Cumulated Activity Comparison of ⁶⁴Cu-/¹⁷⁷Lu-Labeled Anti–Epidermal Growth Factor Receptor Antibody in Esophageal Squamous Cell Carcinoma Model

Eric Laffon^{1,2}, Matthieu Thumerel¹, Jacques Jougon¹, and Roger Marthan^{1,2}

¹CHU de Bordeaux, Departments of Nuclear Medicine, Thoracic Surgery, and Respiratory Medicine, Bordeaux, France; and ²University Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U-1045, Bordeaux, France

This work aimed at estimating the kinetic parameters, and hence cumulated activity (A_C), of a diagnostic/therapeutic convergence radiopharmaceutical, namely 64Cu-/177Lu-labeled antibody (64Cu-/177Lucetuximab), that acts as anti-epidermal growth factor receptor. Methods: In mice bearing esophageal squamous cell carcinoma tumors, to estimate uptake (K), release rate constant (k_R), and hence A_C, a kinetic model analysis was applied to recently published biodistribution data of immuno-PET imaging with ⁶⁴Cu-cetuximab and of small-animal SPECT/CT imaging with 177Lu-cetuximab, including blood and TE-8 tumor. Results: K, k_B, and A_C were estimated to be 0.0566/0.0593 g $\cdot h^{-1} \cdot g^{-1},$ 0.0150/0.0030 $h^{-1},$ and 2.3 \times 10^{10}/4.1 \times 10^{12} disintegrations (per gram of TE-8 tumor), with an injected activity of 3.70/12.95 MBq, for ⁶⁴Cu-/¹⁷⁷Lu-cetuximab, respectively. Conclusion: A model is available for comparing kinetic parameters and A_C of the companion diagnostic/therapeutic ⁶⁴Cu-/¹⁷⁷Lu-cetuximab that may be considered as a step for determining whether one can really use the former to predict dosimetry of the latter.

Key Words: ⁶⁴Cu-labeled PET tracer; ¹⁷⁷Lu-labeled SPECT tracer; EGFR; kinetic model analysis; cumulated activity

J Nucl Med 2017; 58:888–890 DOI: 10.2967/jnumed.116.180521

heragnostics strategy relies on noninvasive quantitative immuno-PET to select patients eligible for radioimmunotherapy. In this framework, Song et al. recently investigated a companion diagnostic/therapeutic radiopharmaceutical acting as anti–epidermal growth factor receptor (EGFR) antibody that was prepared via identical chelator, 3,6,9,15-tetraazabicyclo[9.3.1]-pentadeca-1 (15),11,13-trience-3,6,9,-triacetic acid (PCTA), labeled with ⁶⁴Cu or ¹⁷⁷Lu (⁶⁴Cu-/¹⁷⁷Lu-PCTA-cetuximab) (1). This compound was designed for assessing EGFR expression level in esophageal squamous cell carcinoma (ESCC) tumors as well as for subsequent radioimmunotherapy. Any advance in this field is of major interest because innovative therapeutic strategies are actually needed in ESCC patients. In ESCC tumor–bearing mice, the authors reported biodistribution data from immuno-PET imaging

E-mail: elaffon@u-bordeaux2.fr

Published online Jan. 12, 2017.

with ⁶⁴Cu-cetuximab and small-animal SPECT/CT imaging with ¹⁷⁷Lu-cetuximab, including blood (i.e., the tracer input function [IF]) and TE-8 tumor.

We suggest that further information can be derived from Song et al.'s results, which may prove of interest to comprehensively characterize this novel companion diagnostic/therapeutic radio-pharmaceutical. Thus, the aim of this work was to estimate uptake (K), release rate constant (k_R), and hence cumulated activity (A_C)—that is, the number of disintegrations per gram of TE-8 tissue that have occurred from the time of tracer administration (zero) to (theoretically) infinity, after administration of ⁶⁴Cu-cetuximab and ¹⁷⁷Lu-cetuximab for immuno-PET and small-animal SPECT/CT imaging, respectively. To this end, a simple model derived from a previously published kinetic model analysis was used (*2*,*3*). Furthermore, this study addresses the issue of determining whether ⁶⁴Cu-cetuximab imaging might predict ¹⁷⁷Lu-cetuximab A_C, and hence its dosimetry, in a real clinical situation.

MATERIALS AND METHODS

A previously published formula was used for estimating A_C (expressed per gram of TE-8 tissue, in g^{-1}), including K and k_R (3):

$$A_{\rm C} = [K/(\lambda + k_{\rm R})] \times AUC_{\rm IF}, \qquad \qquad {\rm Eq. \ 1}$$

where AUC_{IF} is the area under the curve of the tracer IF (i.e., total number of disintegrations per gram of blood that have occurred from the time of tracer administration to infinity, in g⁻¹). A_C can be derived from mean blood data obtained by Song et al. in a TE-8 tumor model at 2, 24, 48, and 72 h after injection for ⁶⁴Cu-cetuximab: 20.5, 6.4, 4.4, and 2.5 %ID/g (percentage injected radioactivity dose per gram of tissue; Supplemental Table 1 in Song et al. (*I*)). For ¹⁷⁷Lu-cetuximab, mean blood data obtained in a TE-8 tumor model at 2, 24, 72, and 120 h after injection were used: 30.2, 12.1, 6.0, and 3.1 %ID/g (Supplemental Table 2 in Song et al. (*I*)). First, the decay correction of Song et al.'s data was removed—that is, the data were multiplied by $\exp(-\lambda t)$, where λ is the ⁶⁴Cu/¹⁷⁷Lu physical decay constant (i.e., Ln2/12.7 and Ln2/160 h⁻¹, respectively). Then, data were fitted with a monoexponential decreasing function (time constant α , in h⁻¹):

$$A_{b}(t) = A_{b}(t = 0) \times exp(-\alpha \times t), \qquad \text{Eq. 2}$$

where $A_b(t = 0)$ is expressed in %ID/g. In Equation 1, AUC_{IF} is simply $A_b(t = 0)/\alpha$.

The constant k_R (h⁻¹) appearing in Equation 1 can be estimated from the following formula that applies to both PET and SPECT tracer (2):

Received Jul. 1, 2016; revision accepted Oct. 31, 2016.

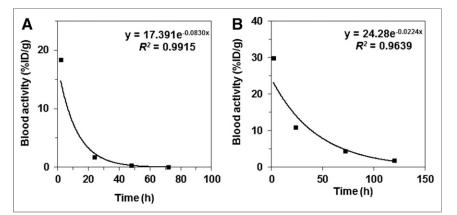
For correspondence or reprints contact: Eric Laffon, Service de Médecine Nucléaire, Hôpital du Haut-Lévèque, Avenue de Magellan, 33604 Pessac, France.

COPYRIGHT © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

$$t_{max} = Ln [(\alpha - \lambda)/k_R]/[\alpha - \lambda - k_R],$$
 Eq. 3

where t_{max} is the uptake peak of the TE-8 tumor time-activity-curve, as published by Song et al. (i.e., involving decay correction): t_{max} = 48 and 120 h for ⁶⁴Cu-cetuximab and ⁷⁷Lu-cetuximab, respectively (1). Equation 3 can be solved for k_R using a solver (Excel; Microsoft).

The constant K (g. $h^{-1}.g^{-1}$) appearing in Equation 1 can be estimated from the following formula involving trapped tracer activity in TE-8 tumor, $A_{Trap}(t)$ (2):


$$\begin{split} A_{\text{Trap}}(t) &= K \times A_b(t=0)[\exp(-\alpha \times t) \\ &- \exp(-(\lambda + k_R) \times t)]/[\lambda + k_R - \alpha]. \end{split} \quad \qquad \text{Eq. 4} \end{split}$$

Mean tissue data published by Song et al. for $A_{Trap}(t)$ in a TE-8 tumor were used: 17.5 and 55.7 %ID/g at t = 48 and 120 h for ⁶⁴Cu-cetuximab and ¹⁷⁷Lu-cetuximab, respectively (Supplemental Tables 1 and 2 in Song et al. (1)). The decay correction of these data was removed—that is, they were multiplied by $exp(-\lambda \times t)$ where λ is the ⁶⁴Cu/¹⁷⁷Lu physical decay constant. Note that Equation 4 does not involve free tracer in blood and interstitial volume, because the part of free tracer becomes negligible in comparison to trapped tracer at late imaging. Indeed, the value of $F \times A_b(t)$ (with F < 1; no unit) is much lower than that of $A_{Trap}(t)$ at t = 48 and 120 h for ⁶⁴Cu-cetuximab and ¹⁷⁷Lu-cetuximab, respectively (Fig. 1) (2,3).

 A_C can also be calculated from original data (after decay correction is removed) published by Song et al. for ⁶⁴Cu-cetuximab and ¹⁷⁷Lucetuximab in a TE-8 tumor model, respectively (Supplemental Tables 1 and 2 in Song et al. (*1*)). A crude estimate of A_C can be obtained by trapezoidal integration and assuming a simple radioactive decay after the last data point.

RESULTS

From Song et al.'s data in a TE-8 model (Supplemental Tables 1 and 2 in Song et al. (*I*)), α (uncorrected for physical decay) was estimated to be 0.0830 h⁻¹ for ⁶⁴Cu-cetuximab and 0.0224 h⁻¹ for ¹⁷⁷Lu-cetuximab (Fig. 1, Eq. 2: R = 0.99-0.98; P < 0.01-0.02) (*I*). Numeric solving of Equation 3 provided the following estimate of k_R: 0.0150 and 0.0030 h⁻¹ for ⁶⁴Cu- and ¹⁷⁷Lu-cetuximab, respectively. From Equation 4, K was estimated to be 0.0566/0.0593 g·h⁻¹·g⁻¹ for ⁶⁴Cu-/¹⁷⁷Lu-cetuximab, respectively. Then, from Equation 1, A_C was estimated to be 2.3 × 10¹⁰ and 4.1 × 10¹² disintegrations per gram of TE-8 tumor, with an injected activity

FIGURE 1. Decreasing monoexponential fitting of IF: 64 Cu-cetuximab (P < 0.01) (A) and 177 Lucetuximab (P < 0.02) (B).

of 3.70 and 12.95 MBq and K/($\lambda + k_R$) ratio of 0.8 and 8.1, for ⁶⁴Cu-cetuximab and ¹⁷⁷Lu-cetuximab, respectively.

For comparison, A_C obtained by trapezoidal integration of Song et al.'s TE-8 tumor data and assuming a simple radioactive decay after the last data point was estimated to be 2.5×10^{10} and 5.3×10^{12} disintegrations per gram of TE-8 tumor, for ⁶⁴Cu-cetuximab and ¹⁷⁷Lu-cetuximab, respectively.

DISCUSSION

This theoretic work aimed at providing further quantitative information, including A_C , regarding the companion diagnostic/ therapeutic ⁶⁴Cu-/¹⁷⁷Lu-cetuximab from recently published biodistribution data in ESCC tumor–bearing mice. A simple model derived from a published kinetic model analysis was used, allowing us to obtain estimates of K, k_R, and hence A_C for ⁶⁴Cu-cetuximab and ¹⁷⁷Lu-cetuximab (2,3).

The uptake rate constants of ⁶⁴Cu-/¹⁷⁷Lu-cetuximab were found to be close: $K = 0.0566/0.0593 \text{ g}\cdot\text{h}^{-1}\cdot\text{g}^{-1}$, respectively. In other words, labeling cetuximab with either ⁶⁴Cu or ¹⁷⁷Lu does not influence its trapping in TE-8 tumors. K actually represents the probability that a ⁶⁴Cu-/¹⁷⁷Lu-cetuximab molecule is trapped in the tissue of interest as the result of an antibody-antigen linking. It does not give any information about its further fate, such as internalization. The release rate constants of ⁶⁴Cu-/¹⁷⁷Lu-cetuximab were found to be low in comparison to K: $k_R = 0.0150/$ 0.0030 h⁻¹, respectively. k_R actually represents the probability that a ⁶⁴Cu-/¹⁷⁷Lu-cetuximab molecule trapped in the tissue of interest is released from its target and returns back to blood. This probability should, additionally, take into account a possible internalization of the antibody-antigen complex that lowers it. Furthermore, we suggest that the 5-fold difference in k_R reported for ⁶⁴Cu-cetuximab versus ¹⁷⁷Lu-cetuximab may be related to the fact that k_R was estimated using peak time values assessed with a 24to 48-h time of resolution for ⁶⁴Cu-/¹⁷⁷Lu-cetuximab, respectively (Eq. 3). This large time of resolution very likely introduces some uncertainty measurement for k_R, especially because it is derived from a logarithmic equation (Eq. 3).

 $A_{\rm C}$ for ¹⁷⁷Lu-cetuximab was found to be much greater than that for ⁶⁴Cu-cetuximab: 4.1×10^{12} versus 2.3×10^{10} disintegrations per gram of TE-8 tumor. This result is strengthened by the crude estimates for $A_{\rm C}$ provided by trapezoidal integration of Song

> et al.'s original data and assuming a simple radioactive decay after the last data point: $A_C = 5.3 \times 10^{12}$ versus 2.5×10^{10} disintegrations per gram of TE-8 tumor, for ¹⁷⁷Lu-cetuximab versus ⁶⁴Cu-cetuximab, respectively. Note that the injected activity was greater for 177Lu-cetuximab than for ⁶⁴Cu-cetuximab: 12.95 versus 3.70 MBq. However, the difference in A_C may also be explained from Equation 1, showing that for close values of K and k_R, the lower the value of α and λ the greater that of A_C. It does emphasize the efficiency of radioimmunotherapy with 177Lu-cetuximab investigated in ESCC tumor-bearing mice, and we suggest that the reliable IF fitting as a monoexponential decreasing function (Fig. 1B; R = 0.98; P < 0.02) is particularly relevant for assessing its dosimetry

(Eq. 1). Furthermore, one may argue that Equation 1 does not take into account the part of free tracer in blood and interstitial volume (F) in the A_C calculation (3). However, we suggest that this part, and hence the related A_C underestimation, is negligible: F is indeed mandatorily much lower than 1, which has to be compared with the ratio K/(λ + k_R) whose value is 8.1 for ¹⁷⁷Lu-cetuximab.

Regarding the issue of determining whether ⁶⁴Cu-cetuximab imaging might predict¹⁷⁷Lu-cetuximab A_C, and hence its dosimetry, in real clinical situations, the current study showed that A_C for ⁶⁴Cu-cetuximab may be obtained from the computed value of $k_{\rm R}$ at uptake peak and the corresponding uptake value (Eqs. 1, 3, and 4). Thus, theoretically, if an average A_C ratio between ⁶⁴Cucetuximab and 177Lu-cetuximab has been obtained from previous experiments (with arbitrary injected activities), an estimate for 177 Lu-cetuximab A_C may be obtained from a single quantitative imaging session with ⁶⁴Cu-cetuximab. However, a main concern about this line of argument must be underlined, which is related to performing PET imaging at uptake peak of ⁶⁴Cu-cetuximab (Eq. 3). Indeed, even if the ⁶⁴Cu-cetuximab IF is known in each individual (i.e., the value of α in Eq. 3), the relevant time delay between ⁶⁴Cucetuximab injection and PET acquisition cannot be predicted in each individual, because, precisely, k_R is unknown. Therefore, we suggest that additional experiments, involving lower times of resolution than those reported by Song et al., are required for knowledge of the k_R range in a large series of individuals that can also provide the range of the A_C ratio between ⁶⁴Cu-cetuximab and ¹⁷⁷Lu-cetuximab (for arbitrary injected activities). If k_R is found to vary within narrow limits for ⁶⁴Cu-cetuximab, the uptake-peak timing might be approximately predicted in each individual and, even, an average k_R value might be used for ⁶⁴Cu-cetuximab A_C calculation. Furthermore, the A_C ratio between ⁶⁴Cu-cetuximab and ¹⁷⁷Lu-cetuximab should also vary within narrow limits for deriving ¹⁷⁷Lu-cetuximab A_C. In other words, additional experiments are required to determine whether the measurement uncertainty of the 177Lu-cetuximab A_C is acceptable or not. Finally, whatever results obtained in a preclinical model, some adjustment is required in humans.

CONCLUSION

The study of Song et al. showed that the companion diagnostic/ therapeutic radiopharmaceutical, namely ⁶⁴Cu-/¹⁷⁷Lu-cetuximab, may be useful as a diagnostic tool for patient selection as well as a potent radioimmunotherapy agent (1). As further evidence, although complexation and catabolism of copper and lutetium may be quite different, the current study showed that the uptake rate constants of ⁶⁴Cu-cetuximab and ¹⁷⁷Lu-cetuximab are close, and their release rate constants are low in comparison with the uptake rate constants. Moreover, because of a longer physical halflife of ¹⁷⁷Lu than ⁶⁴Cu, a longer IF life time of ¹⁷⁷Lu-cetuximab than ⁶⁴Cu-cetuximab, and a greater injected activity of ¹⁷⁷Lu-cetuximab than ⁶⁴Cu-cetuximab (12.95 vs. 3.70 MBq in Song et al.'s experiments), A_C of ¹⁷⁷Lu-cetuximab was found to be much greater (2 orders of magnitude in the current framework) than that of ⁶⁴Cu-cetuximab. However, the current study may be considered as a step for determining whether ⁶⁴Cu-cetuximab imaging might reliably predict dosimetry with ¹⁷⁷Lu-cetuximab in real clinical situations. This major issue requires additional experiments in preclinical models, of which results should be then tested in humans.

DISCLOSURE

No potential conflict of interest relevant to this article was reported.

REFERENCES

- Song IH, Lee TS, Park YS, et al. Immuno-PET imaging and radioimmunotherapy of ⁶⁴Cu-/¹⁷⁷Lu-labeled anti-EGFR antibody in esophageal squamous cell carcinoma model. J Nucl Med. 2016;57:1105–1111.
- Laffon E, Allard M, Marthan R, Ducassou D. A method to quantify at late imaging a release rate of ¹⁸F-FDG in tissues. C R Biol. 2005;328:767–772.
- Laffon E, Bardies M, Barbet J, Marthan R. Kinetic model analysis for absorbed dose calculation applied to brain in ¹⁸FDG PET imaging. *Cancer Biother Radiopharm.* 2010;25:665–669.