
PET data opens novel scientific and clinical lines of research on the
neurometabolic processes associated with functional integration and
its pathologic disruptions by brain disorders.
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REPLY: We appreciate the comment by Trotta and colleagues
(1) on our recent study (2). Their results contribute to the devel-
oping field of metabolic connectivity imaging (3). Specifically,
Trotta et al. applied a seed-based functional connectivity (sbFC)
analysis of 18F-FDG PET data with seeds placed in key regions of
the known functional MRI (fMRI)–derived resting-state networks
(RSNs). Undoubtedly, along with independent component analysis
(ICA) the sbFC analysis is a useful way of exploring RSNs in PET
data. Of note, in ICA tested results use standard statistical infer-
ence approaches, so they are not really arbitrary as mentioned by
the authors (1). In addition, each network is represented as a single
loading parameter, so the number of tests/comparisons is much
lower compared with the sbFC analysis, which requires a test at
every voxel. Given the format of the letter, details on this analysis
such as size and choice of the seed location are not reported (1).
We think, however, that caution should be taken when examining
RSNs in PET data using seeds derived from fMRI-based networks.
In particular, as shown in fMRI studies, minor changes in the seed
location or size result in spatially varying functional maps (4).
This limitation is expected to be even more critical for a cross-
modality approach. For example, parietal clusters of the default
mode network are localized in 18F-FDG PET data more superiorly
than in fMRI data, both according to Figure 1 in Trotta et al. (1)
and to our experience (5). So far, data on spatial similarity be-
tween peak regions/coordinates within RSNs derived from fMRI
and 18F-FDG PET data in the same subjects are missing. Further-
more, the colleagues raise an important issue of the sample size

(1). Namely, they could detect more RSNs with more study sub-
jects. In line with this observation and in comparison to Savio
et al. (2), we did identify the salience network in another study with
a larger group of subjects (unpublished data). The impact of the
sample size on the network detectability should be systematically
addressed by future studies.
To facilitate the contribution of PET in understanding principles

of brain connectivity, we propose to develop an atlas of RSNs on the
basis of a large 18F-FDG PET dataset, similar to Allen et al. (6).
Such PET-based templates of RSNs may be also of value in char-
acterizing disease-specific alterations at the metabolic network level.
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Semiquantification Limitations: FMTVDMª℗

Demonstrates Quantified Tumor Response to
Treatment with Both Regional Blood Flow and
Metabolic Changes

TO THE EDITOR: True quantification (1–6) is the actual mea-
surement of material within a tested region. In molecular imaging,
the ability to accurately measure isotope accumulation is dependent
on the demonstration that the measuring device, be it a SPECT or
PET camera, is accurately calibrated, is measuring the correct iso-
tope, and can be counted and reproduced serially.
The publication by Humbert et al. (7) is important because it

raises the question of whether PET cameras can detect actual
changes in disease after treatment. To accurately measure changes
in regional blood flow and metabolism it is necessary to rely on a
truly quantified (1–6) method and not on a method that produces
only a calculated value. The Humbert et al. (7) method makes 2
flawed presumptions. First, it applies the wrong pharmacologic ki-
netic model that the isotope absent from the arterial bed traveled
only to the site of interest. Second, it uses a matrix setting, which has
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been demonstrated to produce a loss of signal data, which produces a
significant error rate (2–6). This method produces a semiquantified
value derived from ‘‘first-pass extraction,’’ not an accurate measure-
ment of the amount of isotope within the tissue of interest.
We have demonstrated that using a true quantification method

provides an actual measurement of change in regional blood flow and
metabolism, which is useful in assessment of treatment response.
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REPLY: We thank Dr. Fleming for the interest shown to our paper (1).
In the present clinical research article, we applied a first-pass

PET kinetic model that was developed and validated for blood flow
(BF) measurement many years ago by Mullani et al. (2,3).
Kinetic modeling of 18F-FDG in tissue assumes that there is a

large influx of 18F-FDG into tissue during the first pass of the tracer
that is delivered as a function of the BF to the tissue. The input of
this model is the arterial concentration of 18F-FDG. The tracer then
diffuses across the capillary wall into the extravascular space and
washes out of the tissue at a slower rate without being metabolically
trapped in the cell. The model of Mullani et al. postulates that
during the first pass of a highly extracted tracer through the tumor,
most of it is retained in the tissue and the venous egress of the tracer

is delayed by some time. BF can be calculated during this delay
time by using a simple 1-compartment kinetic model.
We do not think that this method relies on a wrong pharmacokinetic

model. As it is the case in most of the models, it relies on some
assumptions, which may not be fulfilled. Because of incomplete tumor
extraction of 18F-FDG, this simple pharmacokinetic model provides
only an estimation of the BF. Regarding 18F-FDG uptake quantifica-
tion, our PET systems complies with the European Association of
Nuclear Medicine 18F-FDG PET/CT accreditation program, which is
also endorsed by the European Organization for Research and Treat-
ment of Cancer Imaging Group. Importantly, Mullani et al. validated
their model by demonstrating that the estimated BF obtained with first-
pass 18F-FDG measurement was linearly and highly correlated with
BF determined with 15O-H2O PET, the reference standard (3). Later,
Cochet et al. demonstrated that, in breast cancer, BF calculated with
this model was associated with tumor angiogenesis biomarkers (4).
In our work, we did not aim to raise whether 18F-FDG PET can

detect tumor changes during treatment (1). This has already been
demonstrated decades ago. We aimed to evaluate the clinical useful-
ness of 18F-FDG PET in the neoadjuvant setting of breast cancer. We
assessed whether these changes can predict pathologic complete re-
sponse at the end of treatment, which is the only validated surrogate
marker of improved survival in this setting. For this purpose, tumor
metabolic changes clearly outperformed changes of the estimated
tumor BF changes, obtained from the first-pass dynamic images.
We recognize that developing improved imaging approaches to

measure tumor BF more accurately, including SPECT imaging, might
modify our conclusions in the future. Nevertheless, these new methods
require comparison with the more routinely available technique we have
used to prove their superiority and moreover their ability to improve
patients’ care. Contrary to what is written, Fleming et al. have not yet
demonstrated in their previous paper the clinical usefulness of their
method to predict breast cancer histologic response to chemotherapy (5).
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