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This study aimed to develop an analytic approach based on [18F]FDG
PET radiomics using stacking ensemble learning to improve the out-
come prediction in diffuse large B-cell lymphoma (DLBCL). Methods:
In total, 240 DLBCL patients from 2 medical centers were divided into
the training set (n 5 141), internal testing set (n 5 61), and external
testing set (n5 38). Radiomics features were extracted from pretreat-
ment [18F]FDG PET scans at the patient level using 4 semiautomatic
segmentation methods (SUV threshold of 2.5, SUV threshold of 4.0
[SUV4.0], 41% of SUVmax, and SUV threshold of mean liver uptake
[PERCIST]). All extracted features were harmonized with the ComBat
method. The intraclass correlation coefficient was used to evaluate
the reliability of radiomics features extracted by different segmentation
methods. Features from the most reliable segmentation method were
selected by Pearson correlation coefficient analysis and the LASSO
(least absolute shrinkage and selection operator) algorithm. A stacking
ensemble learning approach was applied to build radiomics-only and
combined clinical–radiomics models for prediction of 2-y progression-
free survival and overall survival based on 4 machine learning classi-
fiers (support vector machine, random forests, gradient boosting
decision tree, and adaptive boosting). Confusion matrix, receiver-
operating-characteristic curve analysis, and survival analysis were
used to evaluate the model performance. Results: Among 4 semiau-
tomatic segmentation methods, SUV4.0 segmentation yielded the
highest interobserver reliability, with 830 (66.7%) selected radiomics
features. The combined model constructed by the stacking method
achieved the best discrimination performance. For progression-free
survival prediction in the external testing set, the areas under the
receiver-operating-characteristic curve and accuracy of the stacking-
based combined model were 0.771 and 0.789, respectively. For over-
all survival prediction, the stacking-based combined model achieved
an area under the curve of 0.725 and an accuracy of 0.763 in the
external testing set. The combined model also demonstrated a more
distinct risk stratification than the International Prognostic Index in all
sets (log-rank test, all P , 0.05). Conclusion: The combined model
that incorporates [18F]FDG PET radiomics and clinical characteristics

based on stacking ensemble learning could enable improved risk
stratification in DLBCL.
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Diffuse large B-cell lymphoma (DLBCL) is the most common
subtype of aggressive non-Hodgkin lymphoma. Rituximab plus
cyclophosphamide, doxorubicin, vincristine, and prednisone repre-
sents the current first-line treatment, which is effective in approxi-
mately 60%–70% of patients (1). Patients with refractory disease
or relapse after initial treatment have a low probability of cure and
dismal outcomes due to the modest response rates for salvage regi-
mens (2). Therefore, early identification of those high-risk patients
is essential for designing individualized therapeutic intervention.
Current prognostic scoring systems, such as the International
Prognostic Index (IPI) and the National Comprehensive Cancer
Network–IPI, have been the basis for determining prognosis in
DLBCL (3,4). However, those models are inaccurate in predicting
refractory disease, possibly because of their lack of intratumoral
metabolic and functional information.
[18F]FDG PET/CT, a type of molecular imaging and a means to

“transpathology” (5), has been recommended for staging and
response assessment in DLBCL (6,7). Quantitative parameters on
PET/CT, particularly total metabolic tumor volume (TMTV) and
total lesion glycolysis, are considered to have prognostic signifi-
cance in DLBCL (8,9). These parameters may allow for the
assessment of whole-body tumor burden but remain limited in
their ability to characterize phenotypical profiles such as shape,
morphology, spatial distribution, and heterogeneity across individ-
ual lesions. For PET/CT image analysis, radiomics has recently
been proposed as a novel high-throughput, noninvasive approach
that could quantify tumor phenotype at a microscale level via
extracting thousands of imaging-derived features (10). With the
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assistance of artificial intelligence, such
as machine learning, radiomics offers a
promising tool for diagnosis, therapeu-
tic response assessment, and outcome
prediction in various tumor types (11),
including DLBCL (12–16). Preliminary
studies have suggested that the applica-
tion of machine learning algorithms,
such as LASSO (least absolute shrink-
age and selection operator) regression
(16), ridge regression (13), and random
forest (17), may contribute to the
improved radiomics feature selection
and prognostic modeling in DLBCL.
However, most of those studies focused
on evaluating a single machine learning
approach, whereas only a minority used cross combination of dif-
ferent machine learning algorithms (14) or adopted ensemble
machine learning (15). Stacking, an ensemble approach that com-
bines different base classifiers into 1 metaclassifier, has been sug-
gested to provide optimized performance and simplicity (18). In
the present study, we aimed to develop an analytic approach based
on [18F]FDG PET radiomics using stacking ensemble learning to
improve the outcome prediction in DLBCL.

MATERIALS AND METHODS

Study Population
We retrospectively enrolled 240 consecutive patients with newly

diagnosed DLBCL at 2 medical centers, including 202 patients at cen-
ter 1 (the Second Affiliated Hospital of Zhejiang University School of
Medicine) and 38 patients at center 2 (the First Affiliated Hospital of
Zhejiang Chinese Medical University). Detailed information about the
study population is shown in the supplemental materials (available at
http://jnm.snmjournals.org) (19,20). The flowchart of patient enroll-
ment is shown in Supplemental Figure 1. This study was approved by
the Institutional Review Board at each institution, and the requirement
to obtain written informed consent was waived.

PET/CT Imaging Protocol
Image acquisition and reconstruction were in accordance with the

guidelines of European Association of Nuclear Medicine, version 2.0
(21). Patients fasted for at least 6 h and had a blood glucose level
below 200 mg/dL before PET/CT examination. They were scanned at
about 60 min after intravenous injection of [18F]FDG (3.70 MBq/kg).
All PET images were corrected for attenuation using acquired low-
dose CT data. Acquisitions differed between the 2 institutions in terms
of PET/CT scanners, acquisition protocols, and reconstruction settings
(Supplemental Table 1).

PET Image Segmentation and Feature Extraction
PET/CT images were reviewed by 2 independent nuclear medicine

physicians, who were masked to patients’ clinical outcome. The
volumes of interest were semiautomatically delineated using LIFEx
software (version 6.30, https://www.lifexsoft.org/index.php) (22). Four
different segmentation methods were applied to delineate lesions,
including an SUV threshold of 2.5, an SUV threshold of 4.0 (SUV4.0),
41% of SUVmax, and SUVPERCIST (1.5 3 liver SUVmean 1 2 SDs)
(21,23). SUV was calculated as (tissue radioactivity concentration [Bq/
mL]) 3 (body weight [g])/(injected radioactivity [Bq]). According to
the European Association of Nuclear Medicine guidelines, the liver
SUVmean should be between 1.3 and 3.0 (21). Conventional PET para-
meters including SUVmax, SUVpeak, TMTV, and total lesion glycolysis

of each patient were recorded. The distance between the largest lesion
and the lesion farthest from that bulk was also recorded (16).

Before feature extraction, all PET images were resampled to a voxel
size of 3 3 3 3 3 mm using bilinear interpolation (24) and were dis-
cretized with a fixed bin size of 0.25 SUV (25). In total, 1,245 radio-
mics features were extracted from the entire segmented disease
(patient level) via the open-source toolbox PyRadiomics (version
3.0.1) (16,26), consistent with the Image Biomarker Standardization
Initiative (27). Detailed descriptions of the extracted features are pre-
sented in Supplemental Table 2. The radiomics workflow is shown in
Figure 1.

Feature Selection
The interobserver repeatability of radiomics features was evaluated

using the intraclass correlation coefficient (ICC) in 100 randomly
selected patients from center 1. Features with an ICC above 0.80 were
considered robust and retained for subsequent analysis. The segmenta-
tion method with the maximum number of selected features was con-
sidered to be the most reliable method.

The ComBat harmonization method was applied to pool all conven-
tional PET parameters and radiomics features derived from images
acquired on the 2 different PET/CT scanners (28). Pearson correlation
coefficient analysis followed by the LASSO algorithm were applied to
select features. Details on feature selection are presented in the supple-
mental materials.

Stacking Ensemble Learning–Based Model Construction
Stacking ensemble learning is a complex machine learning algo-

rithm that combines the result of several base learners to generate pre-
dictions into the metalearner to improve predictive accuracy (18). In
this study, random forest, support vector machine, gradient boosting
decision tree, and adaptive boosting were set as the base learners (first
level), whereas random forest served as the metalearner (second level).
The methodologic details are presented in the supplemental materials.
Logistic regression was also applied to generate predictions. Confu-
sion matrix analytics (including accuracy, F1 score, recall, and preci-
sion) were used to compare the performance of different machine
learning algorithms. The detailed parameters of these algorithms are
presented in Supplemental Table 3.

We evaluated the predictive value of 5 different models, including
the radiomics model, the combined clinical–radiomics model, IPI, the
model based on TMTV, the distance between the largest lesion and
the lesion farthest from that bulk, and SUVpeak (17), as well as the
International Metabolic Prognostic Index (29). Receiver-operating-
characteristic (ROC) curve analysis was used to compare the predic-
tive performance of different models.

FIGURE 1. Radiomics workflow.
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Statistical Analysis
All statistical analysis was performed using SPSS (version 26.0), R

(version 4.0.5, http://www.R-project.org), and Python (version 3.10).
Progression-free survival (PFS) was defined as the time from

diagnosis until lymphoma progression or death from any cause. Over-
all survival (OS) was defined as the time from diagnosis to death from
any cause or to the last follow-up. Patients still alive were censored at
the date of last contact. The differences in clinical characteristics were

TABLE 1
Patient Characteristics

Characteristic Training set (n 5 141) Internal testing set (n 5 61) External testing set (n 5 38) P

Sex 0.225

Female 67 30 24

Male 74 31 14

Mean age 6 SD (y) 57.6615.1 60.66 13.4 64.3613.6 0.093

Age (y) 0.269

#60 70 25 14

.60 71 36 24

Ann Arbor stage 0.381

I–II 51 21 18

III–IV 90 40 20

B symptoms 0.231

Yes 39 19 16

No 102 42 22

Performance status 0.324

,2 102 45 32

$2 39 16 6

Extranodal sites 0.432

,2 88 39 28

$2 53 22 10

LDH 0.217

Normal 61 34 20

Elevated 80 27 18

b2-microglobulin 0.745

Normal 95 38 24

Elevated 46 23 14

IPI 0.900

#2 77 35 22

.2 64 26 16

Cell of origin 0.182

GCB 59 21 10

Non-GCB 82 40 28

Therapy regimens 0.560

R-CHOP 126 54 36

R-EPOCH 15 7 2

Endpoints

2-y PFS (%) 69.5 72.1 71.1 0.855

2-y OS (%) 76.6 80.3 73.7 0.569

LDH 5 lactate dehydrogenase; GCB 5 germinal center B-cell–like; R-CHOP 5 rituximab plus cyclophosphamide, doxorubicin,
vincristine, and prednisone; R-EPOCH 5 rituximab plus etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin.

Data are n unless otherwise indicated. P values were calculated by 1-way ANOVA for continuous variables, x2 test for categoric
variables, and log-rank test for survival rates.
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assessed using the x2 test and 1-way ANOVA, when appropriate.
Patients were stratified into high- and low-risk groups using ROC
curve analysis and maximizing the Youden index (30). Survival
curves were estimated by the Kaplan–Meier analysis, and survival dis-
tributions were compared using the log-rank test. A P value of less
than 0.05 was considered statistically
significant.

RESULTS

Patient Characteristics and Outcome
Patients’ clinical characteristics are

summarized in Table 1. No clinical char-
acteristic had statistically significant dif-
ferences among different datasets (all P
. 0.05). The median follow-up intervals
for the training, internal testing, and
external testing sets were 41mo (range,
4–105mo), 44mo (range, 6–104mo),
and 39mo (range, 4–69mo), respec-
tively. By the end of follow-up, relapse
and progression occurred in 56, 21, and
14 patients in the training, internal testing
and external testing sets, respectively,
whereas 45, 16, and 10 patients, respec-
tively, had died.

Feature Selection
Among 4 segmentations, SUV4.0 seg-

mentation showed the highest reliability,
with 830 features (66.7%) retained in the
context of an ICC of more than 0.8 (Sup-
plemental Table 4). After the Pearson
correlation coefficient test, 88 radiomics
features were selected for SUV4.0 seg-
mentation. The optimal features were
obtained by the LASSO algorithm for
construction of different stacking models
(Supplemental Table 5).

Model Performance Evaluation
The model performance for 2-y PFS prediction based on differ-

ent machine learning algorithms is shown in Supplemental Table 6.
For the radiomics model, the stacking classifier showed better per-
formance than the other 4 base classifiers and logistic regression,

TABLE 2
AUCs of Different Models

Training set Internal testing set External testing set

Model PFS OS PFS OS PFS OS

Combined 0.791
(0.725–0.857)

0.843
(0.786–0.899)

0.762
(0.618–0.906)

0.741
(0.572–0.911)

0.771
(0.594–0.948)

0.725
(0.534–0.916)

Radiomics 0.765
(0.697–0.834)

0.787
(0.724–0.850)

0.715
(0.559–0.870)

0.637
(0.447–0.827)

0.707
(0.515–0.899)

0.661
(0.450–0.871)

IPI 0.715
(0.624–0.807)

0.729
(0.734–0.823)

0.717
(0.569–0.864)

0.670
(0.497–0.843)

0.715
(0.531–0.900)

0.689
(0.495–0.884)

TMTV 1 Dmaxbulk
1 SUVpeak

0.696
(0.604–0.789)

0.720
(0.623–0.817)

0.623
(0.457–0.788)

0.722
(0.551–0.893)

0.652
(0.452–0.851)

0.640
(0.432–0.848)

IMPI 0.765
(0.681–0.849)

0.765
(0.676–0.854)

0.699
(0.546–0.851)

0.659
(0.479–0.839)

0.660
(0.470–0.850)

0.689
(0.495–0.884)

Dmaxbulk 5distance between largest lesion and lesion farthest from that bulk; IMPI 5 International Metabolic Prognostic Index.
Data in parentheses are 95% CIs.

FIGURE 2. Kaplan–Meier curves for PFS of combined model (A), PFS of IPI (B), OS of combined
model (C), and OS of IPI (D) in training set. Hazard ratio with 95% CI and log-rank P value are
reported. HR5 hazard ratio.
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except for recall in the training set. For the combined model, the
stacking classifier also demonstrated better performance than the
other classifiers in the training set, internal testing set, and external
testing set. Furthermore, the stacking-based combined model had
higher predictive power than the radiomics model and IPI across
nearly all evaluation metrics.
The model performance for 2-y OS prediction is shown in Sup-

plemental Table 7. For the radiomics model, the stacking classifier
demonstrated superior performance to the other base classifiers
and logistic regression, except for precision in the internal testing
set and accuracy and recall in the external testing set. For the com-
bined model, the stacking classifier had relatively balanced perfor-
mance in the training set but outperformed the other base
classifiers in the internal testing set and the external testing set.
Moreover, the stacking-based combined model performed better
than the radiomics model and IPI.
We compared the performance of the stacking-based combined mod-

els by various combinations of base classifiers. As shown in Supple-
mental Tables 8 and 9, the combination of 4 base classifiers had a more
balanced performance for PFS and OS prediction than did the other
combinations. We also evaluated the performance of the radiomics and
combined models trained on PFS prediction for predicting OS and vice
versa; the results are shown in Supplemental Tables 10 and 11.
The results of ROC analysis are shown in Table 2. The com-

bined model outperformed the other models for PFS prediction,
with the area under the ROC curve (AUC) being 0.791, 0.762, and

0.771 in the training set, internal testing
set, and external testing set, respectively.
A similar trend was observed for OS pre-
diction (the AUCs of the combined
model were 0.843, 0.741, and 0.725 for
the training set, internal testing set, and
external testing set, respectively).

Survival Prediction
Kaplan–Meier survival estimates of the

combined model and IPI in the training
set, internal testing set, and external test-
ing set are shown in Figures 2, 3, and 4,
respectively. The Kaplan–Meier survival
estimates of the radiomics model are
shown in Supplemental Figure 2. The dif-
ferences in survival rates between low-
and high-risk groups were significant
except for OS in the radiomics model in
the external testing set (P5 0.053). More-
over, the combined model demonstrated a
more distinct risk stratification than the
radiomics model and IPI, with larger dif-
ferences between subgroups for both PFS
and OS prediction (all P , 0.05).

DISCUSSION

In this study, we developed an analytic
approach based on [18F]FDG PET radio-
mics using stacking ensemble learning
for outcome prediction in DLBCL.
Radiomics and combined clinical–radio-
mics models constructed by the stacking
method outperformed those built on other
single machine learning classifiers. Fur-

thermore, the combined models integrating radiomics features and
clinical information exhibited predictive performance superior to
that of radiomics-only models and IPI.
To the best of our knowledge, this was the first study to evaluate

the prognostic effect of [18F]FDG PET radiomics through a stack-
ing ensemble learning approach in patients with DLBCL. Several
previous studies have found that machine learning–based PET
radiomics could be of prognostic importance in DLBCL (12–14).
A multicenter study with 317 DLBCL patients suggested that the
radiomics model based on LASSO logistic regression was predic-
tive of 2-y time to progression, with an AUC of 0.76 (16). Another
study using a LASSO-Cox algorithm reported an AUC of 0.748
for the radiomics model in the test set for PFS prediction (12). In a
recent study, Jiang et al. used cross combination of 7 different
machine learning algorithms for feature selection and found that
the radiomics signature obtained by the support vector machine–
support vector machine was highly predictive of PFS (AUC,
0.757) (14). Despite these encouraging findings, a recently devel-
oped ensemble learning approach has revealed diagnostic and
prognostic advantages over a single machine learning method by
aggregating multiple algorithms to achieve higher prediction accu-
racy (31,32). In our current study, the radiomics model built on a
stacking ensemble learning approach outperformed those devel-
oped by the other 4 base classifiers and logistic regression, with
AUCs of 0.715 and 0.707 for PFS prediction in the internal and
external testing sets, respectively. This finding is consistent with

FIGURE 3. Kaplan–Meier curves for PFS of combined model (A), PFS of IPI (B), OS of combined
model (C), and OS of IPI (D) in internal testing set. Hazard ratio with 95% CI and log-rank P value are
reported. HR5 hazard ratio.
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the results from a recent radiomics study on DLBCL, in which a
soft voting ensemble–based model showed higher accuracy than
those based on single machine learning classifiers for 2-y event-
free survival prediction (15). Notably, voting considers only linear
relationships among classifiers whereas stacking is able to learn
complex associations when individual base classifiers are hetero-
geneous (33). In our study, the combined model developed by 4
classifiers showed a more balanced performance than the other
combinations, supporting the potential of stacking ensemble learn-
ing for radiomics analysis in DLBCL.
Our study also demonstrated that the combined models incorpo-

rating patient-level PET radiomics and clinical characteristics
yielded higher AUCs and more distinct risk stratifications than IPI
for outcome prediction in DLBCL, which is in line with previous
observations (12,14,16). Recent studies suggested that the predic-
tive ability of IPI has been weakened in the rituximab era (4). In
this context, PET radiomics might add a new perspective on the
phenotypic characteristics of DLBCL through profiling the intratu-
moral metabolic heterogeneity. Therefore, it is likely that consider-
ing both clinical and imaging features in analysis may offer a
deeper understanding of the complex biologic properties of malig-
nancy and thereby provide a better prognosis estimation.
Radiomics analysis in lymphoma remains challenging because of

the lack of a primary site and the complexity of lesion delineation,
particularly for disseminated disease. To date, no consensus has been

reached on which segmentation method for
lesion delineation in DLBCL is preferable.
Although the 41%-of-SUVmax method has
been recommended by the European Asso-
ciation of Nuclear Medicine for TMTV
evaluation (21), this method is more likely
to be influenced by interobserver variability
(34). Other studies indicated that the
SUV4.0 method could give a good approx-
imation of TMTV for prediction of disease
progression (35). On top of these, the
impact of different segmentations on radio-
mics features for prognosis prediction in
DLBCL remains to be explored. In our
study, we compared the reliability of radio-
mics features based on 4 different segmen-
tation methods. The SUV4.0 method
yielded the highest interobserver reliability,
with 830 features (66.7%) retained in ICC
analysis, which is in line with the results
from a recent study suggesting that
SUV4.0 is the most stable approach (with
excellent reliability for 84.8% of all fea-
tures) among 6 semiautomatic segmenta-
tion methods (36). By contrast, the
interobserver reliability of radiomics fea-
tures based on 41%-of-SUVmax segmenta-
tion was the lowest in the current study,
with only 46 features (3.7%) having excel-
lent reliability. This discrepancy may corre-
late with differences in TMTV delineation.
Previous studies demonstrated that varia-
tions in segmentation methods could have
a marked effect on the outer contour of the
segmentation, thereby influencing radio-

mics features, especially morphologic metrics (36,37). In our study,
the SUV4.0 method exhibited a higher TMTV estimation and more
stable radiomics features than the 41%-of-SUVmax method, indicating
that a higher TMTV may cause the segmentation method to have less
of an impact on radiomics features.
Several limitations of our study deserve mention. First, since

this was a retrospective study with a relatively small sample size,
our results need to be further validated in prospective multicenter
studies involving a larger cohort of patients. Second, we applied
only patient-level radiomics analysis; further studies are required
to compare the impact of different lesion selection methods on
radiomics analysis. Third, we applied ICC, Pearson correlation
analysis, and LASSO for feature selection; further studies will be
required to assess the performance of other strategies, for example,
minimum redundancy maximum relevance and ReliefF. Fourth, to
facilitate comparison with previous results, we used only PET
images for radiomics analysis. A combination of PET and CT
images may lead to the discovery of radiomics features that are
more predictive. Fifth, Ki-67 expression and MYC/BCL-2 double-
hit status are established prognostic factors but were not assessed
in this study because of the incompleteness of the available data.

CONCLUSION

In the present study, we proposed an analytic approach using
stacking ensemble learning for outcome prediction in DLBCL

FIGURE 4. Kaplan–Meier curves for PFS of combined model (A), PFS of IPI (B), OS of combined
model (C), and OS of IPI (D) in external testing set. Hazard ratio with 95% CI and log-rank P value are
reported. HR5 hazard ratio.
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based on [18F]FDG PET radiomics. The stacking-based combined
model that incorporates radiomics features and clinical characteris-
tics could enable improved risk stratification in DLBCL patients.
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KEY POINTS

QUESTION: Can stacking ensemble learning–based [18F]FDG PET
radiomics improve outcome prediction in patients with DLBCL?

PATIENT FINDINGS: In a retrospective study of 240 DLBCL
patients, a stacking ensemble learning–based model that incorpo-
rates radiomics features and clinical characteristics enabled
improved risk stratification.

IMPLICATIONS FOR PATIENT CARE: The stacking ensemble
learning–based model incorporating PET radiomics and clinical
information can be useful for better survival prediction and thera-
peutic decision making.
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