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Science Institute, Tübingen, Germany

PET/MRI is an emerging dual-modality imaging technology that
requires new approaches to PET attenuation correction (AC).
We assessed 2 algorithms for whole-body MRI-based AC
(MRAC): a basic MR image segmentation algorithm and a method
based on atlas registration and pattern recognition (AT&PR).
Methods: Eleven patients each underwent a whole-body PET/
CT study and a separate multibed whole-body MRI study. The
MR image segmentation algorithm uses a combination of image
thresholds, Dixon fat–water segmentation, and component anal-
ysis to detect the lungs. MR images are segmented into 5 tissue
classes (not including bone), and each class is assigned a default
linear attenuation value. The AT&PR algorithm uses a database
of previously aligned pairs of MRI/CT image volumes. For each
patient, these pairs are registered to the patient MRI volume, and
machine-learning techniques are used to predict attenuation val-
ues on a continuous scale. MRACmethods are compared via the
quantitative analysis of AC PET images using volumes of interest
in normal organs and on lesions. We assume the PET/CT values
after CT-based AC to be the reference standard. Results: In re-
gions of normal physiologic uptake, the average error of the mean
standardized uptake value was 14.1% 6 10.2% and 7.7% 6
8.4% for the segmentation and the AT&PRmethods, respectively.
Lesion-based errors were 7.5% 6 7.9% for the segmentation
method and 5.7% 6 4.7% for the AT&PR method. Conclusion:
The MRAC method using AT&PR provided better overall PET
quantification accuracy than the basic MR image segmentation
approach. This better quantification was due to the significantly
reduced volume of errors made regarding volumes of interest
within or near bones and the slightly reduced volume of errors
made regarding areas outside the lungs.
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There is growing clinical and research-based interest in
combined PET/MRI (1). However, the attenuation correc-
tion (AC) of PET data from PET/MRI acquisitions requires
novel solutions (2). Current PET/MRI prototype systems
are not equipped with standard transmission sources or CT
transmission components (1,3). Therefore, evaluation of
MRI-based AC (MRAC) methods must be based on image
datasets acquired separately with MRI or PET/MRI and
PET/CT, for which standard, validated PET attenuation cor-
rection is routinely available.

In general, no unique transformation of MR image in-
tensities into attenuation coefficients exists. The simple re-
scaling of MR image intensities is impossible; rather, more
advanced methods are needed. In the context of brain imaging,
several approaches have been presented that derive the at-
tenuation map of the patient’s head based on the available MR
images (4–8). The development of MRAC for whole-body
imaging (3), however, is more challenging, because it in-
volves transforming extended MR image volumes with in-
homogeneous signal intensity into the appropriate PET
attenuation maps (2,9).

However, the requirements for tissue class discrimination
may be less demanding because the percentage of bone
tissue in the body is lower than that present in the head.
Therefore, in whole-body applications, AC methods that do
not account for bone may be sufficient for a wide variety of
clinical applications (10). In addition to generating a suit-
able map from the MR images, the attenuation of MRI
radiofrequency coils and ancillary devices must also be
accounted for (11,12).
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Several innovative approaches to MRAC have been pre-
sented thus far. For example, one approach proposed by
Martinez-Möller et al. (10) is based on ignoring bone dur-
ing MR image segmentation. The tissue classes “fat” and
“water” are identified using Dixon segmentation (13), “air”
and “tissue” are separated using thresholding and a mor-
phologic closing operation, and “lungs” are detected using
connected components analysis. This approach is straight-
forward and easy to implement. However, it may yield local
bias, particularly in regions of and near bone, which may
represent a main area of clinical application for combined
PET/MRI (14). The authors (10) performed a quantitative
evaluation on 7 regions of interest in 2 patients, demonstrat-
ing the relative difference between the results attained using
their segmentation approach and those attained using rou-
tine CT-based AC (CTAC), with the gap varying between
26% and 1%. Similar no-bone approaches were suggested
by Hu et al. (15) and Steinberg et al. (16).
We previously (6) presented an approach that involved

a combination of atlas and pattern-recognition (AT&PR)
methods. Although it was designed to be usable in whole-
body imaging, this method was clinically evaluated only for
human brain imaging.
Here, we quantitatively assessed 2 methods for MRI-

based AC in clinically relevant whole-body PET/MRI.
Segmentation-based methods are most likely to be used in
the first generation of PET/MRI systems because of their
more straightforward implementation and fast runtime.
Therefore, the first method is a reimplementation of the
MRAC segmentation approach suggested by Martinez-
Möller et al. (10). The second MRAC method is an exten-
sion of the AT&PR approach initially developed by our
group for PET/MRI brain imaging (6).

MATERIALS AND METHODS

Data Acquisition
Pairs of MR and PET/CT images from 11 patients were used.

All patients had a clinical indication for an 18F-FDG whole-body
PET/CT study for oncologic diagnosis. The patients were 6 men
and 5 women (mean age 6 SD, 66 6 10 y).

18F-FDG PET/CT examinations were performed on a Biograph
HiRez 16 (Siemens) with a low-dose CT scan using a slice thick-
ness of 5 mm and a voxel size of 1.37 · 1.37 mm within the axial
image planes. Details of the protocol can be found in the study
by Brechtel et al. (17). Patients were asked to hold their breath in
normal expiration during the acquisition of the CT data.

ComplementaryMR imageswere acquired on a 3-TVerio system
(Siemens) using a dual-echo sequence (echo time 1, 1.23 ms; echo
time 2, 2.46 ms; repetition time, 3.6 ms; flip angle, 10�). The iso-
tropic spatial resolution of the images was 2.6 mm. In addition, a 2-
point Dixon method (13) was used to generate fat- and water-only
MR images. The reconstructed opposed phase images (echo time 1)
were not used in this study. The acquisition time for each bed posi-
tion was 18 s, which allowed for breath-hold acquisition.

All data were acquired with patients’ arms up in the PET/CT
and MRI examinations. As shown in Supplemental Figure 1 (sup-
plemental materials are available online only at http://jnm.

snmjournals.org), patient positioning was similar in the PET/CT
and MRI acquisitions. The study was approved by the local ethics
committee.

Data Preparation
Marked intensity inhomogeneities are typical of whole-body

MR images (Supplemental Fig. 1). Assuming that intensity inhomo-
geneity can be described by a multiplicative term (18), we corrected
for this through

ScorrectedðxÞ 5 SmeasuredðxÞ=bðxÞ; Eq. 1

where bðxÞ was a low-pass filtered version of the original image
Smeasured, obtained using a Gaussian kernel with a width of
s 5 5 cm. This approach amplifies the noise in the low-intensity
region outside the patient. Therefore, we used a series of morpho-
logic operations to segment the patient, thereby setting all values
outside the patient to zero.

Accurately aligned MRI/transmission or MRI/CT image
pairs are mandatory prerequisites for the evaluation of MRAC
methods in general. Here, MR and CT images were aligned
using a combination of a rigid registration algorithm based
on the maximization of mutual information and a nonrigid
registration method using a vector field obtained via the
composition of small displacements, as previously described
(19).

To improve the correspondence between MR and CT image
volumes in the training atlas database, areas outside the field of
view in the head and neck region of the atlas MR images and
misregistered arms were automatically corrected for; they were
replaced with segmented areas from the corresponding atlas CT
image. Original uncorrected MR images were used to evaluate the
MRAC methods.

To evaluate the importance of bone in general and assess the
maximum accuracy that can be achieved using a no-bone ap-
proach to AC, we generated pseudo-CT images from the original
CT images. Two sets of images were generated: in CTnobone, all
CT values greater than 200 Hounsfield units (HU) were set to 200
HU, leaving CT values of 200 HU or less unchanged. In CTseg, the
CT image was segmented into the 4 classes: air, lung, fat, and soft
tissue.

Basic MR Image Segmentation (MRSEG) Approach
We performed a 5-class segmentation of the MR images into

air, lungs, fat tissue, a fat–nonfat tissue mixture, and nonfat tissue
using the in-phase, fat, and water images. For this purpose, we
used image intensity–based thresholding and a simple analysis of
connected areas of low intensity. Air and nonfat tissue were
determined by thresholding the intensity-normalized in-phase
MR image. The misclassification of low-intensity bone voxels
as air was minimized via a morphologic image closing operation
(10). On the basis of the Dixon fat and water images, voxels
within fat images of more than double the intensity as compared
with water images were assigned to fat and vice versa. For voxels
with fat and water intensities within a factor of 2, we assumed a
mixture of fat and water and assigned an attenuation coefficient
identical to the mean of the nonfat and fat tissue attenuation. The
lungs were detected as the largest connected group of low-inten-
sity voxels.

This approach failed for 2 of 11 patients; in those cases, metal
implants caused signal loss, and the low-intensity voxels in the
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lung appeared as if they were connected with the air outside
the patient. We addressed this problem by manually adjusting
the lung segmentation for these 2 patients. More advanced methods
of lung segmentation in MR images should be capable of fully
automating this step (20), but that was beyond the scope of
our work. The locations of the metal implants can be found in
Table 1.

For each of the 5 segmented classes, we assigned the average
CT value derived from segmented CT images (Table 2), creating a
pseudo-CT image PsCTMRSEG.

AT&PR Approach
The AT&PR method is based on our previous work (6) but

includes several modifications intended to assist in the processing
of whole-body data. We used a different registration method and
modified kernel function and added pre- and postprocessing steps.
The nonrigidly registered MR/CT image pairs were used as an
atlas and training database. In our evaluation, we used a leave-
one-out cross-validation approach; that is, for each patient, we
used the remaining 10 MRI/CT pairs as our atlas database. In
the following, the phrase atlas database always refers to the com-
plete database, excluding the images of the patient for whom we
are predicting the pseudo-CT image.

In the first step in our process, MR images of the atlas database
were registered to the patient MR image using Elastix (21).
Images were registered using the 5-class segmentation. Low-inten-
sity values in the abdominal region were assigned a value between
those of fat and water to account for the variability in the number,
shape, and position of gas pockets in the abdomen, which should
be disregarded during the registration process.

The centers of gravity of the atlas and patient MR images were
aligned to provide the registration algorithm with optimal
initialization. The transformations of the atlas MR images to the
patient MR image were applied to the corresponding atlas CT
images. This process yielded 10 atlas-based pseudo-CT predic-
tions for each patient.

In the second step, our method predicted a pseudo-CT value for
each test voxel on the basis of nearby voxels in the atlas database,
creating a pseudo-CT image PsCTAT&PR.

Although averaging the registered atlas CT images would al-
ready yield a valid pseudo-CT image for a given test patient,
anatomic variability between subjects is high, and nonrigid
registration and subsequent averaging would smooth out patient-
specific details. It is important to note that the AT&PR method not
only uses the position of a voxel in the registered images but also
matches the local structures of the MR images, facilitating more
patient-specific prediction. Gaussian process regression (22) was
used to predict a pseudo-CT value for each voxel of interest.

The kernel, which acts as a similarity measure, was chosen as
follows:

k
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di; dj

�
5 exp
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Eq. 2

Here, d 5 ðpTMR; p
T
Seg; x

TÞT and pMR and pSeg are rectangular sub-
volumes (patches) from the in-phase MR image and from the
segmented image, w is a weighting vector that assigns a higher
importance to voxels in the center of the patch than to voxels
further away from the center, and x is the center position of each
training or test patch. spos, sMR;patch, and sSeg;patch are parameters
that determine how similarity in position, MRI patch, and segmen-
tation image patch influence the overall kernel value. Optimal
parameter values were determined using cross-validation.

The algorithm was trained on samples d that were drawn from
random locations in the atlas database. A higher sampling density
was used near bone regions because these are particularly chal-
lenging.

The pseudo-CT value for each voxel of interest was calculated
using

cl 5 kTC21y; Eq. 3

where cl denotes the predicted pseudo-CT value of a given voxel
of interest l. k, with entries ki 5 k(di,dl), is a vector of kernel
values from training patches di and test patch dl, with an element
of the matrix Ci,j 5 k(di,dj) 1 s2di,j, and y is a vector of the CT
values corresponding to the centers of the training patches di. s2 is
a parameter for variance, which we empirically set to 50,000. A
more detailed explanation of our method can be found in the study
by Hofmann et al. (6).

Because the kernel decays quickly with the distance kxi2xjk,
we used only the nearest neighbors of the voxel of interest in the
Gaussian process prediction formula. The nearest neighbor search
was performed efficiently using TSTOOL (23).

In the final step, we applied the following automatic post-
processing rules, which override the prediction of AT&PR in cases
in which the MRI intensity is sufficient to reliably determine the
tissue class: if the local intensity in the in-phase image is higher
than a given threshold and if the Dixon segmentation predicts fat
(or water), then the voxel in the predicted pseudo-CT image is
determined to have at least the value of fat (or water). Voxels that
have low MRI intensity and for which none of the atlas-registered
CT images predict bone in a nearby location are assumed to be air
with a pseudo-CT value of 21,000 HU. This rule helps us to iden-
tify gas pockets even if, because of the high variability between
patients, no similar structure is present in the atlas database.

TABLE 1
Relative PET Quantification Errors for 3 VOIs (1 VOI Per Patient) Located Near Metallic Objects Inside Patients

Patient ROI location Nearby object Distance from VOI (mm) Error for PsCTMRSEG Error for PsCTAT&PR

1 Aorta Postoperative clip 10 280% 28%
2 Pharynx Dental implant 20 247% 7%

3 Sternum Sternal wire 30 241% 240%
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Data Evaluation
PET images were reconstructed using the e7 tools (Siemens)

via ordered-subsets expectation maximization, with 4 iterations
and 8 subsets as in our standard clinical image processing with
attenuation and scatter correction. PET image reconstructions
were performed using either CTAC (for the reference cases) or
MRAC. To create the MRI-derived attenuation maps, the attenu-
ation coefficients of objects outside the patient (including the bed,
positioning devices, and ancillary objects) were added to the
attenuation map derived from the original CT images. Supple-
mental Figure 2 shows the original MR and CT images, resulting
pseudo-CT images, and PET images obtained using the pseudo-
CT data for AC for a representative patient.

PET images obtained via these methods of AC were compared
using a set of spheric volumes of interest (VOIs). A nuclear medi-
cine expert placed 21 VOIs on regions of normal physiologic
uptake (norm regions) in whole-body PET/CT scans (Fig. 1). In
addition, 50% isocontour VOIs were placed on areas of abnor-
mally increased tracer accumulation relative to the surrounding
tracer uptake (lesions).

To quantify the errors that would be observed in typical clinical
settings, we evaluated the standardized uptake values (SUVs) in
the PET images with CTAC and MRAC using both segmented and
atlas-derived attenuation maps. The SUVs were calculated on the
basis of body weight:

ISUV
�
x
�
5

IðxÞ · body weight

Injected dose
; Eq. 4

where I(x) is the activity concentration at voxel x, and injected
dose is the dose of 18F-FDG at the time of injection.

Of the 231 VOIs in standard anatomic regions, 223 VOIs were
used for subsequent statistical evaluation, 7 were excluded, and 1
was evaluated separately because of artifacts caused by metallic
implants. In addition, 28 VOIs were placed on lesions; of these, 22
were used for subsequent statistical evaluation, 4 were excluded,
and 2 were evaluated separately. Of the 11 excluded VOIs, 3 were
in abdominal gas pockets (which moved between MRI and CT
acquisitions), 4 were in areas not properly aligned during MRI/CT
registration, and 4 were in areas affected by severe breathing
artifacts.

RESULTS

Quantitative Evaluation of PET Images

We reconstructed PET images with AC using CTseg,
CTnobone, PsCTMRSEG, and PsCTAT&PR. In the following,
we report the differences between these images and the
PET images reconstructed with CTAC. Considering CTAC
as the reference standard, we thus refer to these differences
as errors.

A summary of the average relative errors for the mean
SUVs in the VOIs is shown in Table 3. Table 4 shows the
number of VOIs with an relative absolute error higher than
10% and 20%. Figure 1 shows the relative errors for each VOI.
Supplemental Figure 3 shows a scatterplot of mean SUVs in
the VOIs comparing MRAC results with reference CTAC.

For lesion VOIs, images reconstructed with AC using
PsCTMRSEG showed an average relative error of 7.5% 6
7.9%, compared with 5.7% 6 4.7% when PsCTAT&PR was
used (Table 3). The scatterplots (Supplemental Figs. 3C and
3D) are similar, with an R2 value of 0.981 for PsCTMRSEG

and of 0.988 for PsCTAT&PR. The relative absolute error
was below 20% for both MRI-based methods for all but 1
lesion (Fig. 1D).

The relative error for norm VOIs averaged over all body
regions was 14.1% 6 10.2% for images reconstructed with
AC using PsCTMRSEG and 7.7% 6 8.4% for those recon-
structed with AC using PsCTAT&PR when both were com-
pared with the results obtained using CTAC (Table 3). The
scatterplots in Supplemental Figures 3A and 3B show a
lower spread for the AT&PR method, with an R2 value of
0.988, as compared with 0.948 for MRSEG.

For the norm region VOIs in the thorax, PET images
reconstructed using AC with CTnobone displayed an average
relative quantification error of 1.0% 6 0.8% (Table 3). For
images reconstructed using AC with CTseg and MRI-based
PsCTMRSEG, the average relative error was 10.2% 6 7.5%
and 13.5% 6 10.7%, respectively. AC using the AT&PR
method created an average relative error of 14.0% 6 11.4%.

Of the 55 pelvic and abdominal VOIs placed in osseous
tissue, more than 20 VOIs yielded relative absolute errors at
a rate higher than 10% in images reconstructed using AC
with CTnobone and CTseg (Table 4). The additional bias
witnessed in AC with CTseg was caused by the segmenta-
tion of the CT image into tissue classes. For images recon-
structed using AC with PsCTMRSEG, 47 VOIs yielded a
relative absolute error higher than 10%, whereas this was
the case for only 12 VOIs when PsCTAT&PR was used. The
greater underestimation of bone in the attenuation maps
derived from PsCTMRSEG resulted in generally lower SUVs
in VOIs located in osseous tissue than was the case when
CTAC was used.

For the 103 nonpulmonary VOIs outside osseous tissue,
the modification of the CT images did not lead to a sig-
nificant number of relative absolute errors above 10%
or 20%. For PET images reconstructed using AC with
PsCTMRSEG, 49 VOIs showed relative absolute error levels

TABLE 2
Pseudo-CT and Corresponding PET Attenuation Values Used for Different Tissue Classes After MR Image Segmentation

Tissue class Air Lungs Fat Fat–nonfat soft tissue Nonfat soft tissue

Assigned CT value (HU) 21,000 2750 2108 229 50
Linear attenuation value (cm21) 0 0.024 0.086 0.093 0.101
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above 10%. Of those, 8 VOIs (which were mostly located in
the immediate vicinity of osseous tissue) showed error rates
higher than 20%. Ten VOIs showed higher error rates than
10% for images derived using AC with AT&PR. Only 1
VOI showed an error above 20%.

Metal Implants

Three of the 11 patients had metal implants that led to
local signal loss in the MR images (Fig. 2). Because the
presence of metal led to substantial errors, we evaluated
these VOIs separately (Table 1).

FIGURE 1. Mean relative errors for SUVs in PET images reconstructed using MRAC with reference images reconstructed using CTAC for

VOIs in thorax (A), abdomen (B), and pelvis (C) and for lesion VOIs (D). Triangles indicate individual data points; circles and horizontal bars
show means and SD.

RGB
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For images reconstructed with AC using PsCTMRSEG, the
relative absolute error was above 40% in all 3 cases; with
PsCTAT&PR, it was below 10% for 2 cases and 40% in the other.

DISCUSSION

By performing attenuation correction using CT-derived
attenuation maps CTnobone and CTseg, we evaluated the
minimum achievable error of any AC method that ignores
bone or segments the attenuation map into tissue classes.
Subsequently, we evaluated the actual error obtained when
AC is performed based on MR images using an MR image
segmentation approach that ignores bone and the AT&PR
method that predicts attenuation values on a continuous
scale (including bone). The evaluation was performed using
regional quantitative analysis in regions of normal uptake
and in lesions defined via focally increased tracer uptake on
18F-FDG PET.
The attenuation maps created from the CT-derived

images CTnobone and CTseg represent ideal scenarios for
an AC approach that ignores bone because the bone voxels
were always assigned the closest attenuation value among
those of all other tissues. Thirty-eight percent of VOIs
placed in osseous tissue showed quantification errors higher
than 10% for images reconstructed with CTnobone attenua-
tion maps when compared with PET images reconstructed
after CTAC. Thus, for VOIs located in bone tissue, even a
method of AC that does not predict attenuation values
beyond the range of soft tissue but that is otherwise accurate
might not be sufficiently precise for quantification tasks.

In practice, it is not immediately clear what tissue class
an MR image segmentation approach will predict for bone
areas. In our MR image segmentation approach, for ex-
ample, the bone marrow in the vertebrae of the spine was
often identified as fat via Dixon segmentation. This mis-
classification is one of the reasons why the PET quantifi-
cation errors obtained for images reconstructed with AC
using the MRI-derived pseudo-CT image PsCTMRSEG were
higher than for those reconstructed via AC using the CT-
derived CTseg when both were compared with the PET
images reconstructed after CTAC.

Thus, although segmented CT images indicate a valid
lower bound for the error that could theoretically be
achieved using a segmentation-based MRAC method, these
results hardly can be achieved in practice because of tissue
misclassification.

Of the 2 evaluated MRAC methods, the AT&PR method
yielded higher accuracy than did the basic MR image seg-
mentation approach, mostly because of significantly better
accuracy within and near bone tissue, in which MRSEG
yielded error levels up to 51% and AT&PR yielded error
levels only as high as 22%. Another reason was that attenu-
ation values were predicted on a continuous scale on the
basis of the local context. Because the prediction is based
on the similarity of a patch around a voxel in patient MRI
data to patches from multiple registered atlas MR images,
individual MR image segmentation errors and artifacts in
MRI data have a lower impact on the prediction accuracy if
this method is used.

TABLE 3
Average Relative VOI PET Quantification Errors for Mean SUVs; Results Compared with Those Achieved Using CTAC

Region CTnobone CTseg PsCTMRSEG PsCTAT&PR

Thorax 1.0% 6 0.8% 10.2% 6 7.5% 13.5% 6 10.7% 14.0% 6 11.4%
Abdomen 5.7% 6 8.9% 7.8% 6 10.3% 12.7% 6 10.3% 5.2% 6 4.3%

Pelvis 3.7% 6 4.2% 5.5% 6 5.9% 15.8% 6 9.6% 4.9% 6 5.1%

Average 3.6% 6 6.0% 7.6% 6 8.2% 14.1% 6 10.2% 7.7% 6 8.4%

Lesions 2.8% 6 4.5% 4.0% 6 5.2% 7.5% 6 7.9% 5.7% 6 4.7%

Errors are averaged across all patients for body regions and lesions. Data are mean 6 SD.

TABLE 4
Percentage and Number of Nonpulmonary VOIs That Exceed Relative Absolute Quantification Error of 10% and 20%

Tissue type Osseous (n 5 55), relative absolute error Nonosseous (n 5 103), relative absolute error

.10% .20% .10% .20%

Percentage Number Percentage Number Percentage Number Percentage Number

CTnobone 38.2 21 20.0 11 0.0 0 0.0 0
CTseg 58.2 32 21.8 12 1.0 1 0.0 0

PsCTMRSEG 85.5 47 60.0 33 47.6 49 7.8 8

PsCTAT&PR 21.8 12 0.4 2 9.7 10 1.0 1

Data are for VOIs in PET images reconstructed after MRAC and modified CTAC (as compared with PET images reconstructed after

CTAC).
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As previously mentioned, the relative absolute quantifi-
cation error for images reconstructed after AC using both
MRI-based methods was below 20% for all but 1 lesion.
Against this backdrop, the first clinical applications of PET/
MRI in the future will help to define a clinically acceptable
bias for MRAC. Personal communication with nuclear
medicine imaging experts indicated that error levels below
10% would typically not affect clinical diagnosis in on-
cology but that in more specific PET applications such as
the evaluation of neuroreceptors or inflammation, or in
b-cell mass imaging, quantification error would need to be
reduced.
Both of the presented methods exhibited large relative

PET SUV differences in the lungs (Table 3). Lung density
varies between individuals, especially in cases of respira-
tory disease. Even for healthy patients, lung density and
corresponding attenuation values depend on respiratory
and body position (24), age, or smoking habits (25).
With the MRI sequences used in this study and other

standard MRI sequences with echo times longer than 1 ms,
signal intensity from the lungs is low, and different levels of
lung density cannot be easily distinguished. Thus, MRI patches
in the lung region could not provide sufficient information
for the AT&PR method to distinguish between different lung
densities, resulting in an equally high relative error level as
that found with the segmentation approach, for which the
same attenuation value was assigned to all lung voxels.
We suggest in a next step to evaluate dedicated MRI

sequences that are suitable for MRAC in the lungs: for
example, sequences with ultra-short echo times, which have
been shown to produce signal from the lung parenchyma
(26). Acquisition times for ultra-short echo time sequences
are, however, far longer than would be acceptable for
breath-hold acquisitions (8). Alternatively, emission data
could be used to estimate the lung attenuation coefficients
(27).
Martinez-Moeller et al. (10) pointed out that for a patient

with a lung tumor, attenuation at the tumor location cannot
be predicted on the basis of an atlas; accurate attenuation
correction in the case of anatomic anomalies is of particular
importance for clinical use. Indeed, a method based only on
atlas registration cannot be used to predict the attenuation
of any structure not present in the atlas template images. As

outlined, we combine an atlas approach with pattern recog-
nition to compare patches in the patient MR image with an
extensive database of patches sampled from the template
MR images. If the intensity in the MR image is above a
certain threshold, then the predicted attenuation map at this
position will have at least the attenuation value of soft
tissue. This simple processing step ensures that for any
anatomic structure visible on the MR image, our approach
predicts at least the attenuation value of soft tissue. There-
fore, our AT&PR approach is locally accurate for most
lesions because tumors typically consist of soft tissue with
an attenuation value similar to that of water.

Metal artifacts are known to bias PET quantification
when propagated through CTAC (28,29). Our study indi-
cates that metal-induced artifacts extend over larger image
areas and are, therefore, more likely to affect quantification.
Whereas metal objects in CTAC PET lead to both the over-
estimation and the underestimation of PET values (29), the
signal loss in MR images would rather lead to the under-
estimation of PET attenuation and, therefore, lower PET
values. Atlas-based methods include prior assumptions
about attenuation values at a given location, which can
make them more robust against artifacts caused by metal
objects. Our study supports this assumption; the AT&PR
method was able to produce an attenuation map with an
absolute error level less than 10% for 2 of 3 cases. Its fail-
ure to do so in the third case was due to a metal artifact
created by a sternal wire, which resulted in a large deteri-
oration of the body outline (Fig. 2). The segmentation and
subsequent atlas registration failed, resulting in an attenua-
tion map with a deformed representation of the thorax.

Although in this study all patients were examined with
their arms up during both the PET/CT and the MRI scans,
with both examinations performed on the same day, there
was unavoidable movement between exams. We attempted
to account for this using nonrigid registration. This type of
registration is a challenge for whole-body data, and we
observed residual local inaccuracies. In obvious cases of
misalignment, we excluded affected VOIs from further
evaluation. However, other regions might also have been
affected by less obvious registration errors. Therefore, the
reported errors must be regarded as the sum of contribu-
tions from inaccurate MRI-based attenuation map predic-

FIGURE 2. Patient with metal implant in

sternum. Bottom row, from left to right: in-
phase MR image; CT image, with arrows

indicating location of metal implant;

pseudo-CT from 5-class MR image segmen-

tation; and AT&PR based pseudo-CT. Top
row: corresponding PET images recon-

structed using pseudo-CT images for AC.
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tion and from inaccurate MRI/CT registration. For areas of
low intensity, the reconstruction process is noisy and may
also contribute relative errors beyond what is caused only
by errors in the attenuation maps. These errors affect the
presented results for both the segmentation and the AT&PR
approach and should, therefore, have little influence on our
comparison of the 2 approaches.
As the CT and MRI datasets in the atlas database had a

different slice thickness (5 mm for CT vs. 2.5 mm for MRI)
the higher MRI interslice resolution could not be fully used,
as the resulting pseudo-CTs were resampled to the same
slice thickness as the CT images in the atlas database. When
using CT data reconstructed with a lower slice thickness, we
expect the pseudo-CT prediction quality to improve.

CONCLUSION

The MRAC method using AT&PR provided better
overall PET quantification accuracy than did the basic
MR image segmentation approach. This was because er-
rors were significantly reduced for regions within or near
bones and slightly reduced in other areas outside the
lungs. Both algorithms performed relatively poorly in
the lungs.
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