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In this work, we assessed the feasibility of attenuation correction (AC)
based on a multi-atlas–based method (m-Atlas) by comparing it with

a clinical AC method (single-atlas–based method [s-Atlas]), on a time-

of-flight (TOF) PET/MRI scanner.Methods:We enrolled 15 patients. The
median patient age was 59 y (age range, 31–80). All patients underwent

clinically indicated whole-body 18F-FDG PET/CT for staging, restaging,

or follow-up of malignant disease. All patients volunteered for an addi-

tional PET/MRI scan of the head (no additional tracer being injected). For
each patient, 3 AC maps were generated. Both s-Atlas and m-Atlas AC

maps were generated from the same patient-specific LAVA-Flex T1-

weighted images being acquired by default on the PET/MRI scanner

during the first 18 s of the PET scan. An s-Atlas AC map was extracted
by the PET/MRI scanner, and an m-Atlas AC map was created using a

Web service tool that automatically generates m-Atlas pseudo-CT im-

ages. For comparison, the ACmap generated by PET/CT was registered
and used as a gold standard. PET images were reconstructed from raw

data on the TOF PET/MRI scanner using each AC map. All PET images

were normalized to the SPM5 PET template, and 18F-FDG accumulation

was quantified in 67 volumes of interest (VOIs; automated anatomic
labeling atlas). Relative (%diff) and absolute differences (j%diffj) between
images based on each atlas AC and CT-AC were calculated. 18F-FDG

uptake in all VOIs and generalized merged VOIs were compared using

the paired t test and Bland–Altman test. Results: The range of error on
m-Atlas in all 1,005 VOIs was −4.99% to 4.09%. The j%diffj on the

m-Atlas was improved by about 20% compared with s-Atlas (s-Atlas

vs. m-Atlas: 1.49% ± 1.06% vs. 1.21% ± 0.89%, P , 0.01). In gener-

alized VOIs, %diff on m-Atlas in the temporal lobe and cerebellum was
significantly smaller (s-Atlas vs. m-Atlas: temporal lobe, 1.49% ± 1.37%

vs. −0.37% ± 1.41%,P, 0.01; cerebellum, 1.55% ± 1.97%vs. −1.15% ±
1.72%, P , 0.01). Conclusion: The errors introduced using either
s-Atlas or m-Atlas did not exceed 5% in any brain region investigated.

When compared with the clinical s-Atlas, m-Atlas is more accu-

rate, especially in regions close to the skull base.
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Commercial PET/MRI systems have recently been implemented
in clinical environments and produce promising results for the as-

sessment of brain disease (1). Compared with PET/CT, the combi-

nation of PET and MRI not only provides higher soft-tissue contrast,

but also can improve PET image quality using partial-volume

correction (1,2).
One inherent drawback of PET/MRI systems is the difficulty in

obtaining accurate attenuation correction (AC). In addition to foiling

the stand-alone claim of PET/MRI, because of the magnetic field of

a PET/MRI device, it is difficult to run CT or rotating point sources

close to a PET/MRI system. Furthermore, an MR image is basically

related to proton density and relaxation properties, yielding a con-

trast different from g-ray attenuation.
Several methods have been proposed to overcome these

problems (3,4). They can be grouped into 3 families, as well as

combinations of these. The first comprises the template-based/

atlas-based approaches (5,6). Such methods generate a patient-

specific AC map by performing nonrigid registration of patient

MR images and one or multiple datasets consisting of CT or AC

maps. Segmentation approaches form the second family. Tissue

components, for example, air, brain tissue, and bone, are segmented

using dedicated MR pulse sequences, such as T1-weighted (T1w)

Dixon-type sequences, or ultrashort echo time sequences (7,8). In

the third family of methods, AC data are directly generated from

the PET emission data, preferably from a system capable of time

of flight (TOF) (9).
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One of the latest commercial PET/MRI scanners, the SIGNA PET/
MRI (GE Healthcare), implements a single-atlas–based method
(s-Atlas) (10). One of our previous studies revealed that this method
is comparatively accurate in supratentorial regions, although not ac-
curate enough in the infratentorial regions (11), possibly leading to
errors in certain clinical brain PET/MRI studies in which cerebellar
tracer uptake is used as a reference for the normalization of the whole
brain uptake. Therefore, s-Atlas needs to be improved. One alterna-
tive method is the multi-atlas–based method (m-Atlas) (6,12). Con-
structing the attenuation map as a composition of locally optimized
image patches, calculated by weighted averaging of a larger atlas
database, should reduce the errors from registration and patient var-
iability and improve the overall accuracy of AC (5,6). Currently,
there is no published or conference paper to test this hypothesis using
clinical TOF PET/MRI data.
The aim of our study was to evaluate the feasibility of imple-

menting m-Atlas using head 18F-FDG TOF PET/MRI data and
compare this method with the clinical standard method of the
TOF scanner (s-Atlas) and with the gold standard method (CT
attenuation-correction method [CT-AC]).

MATERIALS AND METHODS

This study was approved by the institutional review board. All subjects
provided signed informed consent before the examinations. All experiments

were performed in accordance with relevant guidelines and regulations.

Patients

We enrolled 15 patients (9 men, 6 women). The median patient age

was 59 y (age range, 31–80 y). These patients were completely different
from those in the previous study (11).

PET/CT and PET/MRI Examination

The PET/CT acquisition followed the standard protocol for a clinical

oncology study (Discovery 690 TOF PET/CT; GE Healthcare). The
average injected dose of 18F-FDG was 211.66 34.2 MBq (range, 180.7–

325.7 MBq) in accordance with clinical guidelines (13). First, a helical
whole-body CT scan (120 kV; 15–80 mA with automatic dose modula-

tion; rotation time, 0.5 s; helical thickness, 3.75 mm; pitch, 39.37 mm/rot;

matrix size, 512 · 512; slice thickness, 3.3 mm; pixel dimensions, 1.4 ·
1.4 mm2) was acquired for AC of PET data and diagnostic purposes (10).

Subsequently, a whole-body PET dataset including the head was ac-
quired. Patients were transferred to the integrated TOF PET/MRI scanner

(SIGNA PET/MRI; GE Healthcare) immediately after the PET/CT scan,
and a brain PET/MRI scan was obtained as part of the study examination.

Once positioned for PET/MRI, the head was immobilized using firm
foam cushions between the head and coil. In our study, 4 patients un-

derwent a head-only-protocol, 20-min PET acquisition with a standard
head coil (8-channnel HD Brain; GE Healthcare), and the others under-

went a whole-body-protocol, 4-min PET acquisition with a head-and-
neck coil (28-channel GEM Head and Neck Unit; GE Healthcare) because

these patients were also part of another clinical study. The PET/MRI scan
was acquired at 95.8 6 27.0 min after tracer injection.

During the PET on PET/MRI, LAVA-Flex (GE Healthcare) T1w
images (repetition time, ;4 ms; echo time, 2.23 ms; flip angle, 5�; slice
thickness, 5.2 mm with 2.6 mm overlap; 120 slices; pixel size, 1.95 ·
1.95 mm2; acquisition time, 18 s) were acquired for s-Atlas AC. These

parameters were identical to the previous study except for the flip angle
(5� in the current study, 12� in the previous study) (11). The change of the
flip angle used in the default AC acquisition was introduced by the man-
ufacturer soon after the deployment of the first clinical systems. The

version finally approved by the Food and Drug Administration uses a 5�
flip angle. These patient-specific T1w image data were also used as inputs

(but not as atlases) to generate pseudo-CTs using the m-Atlas AC method

as described below.

Reconstruction of AC Map

For each patient, 3 AC maps were generated based on each of the
s-Atlas, m-Atlas, and CT-AC methods (Fig. 1).

Attenuation Map Based on Single-Atlas Method

The s-Atlas AC map was generated from the LAVA-Flex T1w images
using a proprietary process consisting of 4 main steps. First, Hessian bone

enhancement from LAVA-Flex T1w images is performed. Second, a
pseudo-CT is generated by rigid and nonrigid B-spine–based elastic reg-

istration between the enhanced images and a single-head atlas having
continuous Hounsfield values. This atlas is provided by the manufacturer.

Third, the AC-map is generated from the pseudo-CT using the standard
CT lookup tables. Finally, the MR hardware, coil, and bed are added to

the AC map. This entire procedure takes less than 30 s and needs no user

interaction. A more detailed description of the algorithm is provided by
Wollenweber et al. (10).

AC Map Based on Multiple-Atlas Method

The pseudo-CT based on m-Atlas was obtained from the NiftyWeb
website (http://cmictig.cs.ucl.ac.uk/niftyweb/program.php?p5 PCT). This

Web service tool automatically generates an m-Atlas pseudo-CT corre-
sponding to a patient-specific head MR image (6,12). The CT synthesis

method relies on a preacquired set of aligned MRI/CT image pairs from
multiple subjects. Each MR image from the database is aligned to the

target MR image using deformable registration. The CT images in the
database are then mapped using the same transformation to target the MR

image. Finally, the set of registered CT images is fused to generate the

pseudo-CT according to the local morphologic similarity between the
target and registered MR images. On average, it took 1 h 45 min to

generate the pseudo-CTs with the images we uploaded to the website
when the method ran on a single machine; the registrations (high accu-

racy) were run in series and on 5 threads. The resulting pseudo-CT was
converted into an ACmap using a Matlab version (The MathWorks) of the

same bilinear mapping implemented in the SIGNA PET/MRI. Finally, the

FIGURE 1. Flowchart illustrating generation of the 3 AC maps. More

detailed descriptions are provided in previously published studies (6,10,12).
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MR hardware was added using the s-Atlas data exported from the PET/

MRI scanner. The parameters of the LAVA in-phase MR sequence used in
this study and the subsequent imaging contrast were similar but not iden-

tical to the ones used to create the multi-atlas database. The MR-AC
LAVA is a gradient echo sequence with a repetition time of approximately

4 ms, an echo time of 2.23 ms, and a flip angle of 5 �, whereas the multi-
atlas dataset was created using a T1w magnetization-prepared rapid

gradient-echo sequence with a repetition time of 2,200 ms, an echo time of
2.9 ms, an inversion recovery of 900 ms, and a flip angle of 10� (6,12).
Representative LAVA-Flex T1w images are shown in Supplemental Figure
1 (supplemental materials are available at http://jnm.snmjournals.org).

Coregistered Attenuation Map Based on CT Method

The processing steps detailed below were performed using custom
Matlab scripts (version 7.11.0) and PMOD 3.6 (PMOD Technologies

Ltd.). The coregistered CT-AC map was generated as follows. First, the
original CT-AC map was exported from the PET/CT scanner. Second,

from this map, the CT table was removed manually. Third, a threshold
was set to extract the outside air component from the CT-AC map. None

of the images used in this study contained artifacts likely to affect air
thresholding. Fourth, a normalized mutual information matching algo-

rithm (PMOD) was used to derive the registration parameters necessary
to match CT to LAVA-Flex T1w, and final matching was performed using

custom Matlab routines. Finally, the CT-AC map was superimposed on
the s-Atlas map, thereby replacing it (11).

Reconstruction of PET Images

Only the list-mode raw PET data from the PET/MRI examination were
used. PET images were reconstructed with AC based on each of the 3 AC

maps and the following parameters: fully 3-dimensional ordered-subset
expectation maximization iterative reconstruction; subsets, 28; iterations,

8; pixel size, 1.17 · 1.17 mm2; point spread function modeling On;
transaxial postreconstruction gaussian filter cutoff, 3 mm; axial filter,

1:4:1; and scatter normalization dead time On (14). All images were
reconstructed both with and without TOF.

Analysis

All PET images were spatially normalized to a brain template (SPM5;
University College London), and 67 automated anatomic labeling (AAL)

volumes of interest (VOIs) were applied (Supplemental Fig. 2). In each
VOI, 18F-FDG uptake values from CT-AC (PETCT) and each s-/m-Atlas

(PETs-/m-Atlas) were measured. The evaluation was performed as follows.
In the 67 AALVOIs of each of the 15 patients (1,005 VOIs in total),

Bland–Altman analysis was performed by calculating relative difference

(%diff) of both s-Atlas and m-Atlas. Absolute relative difference (j%diffj)
was also calculated. The %diff in each VOI and each patient was defined as:

%diffVOI jpatient i 5
ðPETCTÞ 2 ðPETAtlasÞ

ðPETCTÞ :

And the average %diff of all 1,005 VOIs was defined as:

%diffaverage all  1;005VOIs 5
1

1; 005
+
15

i 5 1

+
67

j 5 1

%diffVOI jpatient i:

To assess the error distribution in the brain, the 67 AAL VOIs were

merged into 7 more generalized VOIs: frontal lobes, occipital lobes,

parietal lobes, insula and cingulate gyrus, central structures (caudate

nucleus, putamen, pallidum, and thalamus), temporal lobes, and cerebel-

lum (Supplemental Fig. 3). The %diff and j%diffj were calculated in each
merged region. All image analyses were performed using PMOD 3.6.

Statistical significance was assessed using a paired t test or Wilcoxon
signed-rank test depending on whether its variance had a normal distri-

bution or not, which was assessed using a Kolmogorov–Smirnov test. For

the comparison of j%diffj, 1-tailed testing was used to know which one

was superior and closer to zero. And for the comparison in each merged

region, Bonferroni adjustment was used. A P value of less than 0.05

was deemed statistically significant. All statistical analyses used SPSS

Statistics (version 19.0.0; IBM).

RESULTS

All 15 patients successfully underwent PET/CT and PET/MRI
examinations.
Linear regression showed PETCT and each PETs-/m-Atlas to be

highly correlated (R2 . 0.99) to a straight line with a slope of

almost 1.00 (Figs. 2A and 2B). The Bland–Altman plot for all
1,005 VOIs proved that m-Atlas had no bias and no underestimation
or overestimation (20.06% 6 1.50%; range, 24.99% to 4.09%).

These results are superior to the result of s-Atlas (0.17% 6 1.82%;
range, 25.00% to 4.84%) (Figs. 3A and 3B). The scatterplots of

each VOI are given in Figure 4. Furthermore, the average j%diffj of
the 1,005 VOIs with m-Atlas was significantly smaller than s-Atlas

by 20% (s-Atlas vs. m-Atlas, 1.49% 6 1.06% vs. 1.21% 6 0.89%,
P , 0.01, Table 1). Without TOF, j%diffj of both s-Atlas and

m-Atlas significantly increased compared with TOF (s-Atlas, 1.71%6
1.28%, P , 0.01; m-Atlas, 1.51% 6 1.19%,
P , 0.01; Table 1).
The box plot of each generalized VOI

shows that the underestimation with s-Atlas

was pronounced in regions close to the skull
base, such as the temporal lobes and cere-
bellum (Fig. 5). Notably, the %diff with

m-Atlas in these regions was significantly
smaller (s-Atlas vs. m-Atlas: temporal lobes,

1.49% 6 1.37% vs. 20.37% 6 1.41%, P ,
0.01; cerebellum, 1.55% 6 1.97% vs.

21.15% 6 1.72%, P , 0.01; Table 2; Sup-
plemental Table 1). In the scatterplot of each

generalized VOI, different degrees of positive
correlation were found between s-Atlas and
m-Atlas results, with a slope of 0.334–0.731

(Fig. 6; Table 3).
Representative cases are given in Figure 7.

Generally, the error in the temporal lobes
and cerebellum were pronounced on both

FIGURE 2. Regression plots between CT-AC and s-Atlas (A) and CT-AC and m-Atlas (B) for 67

VOIs · 15 patients.
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s-/m-Atlas methods, and the trend of over-
or underestimation varied in each patient.

DISCUSSION

In this study, we evaluated the clinical
feasibility of a multi-atlas–based method by
comparing it with a single-atlas–based AC
method—which is clinically used in our
institution—using data from patients imaged
in a clinical TOF PET/MRI scanner. The
overall error of m-Atlas was 20% lower than
that of s-Atlas. Without TOF, the overall
error of both s-Atlas and m-Atlas increased
by 10%–20% compared with TOF. With the
m-Atlas, significant improvement was found
in the temporal lobes and cerebellum in
comparison with the s-Atlas.

To our knowledge, this is the first study to evaluate the performance
of the chosen m-Atlas using data acquired on a TOF PET/MRI
scanner. The features and advantages of this study are as follows.
First, we performed the assessment using the real TOF PET/MRI

scanner data, not simulation data, for example, combining PET/CT
data with MRI data. State-of-the-art TOF PET/MRI machines using
silicon photomultipliers with less than 400 ps temporal resolution
allows for TOF acquisition (15). TOF measurement cannot fully
compensate for the error of AC map but makes the residual error
spread over a much larger area, preventing localized high-error re-
gions (16–18). Therefore, evaluating the clinical feasibility with a
new AC method is desirable in this setting.
Second, we compared the m-Atlas with the s-Atlas method, which

is currently used in clinical PET/MRI scanners such as those installed
in our institution. If only 1 method is compared with the gold standard
in a small sample, results may highly depend on the interindividual
variability. Hence, for testing the clinical feasibility of a new method,

TABLE 1
%diff and j%diffj in 18F-FDG Uptake (kBq/mL) Between CT-
AC and Each s-/m-Atlas in All Regions (67 · 15 5 1,005

VOIs)

Parameter With TOF Without TOF

%diff on s-Atlas* 0.17% ± 1.82% 0.06% ± 2.13%

%diff on m-Atlas* −0.06% ± 1.50% 0.03% ± 1.92%

j%diffj on s-Atlas† 1.49% ± 1.06% 1.71% ± 1.28%

j%diffj on m-Atlas† 1.21% ± 0.89% 1.51% ± 1.19%

*s-Atlas vs. m-Atlas, P , 0.01.
†With TOF vs. without TOF, P , 0.01.
%diff is CT-AC minus s-/m-AC, divided by CT-AC. j%diffj is

absolute value of %diff.

FIGURE 3. Bland–Altman plots of CT-AC and s-Atlas (A) and CT-AC and m-Atlas (B) for 67 VOIs ·
15 patients. Average and SD of %diff are given in Table 1.

FIGURE 4. Scatterplot of %diff on s-Atlas and on m-Atlas.

FIGURE 5. Box plot of each generalized VOI of s-Atlas (blue box) and

m-Atlas (green box). In temporal lobe and cerebellum, %diff on m-Atlas is

significantly smaller than that on s-Atlas. **P , 0.01 using paired t test

with Bonferroni adjustment.
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the comparison with current clinical methods on PET/MRI scanners
is mandatory.
Third, through the use of a widely available brain template (AAL),

our results can be readily applied to another dataset or used in other
centers.
The error of the investigated AC methods may be caused not only

by the systematic errors due to the atlas model but also by the less
systematic ones. A good correlation with constant offset would point
toward shortcomings of the atlas model (e.g., temporal bone is so
thin that it causes systematic underestimation of activity in the region
close to the bone), whereas a bad correlation would suggest less
systematic errors, such as those caused by misregistration, which
was seen in the occipital/cerebellar region (Fig. 6; Table 3).
In our study, the range of absolute relative error in any VOI did

not exceed 5%, and the relative error and absolute relative error of
m-Atlas across all 1,005 VOIs were20.06%6 1.50% and 1.21%6
0.89%, respectively, which are generally comparable to other studies
(19–22). Previously reported absolute relative percentage errors of
PET images range from 1.38%6 4.52% to 2.55%6 0.86% (19–22),
though care should be taken when comparing these studies and the
present study, due to analysis variations. The use of TOF in our study
compensates for the AC error and makes the residual error spread
(16–18). We assume that this effect minimizes the range of errors for
both s-Atlas and m-Atlas.
For clinical s-Atlas, the low-resolution LAVA in-phase images with

an 18-s acquisition time were used. The sequence was selected in a
clinical PET/MRI scanner for a combination of reasons. It is used in
full-body imaging for fat-water separation, as well as for atlas
registration in the head. In those cases in which the atlas method is
not suitable (e.g., pediatric or postoperative patients), the segmentation-
based method used in body imaging can also be extended to the
head. Finally, with only an approximately 18-s acquisition time, it
helps to maintain a time-efficient PET/MRI workflow. Unlike using
relatively low-resolution and low-contrast T1w images as in our
study, Burgos et al. combined both T1w images and T2-weighted
images to generate a pseudo-CT (12). They reported the relative per-
centage errors and the absolute relative percentage errors of 18F-FDG
uptake to be 20.56% 6 0.98% and 1.71% 6 0.62%, respectively.
Our results,20.06%6 1.50% and 1.21%6 0.89% of m-Atlas, were
comparable to their result even though we used somewhat inferior MR
source images, which may result in worse registration between the
patient-specificMR image and atlas database. Thus, our results indicate

that this effect is small and the accuracy is maintained even in low-
resolution but fast MR images. This suggests that the m-Atlas method
could be used in different scanners types and with different clinical
protocol settings. Future work is required to validate this claim.
For both the s- and the m-Atlas, the mean and SE in the regions

close to the skull base, temporal lobes, and cerebellum were larger
than in other regions. This tendency was also observed in other
studies (11,19–22). This issue is explained by 2 reasons. First, in the
skull base region, the interface between bone and soft tissue is axially
aligned, corresponding to the highest sensitivity lines of response. As
a result, even small superior/inferior registration errors in the atten-
uation map can cause high attenuation bias. Second, there is a high
interindividual variation of the pneumatization of temporal bone, lead-
ing to larger errors in the AC map of this area. Proper differentiation

TABLE 2
%diff and j%diffj in 18F-FDG Uptake (kBq/mL) Between CT-AC and Each

s-/m-Atlas in Each Merged Region

Parameter Frontal lobe Occipital lobe Parietal lobe

Insula and

cingulate

Central

structure

Temporal

lobe* Cerebellum*

%diff on

s-Atlas

−0.87% ± 1.47% 0.21% ± 1.67% −0.37% ± 1.70% −0.20% ± 1.12% 0.58% ± 1.09% 1.49% ± 1.37% 1.55% ± 1.97%

%diff on

m-Atlas

−0.64% ± 1.13% 0.04% ± 1.53% −0.06% ± 1.41% 0.35% ± 0.92% 0.53% ± 1.04% −0.37% ± 1.41% −1.15% ± 1.72%

j%diffj on
s-Atlas

1.46% ± 0.83% 1.15% ± 1.19% 1.42% ± 0.92% 0.87% ± 0.71% 0.97% ± 0.74% 1.77% ± 0.95% 2.11% ± 1.28%

j%diffj on
m-Atlas

1.12% ± 0.61% 1.25% ± 0.82% 1.18% ± 0.71% 0.80% ± 0.55% 0.91% ± 0.69% 1.15% ± 0.85% 1.49% ± 1.40%

*s-Atlas vs. m-Atlas, P , 0.01.

%diff is CT-AC minus s-/m-AC divided by CT-AC. j%diffj is absolute value of %diff.

FIGURE 6. Scatterplot of each generalized VOI of %diff on s-Atlas and

on m-Atlas. Dot color corresponds to color of Supplemental Figure 3.

R2 and slope of best fit line of each region are given in Table 3.
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of bone and air is critical for AC because their attenuation properties
differ a great deal.
In this study, the s-Atlas performed better than in a previous study

(11). This better performance was due to the difference of MRAC
LAVA images. In the previous study, the flip angle of LAVAwas 12�,
compared with 5� in our study, which led to more proton-density-
weighted images, more suitable for automated segmentation. This
difference may improve the bone detection from LAVA in-phase
images, subsequently making the registration better.
One drawback of m-Atlas is the computational effort. On average,

it took 1 h 45 min to generate the pseudo-CTs with the images we
uploaded to the website. This computational time depends on the
quality of the registration wanted, on the number of subjects in the
database, and on the way the registrations are run (in series/parallel, 1
core/multiple cores). Though this could be reduced at least by half by
optimizing the registration process, it might still be too long for

clinical examinations. However, the selective use of either method
for a specific clinical aim is feasible. For example, when screening
for brain metastases, s-Atlas is enough accurate, whereas for the
detailed assessment of the dementia, m-Atlas is recommended. Fur-
thermore, the improvement of hardware and software processing
may reduce in the future current resource demands of the investigated
m-Atlas method.
A limitation of our study is the small number of patients considered.

However, using automated methods and comparing 2 AC methods,
s-Atlas and m-Atlas, against a gold standard we aimed to reduce bias.
PET acquisition was not ideal for a brain PET scan: for some of the
patients, the scan duration was relatively short, 4 min. The shorter
acquisition time leads to a decrease in the signal-to-noise ratio of the
PET images. However, analysis of AC error on a regional level (AAL
VOI) reduced the sensitivity to the noise at the voxel level.

CONCLUSION

Errors introduced using the multi-atlas–based AC method on a
TOF PET/MRI scanner did not exceed 5% in any brain region. This
error is approximately 20% smaller than that of the clinically used
single-atlas–based AC method. The greatest improvement with multi-
atlas–based AC was found in brain regions close to the skull base.
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