&N, and breast tumors (rs=0.80, 0.39, 0.35, and 0.74 respectively). For 
dissimilarity (D1) and ZP, smaller differences were observed, with rs from 0.73 and 0.63 
(cervix) to 0.93 and 0.83 (NSCLC) for D1 and ZP respectively. HILAE correlations with 
MATV were <0.2 for all tumor types. 

 

 

Survival prognosis in esophageal and NSCLC cohorts 

In the esophageal cohort, median OS was 17.0 months (range 1.0-71.0, mean 22.0), 
with 44 patients still alive at last follow-up. The trend for MATV did not reach statistical 
significance (p=0.0315) and none of the variables were prognostic factors except D1 
(p=0.0016) (Table 1), therefore no multivariate analysis was performed. However, if 
dichotomized with optimal cut-off values in the K-M analysis, both D1 (HR 1.92, 
p=0.0052) and MATV (HR 1.66, p=0.0375) could differentiate survival curves (Fig. 7A). 
Adding volume and heterogeneity increased HR to 2.02 (p=0.0024, 95% CI 1.22-3.34) 
with 23months (N=64) vs. 10months (N=48) median OS (supplemental table 5, Fig. 7A). 

 

In the NSLC cohort, median OS was 18.4 months (range 1.1-57.4, mean 27.4), with 39 
patients still alive at last follow-up. In the univariate analysis, all variables were 
significantly associated with OS, expect age, histology, smoking history and SUVmax 
(Table 1). The multivariate analysis retained clinical stage (P=0.0018), MATV 
(P=0.0053) and heterogeneity (E1, P=0.0093) as independent prognostic factors. MATV 
allowed for the highest differentiation (HR=2.8), whereas stage and heterogeneity led to 
lower HRs (2.3 and 2.1 respectively). Adding stage to MATV did not increase stratifying 
power (HR=2.84), whereas adding heterogeneity increased HR to 3.55, with 49months 
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vs. 9.1months median OS. The addition of the three led to the highest HR of 3.81 
(supplemental table 6, Fig. 7B). Survival curves were also evaluated according to a 3-
valued score (MATV<35cm3 AND E1<7.35, MATV>35cm3 OR E1<7.35, and 
MATV>35cm3 AND E1>7.35), leading to survival curves with median OS of 49, 20 and 9 
months (p<0.0001, HRs of 1.8 and 4.3) (supplemental Fig. 5B, Fig. 7C), highlighting the 
higher complementary value of heterogeneity and volume in this cohort. 

 

DISCUSSION 

There is an increasing interest in the use of PET image textural features for 
quantification of intra-tumor heterogeneity (4,6). Few studies investigated the 
relationships between tumor volume and TFs (15,19,23). 

Most studies using textural features considered volumes>3-5cm3, assuming that PET 
could not characterize heterogeneity on smaller volumes due to its limited spatial 
resolution. A recent theoretical analysis suggested that volumes >45cm3 should be 
considered to avoid volume related confounding effects (14). However, this analysis 
considered a single parameter (entropy), calculated on 2D co-occurrence matrices over 
2 spatial directions followed by averaging, and using a quantization value >150 (14). 

 

In this work, we addressed the question of the minimum functional volume that could be 
considered and investigated the potential complementary prognostic value between 
volume and heterogeneity. We investigated the influence of the quantization pre-
processing and of the textural features calculation methodology, investigating more 
thoroughly the relationships between heterogeneity and functional volume in a 
substantially larger tumors’ database, covering large tumor volume ranges and different 
cancer types. Considering a patient cohort with variable cancer types and 
complementary volume ranges allowed providing a better picture of the relationship 
between the measured feature and its corresponding volume. 

 

Our results partly confirm those of recent studies. Indeed, several textural features were 
found to be highly correlated with the volume from which they were calculated. In 
addition, high correlations were found between most of these parameters. We observed 
differences in the heterogeneity-volume distributions as a function of tumor type, 
although these differences can be explained by differences in volume ranges for each 
cancer patient cohort, rather than the histology or heterogeneity specific to each tumor 
type. For instance, the distribution of textural features with respect to volume in the 
cervix tumors was significantly different than the others because it included only large 
tumors (>20cm3) relative to the other patient cohorts considered that also included 
smaller tumor volumes.  

Our results emphasize that (i) the relationship and the level of correlation is not the 
same for all features, (ii) the level of correlation tends to decrease substantially when 
considering larger tumor volumes, (iii) the calculation method and the quantization step 
both have an impact on the relationship and level of correlation between volume and the 
feature, and (iv) volume and heterogeneity can have complementary prognostic value: in 
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the NSCLC cohort, heterogeneity and volume were identified as independent prognostic 
factors and hazard ratios were shown to increase from <2.9 to >3.8 when adding these 
risk factors for patient stratification. Although multivariate analysis could not be 
performed in the esophageal cohort, combining heterogeneity with volume led to an 
increased although non-statistically significant different stratification. NSCLC tumor 
volumes were much larger than esophageal ones (58±77cm3, median 34, range 3-415 
vs. 25±27cm3, median 15, range 3-140), which is likely why heterogeneity and volume 
had higher complementary prognostic values in NSCLC.  

When considered together, these results point to the potential added prognostic value of 
tumor heterogeneity quantified with textural feature, although regarding Kaplan-Meier 
curves, cut-off values found with ROC analysis are probably over-fitted and specific to 
the data, and thus validation in independent cohorts will be required. 

The quasi-linear relationship between entropy (either E1 or E13) and volume in the range 
3-10cm3 (rs>0.9, Fig. 4) suggests that entropy for volumes<10cm3 cannot provide 
complementary information. However, when choosing appropriate quantization and co-
occurrence matrix calculation, the correlation between volume and entropy for volumes 
in the range 10-50cm3 was much lower. The minimal volume to consider may therefore 
be closer to 10cm3 than 45cm3, a value previously suggested based on calculations 
carried out after a quantization into >150 grey-levels and using several co-occurrence 
matrices followed by averaging (14). In addition, for other TFs not considered in that last 
study, the correlation was weaker, even for volumes between 3 and 10cm3. It was only 
0.4 and 0.6 for D13 and D1 respectively, and 0.3 and 0.2 for ZP and HILAE. Therefore, 
instead of excluding patients with volumes below the proposed 10cm3 threshold from 
such analysis, we rather recommend to report the correlation between volume and 
heterogeneity and highlight their complementary value as tumor volumes increase. 
Indeed, the correlation with volume decreased substantially for all textural features when 
considering larger volumes. Larger tumors are known to exhibit higher hypoxia, necrosis 
or anatomical and physiological complexity at the microscopic and macroscopic scales, 
which logically translates to higher FDG uptake spatial distribution complexity and 
consequently associated heterogeneity quantification. A significant correlation between 
quantified heterogeneity (via any method) and its corresponding volume is therefore to 
be expected in a standard cohort of patients covering a large range of tumor sizes. 
Prospective clinical studies with optimized pre-defined image acquisition settings and 
heterogeneity analysis protocols, as well as experimental studies demonstrating that 
tumor properties on a scale comparable with the PET resolution can actually lead to 
identifiable image textural features could benefit from the results of the present study 
and should now be conducted. 

 

One important aspect of this study is that the 555 PET images in our database came 
from six cohorts acquired in different centers, albeit with certain homogeneity in 
acquisition parameters (same scanner, reconstruction algorithm, voxel size), except for 
one. This variability was handled by restricting the analysis to robust features only, as to 
minimize the associated impact. Indeed, excluding the H&N cohort with a different 
imaging protocol did not change the results. On the other hand, the inclusion of a small 
number of heterogeneity quantification metrics may be considered as a limitation. 
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However, the four textural features included have been previously shown to be the most 
reproducible and robust amongst those shown to have a predictive and prognostic value 
in different cancer types. We also restricted the prognosis analysis to the esophageal 
and NSCLC cohorts because clinical and survival data for the other cohorts were not 
available for enough patients to allow for multivariate analysis. 

 

CONCLUSIONS 

Most of textural features considered to quantify intra-tumor heterogeneity were found to 
be significantly correlated with tumor volume. However, our detailed analysis also 
suggests that heterogeneity quantification through textural features may potentially 
provide valuable clinical complementary information in addition to functional volume, 
especially for tumors above 10cm3, with increasing complementary prognostic value for 
larger volumes. In 112 esophageal patients, heterogeneity was found to have some 
prognostic value that was not significantly improved when combined with volume, 
whereas in a cohort of 101 NSCLC patients, heterogeneity, volume and stage were 
independent prognostic factors that allowed increased stratification of patients when 
combined.  
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Table 1. Prognostic value for OS in the NSCLC and esophageal cohorts assessed using 
Cox regression for univariate and multivariate analysis 

 

 
Esophageal 

 

NSCLC 

Parameters 
p-value p-value 

Univariate Univariate Multivariate 

Clinical 

Surgery 0.3654 0.0084 NRM 

Age 0.1861 0.0441¥ - 

Sex 0.1795 0.0227 NRM 

Smoker 0.4511 0.8997 - 

Histology 0.2154 0.3041 - 

Stage 0.0391¥ 0.0003 0.0018 

Volume and 
SUV 

MATV 0.0315¥ 0.0008 0.0053 

SUVmax 0.2781 0.0599 - 

SUVmean 0.6008 0.0256 NRM 

Heterogeneity 
(TF) 

D13 0.0405¥ 0.0046 NRM 

D1 0.0016 0.0027 NRM 

E13 0.1087 0.0002  NRM 

E1 0.3922 0.0287 0.0093 

HILAE 0.2596 0.0132 NRM 

ZP 0.4391 0.0005 NRM 

NRM: not retained in the model 
¥: Not significant after correction for multiple testing 

  



 

 

Figure 1

 

1. MATV disstribution in

 

n each canccer site. 

14

 



 

 

Figure 2
MATV (B

 

 

2. Illustratio
B). 

on of quantiz

 

zation (A) aand impact on the corrrelation bet

 

tween TF a

15

nd 



 

A 

B 

Figure 3
orange: 

3. Spearma
[0.6,0.8[, g

an rank corr
reen: [0.3,0

relations be
0.6[, violet: 

etween para
[0.1,0.3[ an

ameters (55
nd grey: [0.

55 tumors).
0,0.1]. 

. Red: [0.8,

16

 

 
1.0] 



 

A 

B 

  

 

 

17



 

C 

D 

Figure 4
respect t

 

 

 

4. Distributio
to MATV. 

ons of E1 (A

 

A), E13 (B), D1 (C) and

 

 
d D13 (D) (quantization=64) with 

18



 

A 

B 

Figure 5

 

5. Distributioons of HILA

 

AE (A) and ZP (B) (qu

 

 
antization==64) with respect to MA

19

ATV. 



 

 

Figure 6
(quantiza

6. Absolute 
ation=64), c

Spearman
considering

 rank corre
g different r

elation with 
ranges of in

MATV for e
ncreasing M

each TF 
MATVs. 

20

 



 

A 

B 

C 

 

Figure 7
patients,

7. Kaplan-M
, (B-C) 101

Meier curves
NSCLC pa

s using volu
atients. 

  

ume and heeterogeneitty for (A) 1112 esophag

21

 

 

geal 


