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There is much that can be done to detect apoptosis and other
forms of cell death with existing clinical modalities including
ultrasound, MRI, and optical imaging without the need for
current or new intravenous contrast agents. We will discuss
how these widely available imaging technologies can readily be
applied to the imaging of apoptosis in patients undergoing
chemotherapy or radiation treatment. The limiting factor of
course is the lack of knowledge of the optimal times after the
start of treatment for the most accurate assessment of apoptosis
and necrosis with each modality and specific technique. It is
hoped that imaging studies that systematically look at treatment
response can soon be performed to address these issues.
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In this companion article to “Part I—Pathophysiology
and Radiotracers” (1), we will now shift our focus to the
review of existing nonradionuclide methods to image
apoptosis in vivo. As outlined in the previous review, there
are several stereotypical morphologic changes of the cell
membrane, cytoplasm, and nucleus that can readily be
detected by existing imaging technologies, including proton
magnetic resonance spectroscopy (1H-MRS), diffusion-
weighted MRI (DWI), high-frequency ultrasound, and optical
imaging techniques without the use of intravenous con-
trast agents. We will briefly review each of these clini-
cally available modalities and how, even without the use
of intravenous contrast agents, they can be applied to the
imaging of apoptosis.

MRI TECHNIQUES FOR IMAGING APOPTOSIS

1H-MRS and DWI take advantage of the apoptosis-
related biochemical, molecular diffusion, and morphologic

cellular changes summed over the bulk of a target such as
a tumor or specific organ (i.e., brain or liver). Although the
sensitivity of these MRI techniques is increased by looking
at the behavior of a target, organ tissue, or tumor as a whole,
there is a tradeoff with decreased spatial resolution. This
limits MRI sequences to the study of apoptosis that affects
a large portion or the whole of a target tumor or region of
interest for a sufficient specific signal relative to noise. MRI
sequences are also susceptible to motion artifacts and the
bleeding-in of subcutaneous-fat signals or tissue–air mag-
netic inhomogeneities. Despite these limitations, MRI tech-
niques still have great potential for measuring apoptosis in
the brain, liver, and solid tumors.

Assessment of Mobile Lipids and Cytoplasmic Lipid
Droplets by 1H-MRS

An early change in apoptosis is an increase in plasma
membrane fluidity (without a change in lipid composition)
as shown in Figure 1. Investigators found that in cell cultures,
1H-MRS was able to detect a specific increase in -CH2-
(methylene) relative to -CH3 (methyl) mobile lipid proton
signal intensities at 1.3 and 0.9 ppm, respectively (2–4).
The rise in -CH2- resonance occurred when cells were treated
with proapoptotic drugs or serum (growth factor) deprivation.
In contrast, necrosis was characterized by a completely dif-
ferent 1H-MRS profile in which there was a significant in-
crease in the resonance signal of most of the metabolites
examined, with the exception of CH2 mobile lipids, which
remain unchanged (coupled to a decrease in reduced gluta-
thione). The ratio of CH2/CH3 signal intensity demonstrated
a strong linear and temporal correlation with other markers
of apoptosis, including fluorescent annexin V cytometry and
DNA ladder formation.

Subsequent studies have shown that mobile lipid reso-
nances can also arise from the osmophilic lipid droplets
(0.222.0 mm) observed in the cytoplasm in some models of
apoptosis (5). These droplets contain variable amounts of
polyunsaturated fatty acids associated largely with 18:1 and
18:2 lipid moieties (2.8 and 5.4 ppm) produced by both
normal and oxidative metabolism. The droplets are also as-
sociated with an accumulation of triacylglycerides gen-
erated by apoptosis-induced phospholipase-A2 activity and
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ceramide released by the hydrolysis of sphingomyelin by the
membrane enzyme, sphingomyelinase. Because lipid drop-
lets can be seen in both apoptosis and necrosis, the specificity
of the signals observed at 2.8 and 5.4 ppm is a potential
problem (4).
More recent studies have suggested normalization of the

-CH2- resonance to the average intensity of a broad region
of the spectrum from 1.6 to 4.7 ppm (6). Using this nor-
malization approach, it is possible to detect 4- to 5-fold
increases in -CH2- signal in breast carcinoma cell lines un-
dergoing apoptosis in response to docetaxel without inter-
ference from the liposomes used to deliver the drug in
culture. 1H-MRS measurements of radiation-induced apo-
ptosis of cervical carcinoma are also possible with clinical
MRI units using standard endovaginal coils (7,8).

Assessment of Total Choline by 1H-MRS
1H-MRS can also detect significant decreases in the cho-

line (including choline, choline-containing compounds, and
phospholipids) resonance 6–12 h after the rise in mobile
lipid signal in vitro (9). Lindskog originally proposed le-
veraging of the polar-opposite changes in mobile lipid and
choline seen with apoptosis by calculating the ratio of -CH2-
signal intensity to choline signal intensity for the quantifica-
tion of programmed cell death in murine models and children

with neuroblastoma undergoing chemotherapy (10). The ob-
served decreases in choline seen on 1H-MRS were not well
understood until the group of Clemens and Morley de-
scribed the inverse relationship of protein translation and
apoptosis (11,12). This group found that with the initiation
of apoptosis there is an abrupt halt to global protein syn-
thesis in the endoplasmic reticulum as shown in Figure 1,
including that of choline and choline-containing lipids and
other compounds. The events behind the sudden shutdown
of global protein translation are biochemically complex but
can be narrowed to several key events, namely inhibition of
elongation (or initiation) factor 2, proteolysis of initiation
factors 4GI and 4GII, activation of endoplasmic reticulum
transmembrane stress sensors, and inactivation of the pro-
growth mammalian-target-of-rapamycin pathway.

The interruption of global protein synthesis in the endo-
plasmic reticulum causes the decrease in choline resonance
observed on 1H-MRS both clinically (13–18) and in animal
models (3,5,19,20). 1H-MRS has also been successful in the
brain, breast, lower extremities, and liver using clinical 1.5-
or 3.0-T MRI units and coils. Paradoxically, increases in
total choline have also been observed in tumors treated with
pan-protein synthesis inhibitors of heat-shock protein 90 or
histone deacetylase (new selective anticancer drugs with
noncytotoxic mechanisms of action) (21). The rise in total
choline with these drugs may be related to the induction of
autophagy (formation of numerous double-membrane vesicles
in the cytoplasm) as opposed to apoptosis.

DWI of Solid Tumors Before and After Therapy

DWI may also be a useful biomarker of therapeutic ef-
ficacy in patients with cancer (17,22–24). DWI relies on the
spin labeling of water molecules with a strong electromag-
netic pulse and then the following of the spin-labeled water
molecules over a short time (i.e., 50 ms). DWI then indi-
rectly measures the distance traveled by these water mole-
cules (usually on the order of 30 mm) in this short time. On
average, water molecules that are restricted by their local
microenvironment (inside a cell as opposed to the extracel-
lular space) travel or diffuse less than water present in re-
gions of necrosis, inflammation, edema, or cysts. The average
distances traveled by water molecules in a given voxel are
referred to as the average diffusion coefficient (ADC).

Tumors in general have higher cellular density and therefore
lower ADCs than do normal tissues and benign tumors (25).
With successful therapy, these low ADCs rapidly increase
over the course of several days and appear to correspond to
tumor cell loss and expansion of the extracellular space in
a tumor as shown in Figure 1 (26,27). Therapeutic efficacy
of the apoptosis-induction strategy has been detected as
early as 3 d after dosing, before changes in tumor volume
occur (28). The mean ADC increase in tumors was linearly
proportional to the mean apoptotic cell density and was
inversely proportional to the mean proliferating cell density.

Although DWI holds promise as a marker of treatment
efficacy, the changes in ADC are relatively small (usually

FIGURE 1. Non–probe-based modalities for imaging of apoptosis.
Physiologically normal cell is shown on left. Arrows show various
pathways that are activated or deactivated with apoptosis.
Resultant effects on cell in apoptotic state are shown on right.
Normal nucleus (blue) and its fragmentation into clumps of
autodigested DNA and chromatin with apoptosis are illustrated.
Fragmented nuclear material causes increase in backscatter that
can readily be detected by high-frequency ultrasound (HF-US).
Endoplasmic reticulum (ER, brown) is shown in cell in normal
protein-synthesizing state (ER: on) and in apoptotic cell (ER: off)
that effectively shuts choline synthesis off and is visible on 1H-
MRS. Shrinkage and blebbing of plasma membrane and formation
of lipid droplets containing neutral lipids, triglycerides, cholesterol,
and increased polyunsaturated fatty acids (PUFAs) with apoptosis
are shown in green. 1H-MRS can detect increases in lipid mobility
(methylene/methyl lipid protons 5 CH2/CH3 5 1.3/0.9 ppm) and
PUFAs (seen at 2.8 and 5.4 ppm). Shrinkage of cell and increased
extracellular space is indicated by gray arrow (ADC 5 increases in
average diffusion coefficient with apoptosis that can be seen with DWI).

2 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 54 • No. 1 • January 2013



,50% of baseline values) and can be affected by inflam-
mation, blood flow, cardiac and respiratory motion, and the
presence of necrosis. DWI will also need to be standardized
in terms of tumor type, specific therapy, and other acquisi-
tion parameters before it can come into widespread clinical
use in oncology.

High-Frequency Ultrasound, Optical Coherence
Tomography, and Fourier Transform
Mid-Infrared Spectromicroscopy

High-frequency ultrasound (10 MHz or greater) has been
used to detect the unique specular reflections of apoptotic
cells in vitro and in vivo (29–31). These specular reflections
arise predominately from the peripheral condensation (clump-
ing) and fragmentation of the cell nucleus and DNA (i.e.,
DNA laddering) in the latter phases of apoptosis as shown
in Figure 1. Transducers operating at 10–60 MHz generate
ultrasound wavelengths of 25–150 mm, which approach the
size of individual cells and nuclei (10–20 mm) and are
therefore sensitive to changes in cell size and nuclear mor-
phology that occur with apoptosis (32). In fact, backscatter
from apoptotic nuclei is up to 6-fold greater than that from
nonapoptotic cellular nuclei and occurs in cultures treated
with a variety of drugs and radiation.
The main limitation of high-frequency ultrasound is that

in soft tissue the beam has poor penetration, ranging from 2
to 5 cm for 10- to 30-MHz ultrasound transducers. This
inherent limitation can partly be overcome by applying high-
frequency ultrasound backscatter analyses to relatively super-
ficial tumors of the skin and breast or by using endoscopic
probes for nasopharyngeal and gastrointestinal cancers.
Optical coherence tomography is another form of back-

scatter spectroscopy and, as opposed to ultrasound, uses laser
light with a central wavelength of 1,325 nm and a 23-dB
bandwidth of approximately 100 nm with an axial resolution
of 9 mm (33,34). As with ultrasound, there are a variety of
microscopic scattering and reflective interfaces within a cell
that arise with apoptosis. Optical coherence tomography
identifies increased backscatter of laser light from cells un-
dergoing apoptosis and mitotic arrest, whereas cells under-
going necrosis have a decrease. These changes are linked to
structural changes seen on histologic examination of cell
samples. These results indicate that optical coherence to-
mography–integrated backscatter and first-order envelope
statistics can be used to detect, and potentially differentiate,
modes of cell death in vitro. Clinical application, however,
will be limited to endoscopic or ophthalmologic applications
because of the poor soft-tissue penetration of light that has
the wavelengths used for optical coherence tomography.
Mid-infrared region spectroscopy (;2.5- to 15.5-mm

wavelength, or ;4,000–650 cm21 wave number) is another
nondestructive microscopic imaging technique (axial reso-
lution of ,1 mm) that generates fingerprintlike spectra of
the characteristic vibrational frequencies of various chem-
ical bonds and, therefore, functional groups (35). The high
real-time sensitivity of mid-infrared spectroscopy is due to

cellular water that is juxtaposed and interacting with ions or
biomolecules of interest, thereby structuring water mole-
cules. Structured (as opposed to free) water molecules form
distinctive vibrational patterns that can be detected by the
absorption patterns of incident mid-infrared region light
spectroscopy and constitutes a major advantage of infrared
spectromicroscopy over other vibrational methods such as
Raman spectroscopy. Fourier transform mid-infrared spec-
tromicroscopy allows the study of individual living cells
with a high signal-to-noise ratio, exploiting the continuous,
intense, and nondestructive mid-infrared light spectrum
available from a cyclotron (36,37). Spectral changes with
apoptosis include a shift in the protein amide I and II bands
(changing protein morphologies and oxidative state) and
a significant increase in the ester carbonyl C5O peak, at
1,743 cm21. For tissues with intrinsic refractive (reflective)
interfaces such as seen in atherosclerotic vessels or the ret-
ina, it is possible to characterize the features of apoptosis and
other forms of cell death (38).

CONCLUSION

In the short term, 1H-MRS imaging of changes in choline
signal with therapy appears to be the most direct path for
imaging of apoptosis in response to therapy, even in regions
and organs outside the brain, including the breast, liver,
extremities, and cervix. Decreases in choline directly reflect
the silencing of protein translation induced by apoptosis
and autophagy. In addition, 1H-MRS can also readily be
performed with existing clinical MRI units, coils, and soft-
ware without the need for an intravenous contrast agent,
making this method attractive for assessing therapeutic re-
sponse in clinical drug trials, especially in the neoadjuvant
setting.
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