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Integrated PET/MR systems are becoming increasingly popular in
clinical and research applications. Quantitative PET reconstruction

requires correction for γ-photon attenuations using an attenuation

coefficient map (μ map) that is a measure of the electron density.

One challenge of PET/MR, in contrast to PET/CT, lies in the accu-
rate computation of μ maps. Unlike CT, MR imaging measures

physical properties not directly related to electron density. Previous

approaches have computed the attenuation coefficients using

a segmentation of MR images or using deformable registration of
atlas CT images to the space of the subject MR images. Methods:
In this work, we propose a patch-based method to generate whole-

head μ maps from ultrashort echo-time (UTE) MR imaging sequen-
ces. UTE images are preferred to other MR sequences because of

the increased signal from bone. To generate a synthetic CT image,

we use patches from a reference dataset, which consists of dual-

echo UTE images and a coregistered CT scan from the same sub-
ject. Matching of patches between the reference and target images

allows corresponding patches from the reference CT scan to be

combined via a Bayesian framework. No registration or segmenta-

tion is required. Results: For evaluation, UTE, CT, and PET data
acquired from 5 patients under an institutional review board–

approved protocol were used. Another patient (with UTE and CT

data only) was selected to be the reference to generate synthetic

CT images for these 5 patients. PET reconstructions were attenuation-
corrected using the original CT, our synthetic CT, Siemens Dixon-

based μ maps, Siemens UTE-based μ maps, and deformable

registration-based CT. Our synthetic CT–based PET reconstruction
showed higher correlation (average ρ 5 0.996, R2 5 0.991) to the

original CT-based PET, as compared with the segmentation- and

registration-based methods. Synthetic CT–based reconstruction

had minimal bias (regression slope, 0.990), as compared with the
segmentation-based methods (regression slope, 0.905). A peak

signal-to-noise ratio of 35.98 dB in the reconstructed PET activity

was observed, compared with 29.767, 29.34, and 27.43 dB for the

Siemens Dixon-, UTE-, and registration-based μ maps. Conclusion:
A patch-matching approach to synthesize CT images from dual-

echo UTE images leads to significantly improved accuracy of PET

reconstruction as compared with actual CT scans. The PET recon-
struction is improved over segmentation- (Dixon and Siemens UTE)

and registration-based methods, even in subjects with pathologic

findings.
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Hybrid medical imaging systems, such as PET/CT and PET/
MR, are routinely used as diagnostic tools for brain imaging in

clinical and research environments. In PET/CT systems, x-ray

attenuation coefficients from CT images are used for attenuation

correction of PET images. Recently, PET/MR systems have been

introduced (1) in diagnostic applications. A significant challenge

for PET/MR systems is that the intensity of a brain MR image is

based on magnetic properties (e.g., proton density, the longitudinal

and transverse relaxation times) that, unlike in CT, have no

straightforward relation to electron density, which determines

g-photon attenuation.
Different segmentation-based and atlas-based methods have

been reported to synthesize attenuation coefficient maps (m maps)

fromMR images. Segmentation-based methods rely on 3- or 4-class

segmentations (2–4) of the MR image (e.g., soft tissue, fat, air, and

bone) either using a Dixon-based approach (5) or using intensity-

based segmentation of the MR image. Then, typical CT intensities

are assigned to the corresponding tissue labels to create a CT-like

image. However, Dixon-based and intensity-based approaches often

ignore bone or perform poorly with respect to reconstructing bone.

This is because standard clinical MR scans do not show any signal

for bone. Because bone has the highest attenuation of these tissue

classes, it is an important structure to accurately represent for at-

tenuation correction purposes (6). Ultrashort echo-time (UTE) im-

aging (7) is a relatively new MR imaging technique that enables

imaging of structures with short T2 relaxation times such as bone.

Combined with an image with a longer echo time, when bone

produces extremely low signal, a better bone segmentation can be

obtained from dual-echo UTE (8).
Most atlas-based methods (9–13) rely on learning a regression

from MR intensities to CT Hounsfield units (HU). Instead of just

using voxel intensities, patches or subimages are preferred to es-

timate CT numbers, because a patch encodes neighborhood in-

formation around a voxel (14). We define one atlas as consisting

of one MR image and its corresponding CT image. Multiple atlas

MR images are first deformably registered to a subject’s MR

image. For a patch in the subject MR image, multiple relevant

patches from the atlas MR images are found. Then, corresponding

CT patches are combined to estimate the CT numbers for the
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subject patch. Atlas-based methods usually require that the atlas
MR image be well aligned to the subject. The deformable regis-
tration algorithms (15) that are used for this purpose can be com-
putationally expensive, and the final quality of the PET reconstruc-
tion invariably depends on the accuracy of the registration. This
can be problematic when the geometry of the anatomy between
the atlas and the subject substantially differs or the subject images
exhibit pathologic findings.
In this paper, we propose an algorithm called GENErative Sub-

Image Synthesis (GENESIS) to synthesize a CT image (or m map)
from dual-echo UTE images using reference or training data. Our
reference data are distinguished from the atlases in atlas-based
methods in that although an atlas is needed to be registered to
the subject (12,13), we do not require any registration between
a reference and the subject.
Our approach matches patches between the reference images

and subject images based on a statistical model, similar to the idea
of coherent point drift (16). The novelty of the method is 3-fold.
First, it does not require any segmentation of the MR images.
Second, it does not require the reference images to be registered
to the subject images. Third, unlike most algorithms that use the
MR images only to determine the optimal matching patches in the
reference data, our algorithm uses the reference CT image as well.

MATERIALS AND METHODS

Data Description

Data were acquired under an institutional review board–approved
protocol. All subjects gave written informed consent. Five patients

were scheduled for 18F-FDG PET/CT and were recruited to have
PET/MR immediately after the PET/CT. In addition to the MR imag-

ing, for the purposes of this study, the PET data acquired on the PET/
MR imaging and the CT data acquired on the PET/CT were used. The

PET data were corrected for attenuation using 4 different methods of
generating the attenuation map (m map). Images from an additional 30

subjects who had undergone MR imaging with UTE sequences, 29
subjects with Dixon MR imaging, and 31 subjects with CT were also

used for comparison later.

MR and PET images were acquired on a 3-T Siemens Biograph
mMR. The dimensions of the MR UTE images were 192 · 192 · 192,

and the resolution was 1.56 mm3 (repetition time [TR], 11.94 s; echo
time [TE], 70 ms/2.46 ms; flip angle, 10�). PETwas acquired for 5 min

approximately 90 min after injection of approximately 370 MBq of
18F-FDG. For comparison, MR Dixon images were acquired with

dimensions of 192 · 126 · 128 and resolution of 2.08 · 2.08 ·
2.34 mm (TR, 3.6 ms; TE, 1.23/2.46 ms; flip angle, 10�). Attenuation
maps were inserted in the original MR–attenuation-corrected DICOM
files and imported into a specialized computer workstation for PET

retrospective image reconstruction. The image reconstruction was per-
formed using a 3-dimensional ordered-subset expectation-maximization

algorithm (17) with 3 iterations and 21 subsets on a 344 · 344 ·
127 matrix with a 4-mm gaussian filter.

CT images were acquired on a Biograph 128 PET/CT scanner
(Siemens) with a tube voltage of 120 kVp, dimensions of 512 · 512 ·
149, and resolution of 0.58 · 0.58 · 1.5 mm. CT images were rigidly
registered to the corresponding MR images from the same subject.

Real and synthetic CT images were transformed to m maps (unit,
cm21) using the following criteria (11),

m 5

�
9:6 · 1025ðh1 1;000Þ h# 47 HU
5:1 · 1025ðh1 1;000Þ1 4:7 · 1022; h. 47 HU;

Eq. 1

where h denotes CT intensities in HU.

Inputs for CT Synthesis

Our reference data are defined as a triplet of coregistered images
{a1, a2, a3} having the same resolution, where a1 and a2 denote dual-

echo UTE images, where typically the first echo shows signal in bone
and the second echo does not. The variable a3 denotes the correspond-

ing CT images. The top row of ½Fig: 1�Figure 1 shows a set of reference
images. The subject dual-echo UTE images are denoted by b1 and

b2. All the MR scans, a1, a2, b1, b2, are intensity-normalized such that
the mode of their white matter intensities is at unity. This intensity

normalization step is performed automatically on the basis of image
histograms and is required to allow the intensity scales to be of compa-

rable magnitude. At each voxel of the reference images, 3-dimensional
overlapping patches (of size p · q · r) are considered and stacked into

1-dimensional vectors of size d · 1, where d 5 pqr. The MR feature
vector at the jth voxel of the reference images is the concatenation of

corresponding UTE patches, denoted by yj 2 ℝ2d. The CT feature
vector is the CT patch, vj 2 ℝ2d, j 5 1, . . . , M. Similarly, subject

images b1 and b2 yield MR features denoted by xi, i 5 1, . . . , N,
xi 2 ℝ2d, with N and M representing the number of voxels in the

subject and the reference head, respectively. The unobserved CT sub-

ject patches are denoted by ui 2 ℝd. We combine the patch triplets as
3d · 1 vectors pi 5 ½xTi uTi �T and qj 5 ½yTj vTj �T. The subject and the ref-

erence patch clouds are defined as the collection of patch triplets
P5 {pi} and Q5 {qj}. For simplicity, we will use the word patch in place

of feature vectors throughout the paper.

Synthesis Algorithm

The subject and reference patches represent a local pattern of

intensities that have been scaled to a similar intensity range. Therefore,
a reference patch yj that has a pattern of intensities that is similar to

FIGURE 1. Top 2 rows show dual-echo UTE images (echo time, 70 μs
and 2.46 ms) and corresponding original CT-based μ maps of reference

and subject with lesion. Bottom row shows Siemens Dixon, Siemens

UTE-based μ map, and our GENESIS result for subject.
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a given subject patch xi likely arises from the same distribution of tissues.
In that case, the corresponding CT patch in the reference vj can be

expected to represent an approximate CT contrast of the subject patch.

One could naively find a single patch-pair within the reference UTE

images that is close (or closest) to the subject UTE patch-pair and then

use the corresponding CT reference patch directly in synthesis. However,

the nearest patch may not be a close representation because the patches

are relatively sparse in their high-dimensional space (e.g., a 3 · 3 · 3

patch exists in a 27-dimensional space). We use 2 techniques to address

the sparsity. First, since the reference patches may not be plentiful enough

to closely resemble all possible subject patches, we consider all convex

combinations (or “linear interpolation”) of

pairs of reference patches to obtain a better
representation of a subject patch. Second, on

the basis of these interpolated reference
patches, we construct a probability distribu-

tion with each interpolated pair acting as the
mean of a component of a gaussian mixture

model.
To tie the MR and CT modalities together,

we further assume that the subject’s un-
known CT patch is a random vector whose

mean is also a convex combination of refer-
ence CT patches with the same weighting

coefficients as those that generate the MR
patches (18,19). However, the CT patch has

a covariance matrix that is unknown and dif-
ferent from the unknown MR patch covari-

ance matrix.
To formalize these ideas mathematically,

consider a subject patch pi and 2 associated

reference patches qj and qk. Then, pi is as-
sumed to arise from a gaussian distribution,

given by

pi;N
�
aitqj 1 ð1 2 aitÞqk;St

�
; t[fj; kg;

ait 2 ð0; 1Þ;
Eq. 2

where St is a covariance matrix associated

with the jth and kth reference patches. The
weighting coefficient ait 2 (0, 1) is larger

when the ith subject patch is more similar
to qj. Here, we assumed that pi is a gaussian mixture of all possible

pairs of reference patches (qj and qk). We define c to be the set of

all pairs of reference patch indices. From Equation 2, t is an element

of c, and jCj 5
�
M
2

�
. Then, each subject patch is assumed to follow an

�
M
2

�
-class gaussian mixture model, where each of the mixtures contains

2 reference patches.
We maximize the probability of observing the subject patches pi

using expectation maximization (20). The details of the estimation
algorithm are provided in the supplemental material (available at

FIGURE 2. Corresponding axial sections of μ maps of subject from original CT (A), GENESIS

(B), and deformable registration (C) demonstrate that, visually, GENESIS μ map is closer to

original CT-based μ map than is that obtained by deformable registration. Cystic lesion in

left frontal lobe (white arrow) is well represented by GENESIS but not by deformable regis-

tration. Similarly, dilation of right lateral ventricle (green arrow) is not represented in deform-

able registration. Misregistration in posterior fossa mislabels much of cerebellum as bone

(orange arrow).

RGB

TABLE 1
Comparison of Correlation and PSNR Between the 4 MR-Based μ Maps and the CT μ Map

Subject no.

Metric MR-based μ map 1 2 3 4 5 Mean ± SD

Correlation (ρ) Dixon 0.89 0.44 0.54 0.74 0.36 0.61 ± 0.21

UTE 0.86 0.55 0.65 0.82 0.44 0.66 ± 0.18

Registration 0.95 0.63 0.67 0.85 0.66 0.75 ± 0.14

GENESIS 0.95 0.70 0.67 0.91 0.70 0.79 ± 0.13*

PSNR (dB) Dixon 19.95 17.59 18.24 18.04 18.01 18.37 ± 0.92

UTE 16.62 16.43 17.50 16.73 16.32 17.12 ± 0.96

Registration 23.09 19.37 18.18 21.52 20.86 20.61 ± 1.90

GENESIS 23.36 21.17 20.62 22.38 22.04 21.92 ± 1.07*

*Largest correlation and PSNR.
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http://jnm.snmjournals.org). On the basis of this model, synthetic CT

patches ui are estimated as

EðuiÞ 5 St2Cwit

�
aitvj 1 ð1 2 aitÞvk

�
; Eq. 3

where wit is the posterior probability that the ith subject patch belongs
to the tth reference patch pair {qj, qk}. Both wit and ait are estimated

using expectation maximization. Once the expectation-maximization

iterations converge, the final values of wit and ait are used in Equation
3. Intuitively, it is observed that an estimated subject CT patch is

a weighted average (weighted by wit) of convex combinations (asso-
ciated with ait) of all reference CT patch-pairs (vj and vk ," j, k). This

is in accordance with our initial assumption that a subject UTE patch
(xi) is a gaussian perturbation of a convex combination of a reference

UTE patch-pair (yj and yk). However, the weight depends on the
similarity between the subject UTE patch (xi) and relevant reference

UTE patches (yj, yk), as well as the similarity between the estimated
subject CT patch (ui) and reference CT patches (vj, vk).

Evaluation Approach

The synthesis took about 1.5 h on a 2.92-GHz Xeon 12-core
processor (Intel). To compare the synthetic CT (or m map) images

with the 5 real CT (or m map) images, we used Pearson linear corre-
lation coefficient r and PSNR (peak signal-to-noise ratio) as error

metrics. The correlation was calculated between two 1-dimensional

vectors, each being a collection of nonzero voxels of the 3-dimensional
image or m-map volume. To compare reconstructed PET images, we

used correlation, PSNR, coefficient of determination R2, and least-
square linear regression slopes of volumes. Comparisons were made

against 3 competing methods: the Dixon sequence (Siemens), the UTE
sequence (version V18P; a Siemens work-in-progress sequence), and

an in-house implementation of an atlas registration–based method (11).
For the atlas registration method, each of the 5

patients with CT and dual-echo UTE MR
scans was used as an atlas. Atlas UTE images

were first deformably registered to the subject
UTE (15). The transformations were then ap-

plied to the corresponding atlas CT images,
and the transformed CT images were finally

combined to generate a subject CT image.
To evaluate the performance of CT syn-

thesis on a larger number of subjects, we
examined the distribution of bone fraction

and air fraction in 30 subjects that had dual-
echo UTE images but did not have corre-

sponding CT images. In addition to the
Siemens UTE m map, synthetic CT images

were generated on these data using both
GENESIS and the atlas-based registration

approaches. Dixon-based results from an-
other set of 28 subjects and CT images from

another 31 subjects were used for cross-
sectional comparison. Images of these sub-

jects were acquired with the same scanners
stated earlier, but these subjects did not have

UTE MR scans or Siemens UTE m maps. To
remove differences in the field of view, which

includes varying amounts of the neck, each

m map or CT image (synthetic and real) was
affine-registered to a template CT image.

The neck region was manually defined on
the template by identifying an axial slice

that corresponds to the neck and head
boundary on the template. The neck regions

were removed from each of the images using
the corresponding axial slice. Bone and air

volumes were computed using a threshold
on the CT images (bone threshold, 300

HU; air threshold, 21,000 HU), or directly
from the m maps for the Siemens-generated

results.

FIGURE 3. Comparison of tissue classification results for bone (A) and

air (B) across different methods as compared with gold standard original

CT. GENESIS most closely corresponds to gold standard. Siemens

Dixon method does not allow for bone classification and hence is not

represented in A.

RGB

FIGURE 4. Comparison of final attenuation correction process for single subject using different

methods. Initial MR UTE images (A) were converted into μ maps (B) generated using Siemens

Dixon and UTE. Deformable registration and GENESIS are compared with gold standard CT.

Blurring of bone is introduced by deformable registration method (white arrow in B). Although

attenuation-corrected PET images (C) appear grossly similar, images representing absolute dif-

ference between each of 4 methods and original CT-based attenuation-corrected PET (D) dem-

onstrate marked differences. Color bar for difference images represents 10-fold increase in scale

relative to that for original images.

RGB
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RESULTS

Visual Comparisons

An advantage of GENESIS is that the reference need not be
registered to the subject. Because we match a subject patch to
relevant patches in the reference irrespective of their spatial
location, the synthetic CT quality does not suffer if the anatomy of
the subject differs widely from that of the reference. An example
is shown in Figure 1: synthetic m maps generated for a patient with
a large abnormality. The reference is chosen to be a patient with
no similar lesion in the MR images. In Figure 1, the top 2 rows
show dual-echo UTE images and the corresponding m maps for
the reference and the subject. The bottom row shows the results
from the Siemens Dixon m map (5), the Siemens UTE m map (21),
and our synthesis (GENESIS). The lesion is preserved in the
GENESIS synthetic CT; furthermore, a more realistic recognition
of bone is observed than with the Dixon and UTE m maps. Com-
parison with the registration-based method (11) is shown in½Fig: 2� Figure
2. The white arrow in Figure 2B shows the lesion synthesized by
GENESIS, which cannot be seen in the registration-based ap-
proach because none of the atlases used in registration have any
lesions. Also, because deformable registration is never perfect,
major misregistration error is observed for the registration result
near the cerebellum (Fig. 2C, orange arrow) and minor error is
observed near the ventricles (Fig. 2C, green arrow).

Comparison of Original and Synthetic CT Images

A quantitative comparison of correlation and PSNR between the
4 MR-based m maps and the CT m map is shown in½Table 1� Table 1 for the
5 patients with PET scans. All numbers for these and subsequent
comparisons were computed on the whole head, ignoring back-
ground voxels. GENESIS consistently produced the highest cor-
relation and the largest PSNR for all subjects, indicating that it is
closest to the assumed ground truth. Because the subject with
a lesion (Fig. 1) (subject 3 in Table 1) has a pathologic finding

that the reference does not contain, that subject has the lowest
correlation and PSNR in the GENESIS result.

½Fig: 3�Figure 3 shows the percentage of air and bone fractions with
respect to the relevant subject pool. Siemens UTE m maps, GENESIS,
and registration contain 30 subjects; Siemens Dixon contains 28 sub-
jects; and true CT contains 31 subjects. Because Dixon images do not
provide bone segmentation, they are used only for air fraction com-
parison. GENESIS provides a percentage of bone fractions (median,
16%) similar to that of the original CT images (median, 17%).
Siemens UTE m maps underestimate (median, 5%) and the regis-
tration method overestimates (median, 23%) the bone in the head
(P, 0.001 using Wilcoxon rank-sum test). During registration to
atlases, a little misalignment between the MR images of the
subject and the atlas causes the bones in the corresponding reg-
istered CT images to become misaligned. Their combination
produces blurred edges for the bones, as shown in ½Fig: 4�Figure 4B
(white arrow). Thus, a simple thresholding of CT images gives
a higher bone fraction. The bone edges are comparatively sharper
in GENESIS. Similarly, Siemens UTE and Dixon m maps generally
overestimate the air fraction (P , 0.001), whereas the registration
method underestimates the air fraction (P , 0.001). GENESIS
is comparable to the original CT (P 5 0.75 from the Wilcoxon
rank-sum test).

Comparison of PET Reconstruction

Figure 4B shows the synthetic CT results for a subject compar-
ing 4 methods. Because deformable registration is inaccurate,
errors are seen near the eyes and nasal cavity (white arrow in
Fig. 4B), whereas the GENESIS m map is visually closer to the
truth. It also has better bone–to–soft-tissue discrimination than the
Siemens UTE-based m maps. Reconstructed PET images from
the 5 m maps are shown in Figure 4C. Assuming that the true
CT–reconstructed PET is the ground truth, GENESIS provided
the closest reconstructed images to the truth compared with the
other 3 PET-reconstructed images, as is also seen from the differ-
ence images in Figure 4D. Visually, GENESIS produces similar
reconstructed images of inside the brain.
Scatterplots showing CT-based PET intensities versus MR-

based PET intensities at each voxel of the PET images ( ½Fig: 5�Fig. 5,
subject 3) show that GENESIS is less biased. The solid magenta
lines indicate unit slope and the dashed magenta lines indicate
a robust linear fit of the points. Evidently, for UTE, Dixon, and
registration, most of the points lie below the unit slope line, in-
dicating that the PET intensities are clearly lower than the truth.
This is also indicated by the slopes of the linear regression as
0.914, 0.912, 0.860, and 1.006 for Siemens Dixon, UTE, registra-
tion, and GENESIS, respectively.
Table 2 compares 4 methods ½Table 2�with CT-reconstructed PET images,

with respect to correlation, PSNR, regression slope, and R2. Slopes
of the linear regression (as in Fig. 5) should ideally be unity. With
GENESIS, slopes across the 4 subjects are closer to unity than those
with the other 3 methods. R2 for all 5 subjects is closer to unity than
with the other 3 methods. For subject 3, with a lesion, the PSNR for
GENESIS was smallest among the 5 subjects, as can be attributed to
the fact that subtle lesions near the left ventricles were not synthe-
sized in GENESIS, although the large lesion was synthesized well
(white arrow in Fig. 2B).

Does Choice of Reference Affect GENESIS Synthesis?

In this section, we investigate whether the choice of reference
images influences the quality of our CT synthesis (or PET

FIGURE 5. Scatterplots of CT-based PET intensities vs. MR-based

PET intensities (·104) at each voxel of PET images are shown for Sie-

mens Dixon, UTE, registration, and GENESIS. Solid magenta lines in-

dicate unit slope, and dotted magenta lines are robust linear fit of data.

RGB
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reconstruction). For a single subject, we synthesized 5 synthetic
CT images using 5 other subjects as references, as shown in½Fig: 6� Figure
6. Visually, there is little difference between them. The recon-
structed PET images using the 5 different atlases were also com-
pared with the one generated using the CT m map. The correla-
tions of m maps from the 5 synthetic CT images were consistently
around 0.9 as shown in½Table 3� Table 3. The correlations and PSNRs
between each of the synthetic m maps and original CT m maps
vary by only 0.49% and 1.24%, respectively. Similarly, the corre-
lations and PSNRs of the PET images vary by only 0.01% and

0.64%, respectively. The percentage values are coefficients of var-
iation, computed from the 5 numbers in each row of Table 3.
Therefore, the GENESIS results are insensitive to the choice of
reference.

DISCUSSION

We have described a framework to synthesize CT images using
dual-echo UTE images from a reference. GENESIS does not use
deformable registration, which can sometimes suffer from poor
performance when the atlas and subject images are geometrically
dissimilar. Patch matching can also be susceptible to suboptimal
performance if the reference data are not sufficiently rich.
However, our approach compensates for this potential liability
by not being limited to only patches within the reference data.
GENESIS enriches the reference data by considering convex
combinations of patches sampled from gaussian mixture distribu-
tions.
The original registration-based method (11) uses 27 atlases,

whereas our implementation used only 5. The accuracy of the
synthetic CT images increases with the number of atlases. The
smaller number of atlases potentially decreases the accuracy of
our implementation of the method. Nevertheless, GENESIS out-
performs the registration-based method even with a single refer-
ence image. Furthermore, deformable registrations usually take
significant time as a preprocessing step (;1 h with advanced
normalization tools (15)). Nevertheless, a more detailed analysis
comparing the performance of these 2 algorithms based on the
number of atlases or reference images is warranted in future work.
Currently, the algorithm is implemented as research software

executed in postprocessing. Integration within a clinical workflow

FIGURE 6. Comparison of GENESIS results using different reference

data. Top row shows UTE and CT μ map of subject 3. Similarity of all 5

images in bottom row, each generated using different atlas, indicates

robustness of GENESIS method and its relative independence of choice

of reference atlas.

TABLE 2
Comparison Between 4 Methods with CT-Reconstructed PET Images, with Respect to Correlation, PSNR, Regression

Slopes, and R2

Subject no.

Metric Image type 1 2 3 4 5 Mean ± SD

Correlation Dixon 0.994 0.993 0.992 0.990 0.994 0.993 ± 0.001

UTE 0.994 0.994 0.995 0.991 0.994 0.993 ± 0.001

Registration 0.954 0.982 0.964 0.997 0.875 0.954 ± 0.048

GENESIS 0.996* 0.995* 0.996* 0.998* 0.997* 0.996 ± 0.001*

PSNR (dB) Dixon 30.32 32.95 29.45 25.87 29.75 29.67 ± 2.53

UTE 29.63 33.03 30.28 25.15 28.62 29.34 ± 2.86

Registration 24.95 31.94 24.10 35.34 20.82 27.43 ± 5.99

GENESIS 35.34* 37.78* 34.57* 36.59* 35.61* 35.98 ± 1.24*

Slope Dixon 0.924 0.913 0.914 0.872 0.904 0.905 ± 0.020

UTE 0.912 0.899 0.913 0.870 0.888 0.896 ± 0.018

Registration 0.894 0.987 0.862 1.011 1.039 0.959 ± 0.077

GENESIS 0.983* 0.992* 1.014* 0.986 0.971* 0.990 ± 0.016*

R2 Dixon 0.972 0.973 0.979 0.962 0.967 0.971 ± 0.006

UTE 0.974 0.967 0.982 0.945 0.971 0.968 ± 0.014

Registration 0.889 0.956 0.914 0.987 0.744 0.898 ± 0.094

GENESIS 0.992* 0.989* 0.994* 0.993* 0.985* 0.991 ± 0.004*

*Largest correlation, PSNR, R2, and slope.
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requires data to be pulled from a PACS or scanner, processed, and
sent back to the PACS within the original study. A more seamless
integration could be accomplished by optimizing the code for
speed and implementing the algorithm within the Siemens Image
Calculation Environment.
We have previously presented a CT synthesis method from

a single T1-weighted image for the sole purpose of image
registration (18,19). However, standard T1-weighted MR images
do not have sufficient contrast to distinguish bone from air. There-
fore, the synthetic CT images were not as accurate as those syn-
thesized using dual-echo UTE. Because the synthesis application
was aimed to improve registration of MR and CT brain images,
the imperfections in bone regions did not substantially affect the
results. However, for brain PET attenuation correction, bone is
critically important and this previous method would not be well
suited. On the other hand, the current approach should perform
quite well to improve MR–CT registration.

CONCLUSION

We have shown that by synthesizing a CT-like image from dual-
echo UTE images, better attenuation correction can be obtained
for PET/MR systems. Our method produces synthetic m maps,
which are closer to the CT m maps than either Siemens Dixon-
or UTE-based m maps. We also performed a comparison with
a recent registration-based approach and demonstrated the limita-
tions of registration-based methods for MR to CT synthesis, par-
ticularly when the anatomy between atlas and subject significantly
differs.
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TABLE 3
For 1 Subject, Comparison of 5 Synthetic μ Maps, Generated Using 5 Different References, with CT-Based μ Map and PET

Reconstructions

Patient no.

Image type Metric 1 2 3 4 5

μ map Correlation 0.9073 0.9017 0.9109 0.9017 0.9009

PSNR 22.38 21.87 22.47 21.90 22.26

PET Correlation 0.9979 0.9980 0.9979 0.9980 0.9982

PSNR 36.59 36.98 36.41 36.90 36.86
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