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Total-body PET/CT images can be rendered to produce images of a
subject’s face and body. In response to privacy and identifiability con-
cerns when sharing data, we have developed and validated a work-
flow that obscures (defaces) a subject’s face in 3-dimensional
volumetric data. Methods: To validate our method, we measured
facial identifiability before and after defacing images from 30 healthy
subjects who were imaged with both [18F]FDG PET and CT at either
3or 6 time points. Briefly, facial embeddings were calculated using
Google’s FaceNet, and an analysis of clustering was used to estimate
identifiability. Results: Faces rendered from CT images were correctly
matched to CT scans at other time points at a rate of 93%, which
decreased to 6% after defacing. Faces rendered from PET images
were correctly matched to PET images at other time points at a maxi-
mum rate of 64% and to CT images at a maximum rate of 50%, both
of which decreased to 7% after defacing. We further demonstrated
that defaced CT images can be used for attenuation correction during
PET reconstruction, introducing a maximum bias of23.3% in regions
of the cerebral cortex nearest the face. Conclusion: We believe that
the proposed method provides a baseline of anonymity and discretion
when sharing image data online or between institutions and will help
to facilitate collaboration and future regulatory compliance.
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Improving the resolution of medical imaging systems and facial
recognition algorithms has given rise to concerns about the identifia-
bility of CT, MRI, and PET image data. In any imaging study includ-
ing the head, the surface of the 3-dimensional (3D) volume can be
rendered to visualize the subject’s face. When shared outside a health-
care setting, such an image could be recognizable to an individual or
computer vision system, potentially compromising the confidentiality
of any findings or linked information. With the introduction of total-
body PET/CT, images of the entire human body can be acquired dur-
ing normal clinical or research examinations (1,2). Renderings of
total-body images contain all the same facial information as dedicated

brain studies, as well as any sensitive or identifiable structure in the
remainder of the body. Total-body PET/CT is a growing field with
diverse and valuable prospects, making such concerns all the more
pressing (3–6). Continued use of total-body PET/CT must consider
how differences from conventional PET/CT may compromise patient
privacy and anonymity. This is especially true when data are shared
between institutions or uploaded to online research archives, a practice
that will likely become more common given recent changes to the
National Institutes of Health policies on data sharing (7–9).
Prior studies have focused on the degree to which surface-

rendered MRI and CT images are identifiable to a subject’s photo-
graph (10–15). The identifiability of PET images using various
tracers and changes to quantification after defacing were first studied
in 2022 (16). These studies typically assume a motivated attacker with
access to several photographs of a subject, and knowledge that the
subject’s CT or MRI study exists within a certain cohort. Under these
conditions, the chances of correct identification can approach 100%
for MRI data (15). Defacing and refacing can reduce this probability
to 8%, using a method in which face regions are registered to and
replaced with a population average (16). These methods are all tailored
for dedicated head scans and assume some approximate position of
the face within the imaging field of view. Working with total-body
data presents the challenge that the face is not restricted within the
field of view and that the head is typically not fixed. Patient height,
rotation of the head, and positioning of the arms can all complicate the
process of locating the patient’s face as part of the defacing process.
The uEXPLORER PET/CT scanner is the first total-body PET/CT

scanner and was installed at the University of California–Davis Health
in 2019 for clinical and research use (1,17). The uEXPLORER has an
axial field of view of 194cm, permitting simultaneous PET acquisition
of the whole body. The uEXPLORER also contains an 80-row 160-
slice CT scanner capable of image acquisition with a minimal slice
thickness of 0.5mm. A head-to-foot CT scan is acquired with each
PET scan and used for attenuation correction and anatomic localiza-
tion. Because of the potential for high-resolution, low-noise imaging
of the whole body, we believe that facial anonymization is an impor-
tant consideration for data acquired on the uEXPLORER or any other
high-resolution PET scanner with a long axial field of view.
In this work, we first present a method for surface rendering of

total-body PET/CT data obtained from the uEXPLORER scanner.
Subsequently, we present a method to locate and obscure faces in a
way that provides a baseline of anonymity when sharing data. After
applying our defacing workflow, we then tested the identifiability
of the initial and defaced PET and CT images using a facial recog-
nition system built on Google’s FaceNet (18,19). Finally, we have
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considered the use of a defaced CT scan for attenuation correction
during PET reconstruction to evaluate the impact of CT defacing
on PET quantitation.

MATERIALS AND METHODS

uEXPLORER PET/CT Data Acquisition
In this work, we used a group of healthy volunteers who underwent

uEXPLORER [18F]FDG PET/CT scanning at multiple time points during
a single visit. The study was approved by the Institutional Review Board
at the University of California–Davis, and all subjects provided written
informed consent. One cohort of 15 participants was injected with 20 6

2 MBq of [18F]FDG and underwent total-body PET/CT imaging at 0,
1.5, and 3 h after injection. A second cohort of 15 participants was
injected with 3726 17 MBq and underwent 6 PET/CT scans at 0, 1.5, 3,
6, 9, and 12 h after injection. In full, the study contained 30 participants,
16 of whom were female (mean age, 47 6 13 y; mean body mass index,
28 6 5 kg/m2; mean height, 175 6 10 cm), with 135 PET scans and
135 CT scans. CT images were reconstructed with a voxel size of 0.973
0.973 2.3 mm, whereas PET images were reconstructed with a 2.3-mm
isotropic voxel size. The details of each acquisition for the 2 cohorts are
shown in Table 1.

For all 30 participants, the CT scan obtained at the 90-min time point
was acquired following the PET/CT clinical low-dose protocol with
140 kVp, an average of 50 mAs, and automatic dose modulation. For
all other time points, the CT scan followed a research ultra-low-dose
protocol with 140 kVp, an average of 5 mAs, and automatic dose
modulation.

PET imaging was performed for 60 min at
the first time point (0–60 min) and 20 min for
all other scans (e.g., 90–110 min). The PET
image at the initial time point was recon-
structed from 40 to 60 min to produce a static
image matching the acquisition duration of
other time points. Reconstructed PET images
from all other time points were generated from
data acquired over 20 min. As the injected
activity decays over time, it is expected that the
quality of surface-rendered images will also
decrease.

Surface Rendering
Rendering of surfaces from PET or CT fol-

lows several steps. The first is identification of
an optimal threshold to create a binary image,

capturing the surface structure from either modality. In CT, Otsu’s
method (20) for binarization is applied to the central transverse slice. In
PET, half the mean value of the central coronal slice is used as the
threshold. Voxels exceeding the threshold and not attached to the larg-
est region (the body) are removed to provide a clearer surface render-
ing. In the second step, a 2-dimensional distance image is computed in
which pixel value represents the distance from the back of the imaging
volume to the first nonzero voxel in the binary image mask. The third
step is computing of the 2-dimensional Sobel filter on the distance
image, with gradient values being clipped at 10 times the pixel size for
PET or 20 times the pixel size for CT. Finally, for a more realistic ren-
dering, the gradient image is inverted. This step ensures that pixels in
flatter regions are brighter and that those on edges are darker, creating a
more natural-looking, front-lit image (Supplemental Fig. 1; supplemen-
tal materials are available at http://jnm.snmjournals.org).

Other software packages exist for rendering surfaces from 3D
image volumes and have been used successfully in dedicated head and
brain studies (15,21). Our purpose in developing a custom rendering
process was to establish a fast, automated method optimized for total-
body data. Furthermore, we wished to minimize external dependen-
cies, for easier integration into an in-house defacing workflow.

Face Detection and Blurring
For face detection in the rendered images, 2 methods were used. In

the first method, a multitask cascaded convolutional neural network
(MTCNN) was trained for face detection (22,23). This approach requires

TABLE 1
Scan Details for 30 Subjects Imaged at 3or 6 Time Points

Cohort
Participants

(n) Modality Initial* 90min 3h 6 h 9h 12h

Low-dose
cohort

15 CT parameter 140 kVp/
5 mAs

140 kVp/
50 mAs

140 kVp/
5 mAs

NA NA NA

PET activity† 15 MBq 11 MBq 6.3 MBq NA NA NA

Full-dose
cohort

15 CT parameter 140 kVp/
5 mAs

140 kVp/
50 mAs

140 kVp/
5 mAs

140 kVp/
5 mAs

140 kVp/
5 mAs

140 kVp/
5 mAs

PET activity† 288 MBq 209 MBq 117 MBq 36.8 MBq 11.6 MBq 3.65 MBq

*Initial CT and PET images were at 0 and 40min, respectively.
†Reported PET activity is actual injected dose averaged over all subjects. Later time points indicate remaining activity after decay of

[18F] (not accounting for excreted activity).
NA 5 not applicable.

FIGURE 1. (Top) Faces rendered from CT images at 6 time points. Ninety-minute time point used
clinical low-dose CT protocol. All others used research ultra-low-dose protocol. (Bottom) Rendering
of defaced images at each time point.
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minimal preprocessing and is robust for varying face angle and lighting.
However, we found that the MTCNN struggles to identify faces in low-
resolution images or when facial features are not prominent, as may
occur in rendered PET images. In the second method, a Haar cascade
classifier was implemented in OpenCV (24). This approach is computa-
tionally inexpensive but more susceptible to noise and false-positives.
Compared with the MTCNN detector, we found that this approach may
not accurately detect faces at an angle or in different lighting conditions.

The MTCNN face detector was applied first, as we found it to pro-
vide an accurate face-bounding box with few false-positive detections.
If no face was identified by the MTCNN detector, the Haar cascade
classifier was applied as a fallback option since it could be tuned for
greater sensitivity. The resultant bounding boxes tended to be smaller,
with a greater tendency for false-positives on nonface regions.

The process of obscuring the face in a 3D volume followed several
steps. The first was to create a 3D mask of face and nonface voxels using
the 2-dimensional distance image and the coordinates of the face rectan-
gle identified by the face detection algorithm. The 3D mask indicates the
surface of the face and can be extended to cover an appropriate volume.
In our case, we extended the mask 1 cm inward and 3 cm outward from
the face surface. The second step was to down-sample the original image
by a factor of 8 and then up-sample to create a pixelated or blurred ver-
sion of the input with equal dimensions. Linear interpolation was used
while resampling to preserve an approximation of a face structure without
any clearly identifying features. The third step was to replace voxels in
the original image with those in the pixelated image according to the 3D
face mask.

Defacing Workflow
The defacing workflow (illustrated in Sup-

plemental Fig. 1) consists of creating a surface
rendering, identifying the face position in the
image, and blurring the corresponding surface
in the input 3D image. This workflow was
applied to PET and CT images acquired for all
subjects at all time points. We subsequently
visually evaluated whether the face detection
algorithm had correctly identified a face in each
image. Visual evaluation allowed us to gauge
the quality of rendered images, to tune the
binarization threshold selection and image con-
trast to provide more realistic renderings, and
to ensure that the pixelation process sufficiently
obscured the face. All algorithms were imple-

mented in Python, version 3.10, and run on a dedicated server without
multithreading or acceleration. Defacing a single PET or CT image took
approximately 16 s and 8 GB of memory. Code for running the defacing
workflow is available at a public GitHub repository (https://github.com/
aaron-rohn/total-body-anonymization).

Facial Recognition and Validation
We further validated our method by quantifying the identifiability

of PET and CT images before and after defacing. An implementation
of FaceNet was used to map each face image to a 128-dimension
embedding vector, where Euclidian distance is used as a measure of
similarity (18,19). After embeddings for a cohort are measured, clus-
tering methods can be applied to identify distinct members.

We first considered the 15 participants of the full-dose cohort since
images could be rendered at 6 separate time points (90 images for each
modality). After rendering and creating facial embeddings for each PET
and CT image, a nearest-neighbor classifier was used to identify the most
likely matching subject. Cross validation was repeated 6 times (folds), at
each stage leaving out 1 time point for each subject during training. The
remaining time point was then used for testing. Accuracy at each stage
was then measured as the fraction of faces matched to the correct subject
and averaged over the 6-folds. To create a visual representation of clusters
within the 128-dimension FaceNet-generated embeddings, we applied
t-distributed stochastic neighbor embedding (t-SNE) to reduce dimensional-
ity from 128 to 2 and plotted the resulting values (25). To estimate the
degree of clustering in t-SNE plots, the mean within-cluster and between-
cluster deviations were measured. Deviation was measured as…

Mean deviation5

Xn

i
||xi2x̂||

n
,

where n is the number of imaging time points
and x̂ is the centroid of the cluster on the
t-SNE plot. For within-cluster deviation, the
mean deviation was averaged over all subjects.
For between-cluster deviation, the mean devia-
tion of the per-subject centroids was calculated.
The Levene test for unequal variance was used
to calculate the likelihood that the within-
cluster deviation was significantly different
from that of the between-cluster deviation (26).
P values are reported on the t-SNE plots. Sig-
nificantly lower within-cluster deviation indi-
cates identifiability. Within-cluster deviation
equal to or greater than between-cluster devia-
tion indicates a loss of identifiability.

In addition to these evaluations of the high-
dose cohort, we measured the identifiability of
CT images acquired from all 30 subjects at the

FIGURE 2. (Top) Faces rendered from PET images at 6 time points. (Bottom) Rendering of defaced
images at each time point.

FIGURE 3. (A) Facial embeddings for 15 full-dose cohort subjects at 6 time points, plotted in 2
dimensions using t-SNE. Before defacing, facial embeddings are highly clustered. (B) After defacing,
data are no longer clustered.
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first 3 time points only (90 images). We performed a similar series of
cross-validations as well as clustering through t-SNE with this larger
cohort.

When measuring the identifiability of PET images, we considered
both PET-to-PET identification and PET-to-CT identification. The lat-
ter is more alike to some prior studies, which matched renderings to
facial photographs (15,16). Identifiability was measured at each time
point, as activity decayed and image quality decreased.

To verify the quantitative impact of our defacing method, we recon-
structed PET raw data twice: first using the original CT image for

attenuation correction and then using the de-
faced CT image for attenuation correction.
Various brain regions of interest (ROIs) were
compared with measured quantitative differ-
ences between the 2 reconstructed PET images.
Five 1-cm-diameter spheric ROIs were placed
at 5 positions along the outer aspect of the
cerebral cortex, from the front of the brain
moving posteriorly. The selected transverse
plane was near the top of the defaced region,
just above the brow. The relative difference at
each point was measured and plotted.

RESULTS

Performance of Automated Workflow
Among 135 CT images, faces were cor-

rectly identified for all subjects using the
MTCNN detector, and the Haar cascade
classifier was not needed as a fallback
option. The CT protocol (low-dose vs. ultra-

low-dose) had no major visual impact on the quality of the rendered
image or the performance of the face detector (Fig. 1). Among the
135 PET images (Fig. 2), the success of the face detector was influ-
enced by the image activity; high-activity images produced render-
ings of the face with lower noise and a smoother surface, from
which faces were more easily identified. The MTCNN detector per-
formed better at earlier time points, and the Haar cascade classifier
was necessary for robust face detection at later time points (Supple-
mental Fig. 2). In either case, faces were completely obscured after
correct detection in all cases (Fig. 2, bottom).

CT Identification Accuracy—Full-Dose Cohort
Before defacing, faces rendered from CT scans were matched to

the correct subject at a rate of 96% 6 4%. After defacing, faces
were matched in 10% of cases, marginally exceeding the probabil-
ity of random chance (7%, 1/15). In the t-SNE plot before defacing
(Fig. 3A), 15 well-defined clusters corresponded to faces rendered
from the CT images of each subject. Variance of the within- and
between-cluster deviance was statistically different in the original
CT images, with a P value of 8.533 10220. After defacing, no sta-

tistical difference was observed between
with within- and between-cluster deviance,
with a P value of 0.668. The absence of
subject-specific clusters after facial blurring
(Fig. 3B) implies a relative loss of distinction
between faces.

CT Identification Accuracy—Full- and
Low-Dose Cohorts
When the first 3 time points were used for

all 30 subjects, the identification accuracy of
rendered images from CT scans was 93% 6
3%. After anonymization, faces were
matched in 6% of cases, marginally exceed-
ing the probability of random chance (3.3%,
1/30). The t-SNE plots showed 30 distinct
clusters corresponding to each subject—the
P value for clustering was 3.323 10226

(Fig. 4A). After defacing, the P value for
clustering was 0.211, indicating a loss of
identifiability (Fig. 4B). Some clusters were
still present after defacing; these were random

FIGURE 4. (A) Facial embeddings for all 30 full- and low-dose cohort subjects at first 3 time points.
Before defacing, clusters are present for each participant. (B) After defacing, participants are not
uniquely associated with clusters.

TABLE 2
Identifiability of PET Images Using Classifier Trained with

PET (PET-to-PET) or CT (PET-to-CT) Images

Identifiability (%) Initial 90min 3 h 6h 9 h 12h

PET-to-PET 64.3 50.0 57.1 57.1 28.6 7.1

PET-to-CT 50.0 42.9 28.6 21.4 28.6 14.3

FIGURE 5. (A) Facial embeddings for 15 full-dose cohort subjects at 6 time points. Clustered facial
embeddings for PET images indicate modest but significant (P , 0.05) degree of identifiability.
(B) No clusters are present after defacing. Within-cluster deviation is significantly greater than
between-cluster deviation.
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and related to t-SNE parameter selection. The number of clusters was
less than the number of subjects, and subjects were no longer uniquely
associated with individual clusters.

PET Identification Accuracy—Full-Dose Cohort
In cross-validation of faces rendered from PET images, iden-

tifiability depended on the imaging time point (Table 2). PET-to-
PET identifiability reflects the accuracy of a classifier trained
using PET images only, when querying the identity of a PET
image. PET-to-CT identifiability reflects the accuracy of a classi-
fier trained using CT images, when querying the identity of a PET
image. Before defacing, the maximum PET-to-PET identifiability
was 64% and PET-to-CT identifiability was 50%, both at the ini-
tial 40-min time point. After defacing, the average PET-to-CT and
PET-to-PET identifiability were both 7%, equivalent to the proba-
bility of random chance (7%, 1/15).
The P value for clustering in the original PET images was 0.03,

although the magnitude of the difference between the within- and
between-cluster deviations was less than for CT-derived faces
(Fig. 5A). The P value for clustering after defacing was 0.035, in
this case indicating that the within-cluster deviation was signifi-
cantly greater than the between-cluster deviation, as is consistent
with a lack of identifiability (Fig. 5B).

PET Quantitation with Anonymized CT for
Attenuation Correction
After reconstruction of the PET raw data with the original and

defaced CT scans, the images were qualitatively similar (Fig. 6A). The
normalized difference approached 30% in the face and around the chin

and eyebrow, in the regions where the CT
image was modified (Supplemental Fig. 3).
Immediately behind the face and modified
regions, the percentage change decreased rap-
idly. As shown in Figure 7, the difference in
PET activity in ROI 0, nearest the modified
face region, was23.3%. In ROI 4, the differ-
ence was20.24%.

DISCUSSION

The proposed workflow reliably detected
and obscured faces in both CT (Fig. 1) and
[18F]FDG PET (Fig. 2) images. It should
also scale equally well to other tracers, pro-
vided that there is sufficient superficial
uptake and that an appropriate threshold

for binarization is selected. Validation will be required, however.
Images in this study included scans with both arms up and arms
down and of patients with a range of heights and sizes—factors
that pose a unique challenge to defacing in total-body PET images.
Although the quality of the facial rendering is consistently high in
CT (Fig. 1), PET images vary greatly depending on the degree to
which the radiotracer has decayed, resulting in degraded image
quality (Fig. 2). At delayed time points (or when scan duration or
injected activity is reduced), automated face detection is prone to
false-negative and -positive detections due to increased image
noise (Supplemental Fig. 2). In these cases, however, the images
retain fewer potentially identifying facial features. For reference,
the 3-h time point in the high-dose cohort is closest to the standard
clinical protocol used at our institution (296 MBq, 120min after
injection) (17). At this time point, PET-to-CT identifiability was
28.6% (Table 2).
In our validation, we found that identifiability between modalities

(PET-to-CT) was generally lower than that within a single modality
(Table 2). This difference likely reflects the changing appearance of
faces rendered from PET and CT. PET images have a lower resolu-
tion, and patterns of [18F]FDG uptake may not directly correspond to
the structures imaged in CT. This difference in identifiability is nota-
ble since prior studies on image defacing have focused primarily on
the identifiability of medical images to photographs, such as those
mined from social media (16). Using the Microsoft Azure Face
application programming interface, 1 prior study measured an identi-
fication rate of 78% between faces rendered from CT and photo-
graphs (14). This rate is consistent with the high rate of CT-to-CT

identification measured here, although differ-
ent numbers of participants and methods for
facial recognition will lead to different iden-
tification rates.
For most purposes, the defacing process

should have no major impact on image quan-
titation. Image voxels outside the immediate
region of the face are not altered. We have
not tested the impact of our defacing process
on automated brain segmentation methods,
which may be impacted by defaced images
(15). When defaced PET or CT images are
used for reconstruction or reprojection, as in
motion correction or other advanced applica-
tions, we expect that PET values outside the
immediate region of the face should not

FIGURE 6. (A) Grid showing CT slices before and after defacing. PET images are reconstructed
from same raw data, with different CT scans for attenuation correction. (B) Normalized difference
image showing percentage change in PET activity. High-intensity region in brain largely overlaps
ventricles, which have low [18F]FDG uptake. (C) Absolute difference in PET SUV.

FIGURE 7. (A) Percentage change when using defaced CT for PET attenuation correction. Values
were measured at 5 spheric ROIs along cerebral cortex. Error bars correspond to SD within ROI.
(B) Difference image and corresponding CT slice, overlaid with 5 ROIs.
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show substantial changes beyond a few percentage points (Fig. 7).
When defacing is called for, it is a necessary trade-off that the mea-
sured uptake or attenuation in regions around the nose, eyes, and
cheeks will be altered substantially, potentially obscuring skin or other
superficial lesions.
We note that for many institutions and applications, defacing of vol-

umetric image data is not standard practice and is not currently
required for regulatory compliance. Furthermore, whereas we have
demonstrated identifiability of faces under very specific circumstances,
these do not necessarily represent those of our presumed motivated
attacker. As in any task of identifying anonymized data, there still
exists the problem of the perfect register—a reference database with
one and only one match for the desired target (27). Image data may
indeed make creation of such a database more possible, since an indi-
vidual’s face has the potential to be a highly identifying feature (as
opposed to name, address, birthday, or other identifiers). However
facial recognition is probabilistic, and images must still be mined from
social media or elsewhere, which may not be trivial. Institutional bod-
ies considering the adoption of defacing should weigh these factors
against the associated complexity and loss of image information.

CONCLUSION

We have described a method for defacing total-body [18F]FDG
PET and CT data that makes facial identification of volumetric
images more challenging and has a minimal impact on PET quan-
tification. We believe that the presented workflow provides a base-
line of patient privacy and discretion and will be a valuable
component of data-sharing workflows, which are expected to
become more widespread in the future.
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KEY POINTS

QUESTION: What are the unique privacy concerns from surface
renderings in total-body PET/CT, and how can we mitigate them?

PERTINENT FINDINGS: Total-body PET/CT images are
identifiable and uniquely sensitive because of their capacity
for rendering of the whole surface of the body. The presented
defacing workflow minimizes the possibility of facial identification
without impacting image quantitation.

IMPLICATIONS FOR PATIENT CARE: Image processing
developments that benefit patient care often depend on the
availability of large volumes of image data. Robust anonymization
processes, such as facial anonymization, help to support the
requisite data sharing and archiving.
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