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The most accurate way to estimate the glucose metabolic rate
(or its influx constant) from 18F-FDG PET is to perform a full
kinetic analysis (or its simplified Patlak version), requiring
dynamic imaging and the knowledge of arterial activity as a
function of time. To avoid invasive arterial blood sampling, a
simplified kinetic analysis (SKA) has been proposed, based on
blood curves measured from a control group. Here, we extend
the SKA by allowing for a greater variety of arterial input func-
tion (A(t)) curves among patients than in the original SKA and by
accounting for unmetabolized 18F-FDG in the tumor. Methods:
Ten A(t)s measured in patients were analyzed using a principal-
component analysis to derive 2 principal components describ-
ing most of the variability of the A(t). The mean distribution
volume of 18F-FDG in tumors for these patients was used to
estimate the corresponding quantity in other patients. In sub-
sequent patient studies, the A(t) was described as a linear com-
bination of the 2 principal components, for which the 2 scaling
factors were obtained from an early and a late venous sample
drawn for the patient. The original and extended SKA (ESKA)
were assessed using fifty-seven 18F-FDG PET scans with vari-
ous tumor types and locations and using different injection and
acquisition protocols, with the Ki derived from Patlak analysis
as a reference. Results: ESKA improved the accuracy or pre-
cision of the input function (area under the blood curve) for all
protocols examined. The mean errors (6SD) in Ki estimates
were 212% 6 33% for SKA and 27% 6 22% for ESKA for a
20-s injection protocol with a 55-min postinjection PET scan,
20% 6 42% for SKA and 1% 6 29% for ESKA (P , 0.05) for a
120-s injection protocol with a 55-min postinjection PET scan,
and237%6 19% for SKA and24%6 6% for ESKA (P, 0.05)
for a 20-s injection protocol with a 120-min postinjection PET
scan. Changes in Ki between the 2 PET scans in the same
patients also tended to be estimated more accurately and more
precisely with ESKA than with SKA. Conclusion: ESKA, com-
pared with SKA, significantly improved the accuracy and pre-
cision of Ki estimates in 18F-FDG PET. ESKA is more robust
than SKA with respect to various injection and acquisition
protocols.
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PET using 18F-FDG is useful for grading tumors and
assessing therapy or disease progression (1,2). 18F-FDG
uptake is often characterized by calculating the standar-
dized uptake value (SUV) from late static imaging (typi-
cally 45–60 min after injection). However, SUV is sensitive
to body composition (3), change in uptake over time (4),
and blood glucose concentration (5), which compromise the
use of SUVs for inter- or intrapatient comparison (6). Sev-
eral normalization schemes have been proposed to reduce
this sensitivity (7) but do not account for variations in 18F-
FDG pharmacokinetics among individual patients, and
these methods do not differentiate metabolized from unme-
tabolized 18F-FDG within the tumor. The most accurate
way to characterize the glucose metabolic rate is to perform
a full kinetic analysis (or its simplified Patlak version (8))
to estimate the influx constant (Ki) of 18F-FDG in the
tumor. Computing Ki, however, requires dynamic PET to
assess the tumor uptake kinetics (tumor uptake at time
t [T(t)]) and repeated blood sampling or dynamic imaging
over the heart or aorta to measure the arterial input func-
tion A(t).

As a compromise between SUV and Patlak analysis, the
so-called simplified kinetic analysis (SKA) has been pro-
posed (7). In this method, the shape of the patient’s A(t) is
assumed to follow a mathematic model derived from a
group of subjects. For any patient, the A(t) magnitude is
obtained by scaling the A(t) model to fit 1 late venous blood
sample. A drawback of this approach is that it assumes that
a single function can model every individual patient’s A(t)
after appropriate scaling (1,7,9). In addition, SKA does not
differentiate metabolized from unmetabolized 18F-FDG in
the tumor. To overcome the SKA limitations, we propose an
extended SKA method (ESKA), which allows for a greater
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variety of A(t) curves among patients and accounts for
unmetabolized 18F-FDG in the tumor. We compare the per-
formance of SKA and ESKA, using Patlak analysis as a
reference.

MATERIALS AND METHODS

Patlak Analysis
In the Patlak method (8), the Ki of 18F-FDG in the tumor is

given by:

TðtÞ=AðtÞ 5 Ki �AUCðtÞ=AðtÞ 1 U; Eq. 1

where U is the steady-state distribution volume of the exchanging
compartments (blood and parenchymal tissue) in the tissue region
of interest and AUC(t) is the area under the A(t) up to time t,
corresponding to the 18F-FDG that has been made available to the
tumor up to time t. In this study, A(t) and AUC(t) were determined
by dynamic PET over the heart.

SKA
The SKA method initially proposed by Hunter et al. (7) requires

1 static acquisition and 1 venous blood sample collected midway
through the static acquisition, approximately 55 min after injec-
tion of 18F-FDG. In this approach, A(t) is modeled using a triex-
ponential function:

ASKAðtÞ 5 A1�expð2b1�tÞ 1 A2�expð2b2�tÞ
1A3 �expð2b3�tÞ; Eq. 2

where b1, b2, and b3 are assumed to be identical for all patients and
are determined from a set of patients for whom repeated blood
sampling was performed. For each individual patient, A1 and A2

are computed from the patient’s lean body mass and injected dose.
A3 is obtained by fitting the ASKA(t) model to a late blood sample.
Equation 2 is then used to compute the area under the A(t) curve
up to time t, AUC(t). The SKA Ki index, which estimates the Ki

index when using the SKA method, is obtained by dividing the
tumor uptake T(tlate) measured on a late image taken at tlate by
AUC(tlate):

SKA Ki 5 TðtlateÞ=AUCðtlateÞ; Eq. 3

assuming the distribution volume of 18F-FDG (U in Eq. 1) can be
neglected.

In our study, we implemented 2 versions of SKA. The first was
SKApub, for which we used the bi parameters provided in the papers
by Hunter et al. (7), Graham et al. (10), and Hoekstra et al. (11),
given they were supposed to stay in a narrow range for all patients.
The second version was SKAopt, for which we used our own patient
studies to derive the bi parameters, by considering the decreasing part
of the true A(t).

In both approaches, A1 5 A2 in Equation 2 and was computed
as proposed in the papers by Hunter et al. (7), Graham et al. (10),
and Hoekstra et al. (11). The lean body mass equations were 1.07 ·
weight – 148 · (weight/height2) for men and 1.1 · weight – 120 ·
(weight/height2) for women (12). A3 was computed for each patient,
using a late A(tlate) value, where tlate corresponded to the end of the
scan.

ESKA
Similar to SKA, ESKA is based on an A(t) model, derived from

a training subset of randomly chosen patients for whom the fully
sampled A(t) was available.

In ESKA, estimating the A(t) relies on the following 3 steps
(Fig. 1):

• Resampling all patients’ A(t) from the training set to the
same time sampling.

• Analyzing the set of resampled A(t) using a principal-com-
ponent analysis (PCA). We empirically found that the first 2
principal components (APCA-1(t) and APCA-2(t)) associated
with the largest 2 eigenvalues were sufficient to accurately
describe any individual A(t):

AESKAðtÞ 5 a1�APCA-1ðtÞ 1 a2 �APCA-2ðtÞ; Eq. 4

where a1 and a2 represent patient-dependent coefficients.
• Taking venous blood samples for any patient not in the train-
ing set; the a1 and a2 coefficients are obtained from 2 sam-
ples, AESKA(t1) and AESKA(t2). AESKA(t1) was taken early
after injection but late enough to ensure arteriovenous activ-
ity equilibrium. AESKA(t2) was taken at the end of the scan.
These 2 values, along with the APCA(t1) and APCA(t2) values,
yielded a system of 2 equations with 2 unknowns, from
which a1 and a2 could be derived.

Unlike SKA, ESKA accounts for the unmetabolized 18F-FDG
in the tumor. Indeed, a mean distribution volume (Umean) was
estimated from the group of patients in the training set (1). For

FIGURE 1. Three steps of ESKA approach for estimation of A(t).
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each individual patient, the ESKA Ki index, which estimates Ki

when using the ESKA method, was then given by:

ESKA Ki 5 ðT½tlate� 2 Umean �AESKA½tlate�Þ=AUCðtlateÞ;
Eq. 5

for tlate corresponding to a late static scan.

Patients
Forty-three patients were considered and divided into 3 groups.

Each group corresponded to a particular injection and acquisition
protocol, to assess the robustness of the method for various
injection durations and delays between injection and scanning.
Nineteen patients were studied multiple times (baseline followed
by 1 or 2 follow-up studies), resulting in 70 studies, each with the
complete A(t) available for reference (Table 1). Pre- and postther-
apy scans were combined to compare the various kinetic analysis
methods.

Results from the first 2 groups assessed the robustness of the
methods to the injection protocol:

• The 120-s/55-mTot group (33 studies) included 16 patients
(47.1 6 13.7 y) with renal cell cancer receiving vascular
endothelial growth factor antibody. Each patient underwent
a 120-s 18F-FDG injection protocol using a constant-infusion
pump. These patients were scanned dynamically for about
55 min after injection.

• The 20-s/55-mTot group (37 studies) included 27 patients
(47.6 6 17.3 y) who underwent a 20-s 18F-FDG injection
protocol using a constant-infusion pump. These patients were
enrolled in 3 different protocols: 13 breast cancer patients were
receiving anti–epidermal growth factor receptor therapy, 7
patients with various tumor locations were receiving various
types of antineoplastic therapy, and 7 patients were admitted
for diagnosis of lymph node lesions. These patients were
scanned dynamically for approximately 55 min after injection.

• To investigate the robustness of the methods regarding the
delay between injection and scanning, another group was
derived from the 20-s/55-m group, considering delayed data:

• The 20-s/120-mTot group (7 studies) included the 7 patients
from the 20-s/55-mTot group (25.7 6 13.3 y) presenting

lymph node inflammation for whom we had a delayed
whole-body scan available. This delayed whole-body scan
allowed assessment of the tumor at 1 additional late time
point, approximately 90–150 min after injection depending
on the lesion localization. In this group, we considered
tumors only with stable Patlak Ki—that is, with Ki that did
not vary by more than 15% between the injection groups at
55 and 120 min.

Patient Training and Testing Groups. To derive the A(t) models
(SKA parameter bi and the 2 principal components APCA-1(t)
and APCA-2(t) needed for ESKA), some of the patients from
the 120-s/55-mTot and 20-s/55-mTot groups were removed to be
used as a training set. The training subjects used for computing
these parameters or principal components were not further
included in the analyses. The same training subjects were used
for SKA and ESKA. Thus, in the testing set, 10 subjects were in
the 120-s/55-m, 21 in the 20-s/55-m, and 7 in the 20-s/120-m
groups (Table 1).

We also used pairs of successive PET/CT scans acquired in the
same subjects to study the accuracy and precision in measuring
changes in Ki between 2 PET/CT scans (DKi). After removal of
the cases used in the training set, we had 13 tumors for which DKi

between 2 scans was available in the 20-s/55-m group and 31
tumors in the 120-s/55-m group, with an average time lapse
between the 2 scans of 34.6 6 14.8 and 42.5 6 10.0 d, respec-
tively (none in the 20-s/120-m group).

Lesions Considered in Study. The field of view explored on the
first PET scan was chosen to include lesions greater than 2 cm in
their longest dimension based on CT or MRI data. All additional
lesions in the field of view at the time of the first dynamic PET
scan were also considered. Overall, a total of 124 lesions were
investigated.

Patient Dose. For each patient, approximately 370 MBq (3796
61 MBq) of 18F-FDG were injected, except for the 7 patients with
lymphatic lesions (560.16 14.8 MBq for the 4 adults and 201.56
75.4 MBq for the 3 children).

Data Acquisition
For all patients, 18F-FDG PET studies were acquired dy-

namically, starting at injection time, on an Advance PET (GE

TABLE 1
Patient Population

Group Population description

No. of studies

(5no. of A(t)) No. of lesions

120 s/55 m Training 6 patients with renal cell cancer (5 men, 1 woman;

mean age 6 SD, 52.3 6 9.5 y)

10

Test 10 patients with renal cell cancer (9 men, 1 woman;

mean age 6 SD, 44 6 15 y)

23 51

20 s/55 m Training 3 patients with breast cancer (mean age 6 SD, 60.7 6 13.3 y) 10
3 patients, 1 with breast and 2 with ovarian cancers

(mean age 6 SD, 52.3 6 5.5 y)
Test 10 patients with breast cancer (mean age 6 SD, 53.9 6 9.8 y) 27 65

4 patients, 1 with breast, 2 with ovarian, and 1 with prostate

cancers (1 man, 3 women; mean age 6 SD, 54.7 6 11.9 y)
7 patients with lymph node lesions (2 men, 5 women;

mean age 6 SD, 25.7 6 13.3 y)

20 s/120 m Test 7 patients with lymph node lesions (2 men, 5 women;

mean age 6 SD, 25.7 6 13.3 y)

7 8
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Healthcare) scanner in 2-dimensional mode, producing 35
slices over a 15-cm axial field of view.

For the 120-s injection protocol (the 120-s/55-m group), the
time per frame was 30 s (0–4 min after injection), 3 min (4–40 min
after injection), and 5 min thereafter, for an average of 51.3 6
2.2 min scan time.

For the 20-s injection protocol (the 20-s/55-m and 20-s/120-m
groups), the time per frame was 5 s (0–1 min after injection), 15 s
(1–2 min after injection), 30 s (2–7 min after injection), 3 min (7–
25 min after injection), and 5 min thereafter, for an average of
54.7 6 1.1 min scan time.

When tumors were not at the level of the heart (17 studies in
total), the scan was started over the heart for a period of
approximately 25 min and then shifted to the tumor level for the
remaining dynamic acquisition time.

A static image at the tumor level was systematically computed
from the dynamic acquisition, summing the last 3 acquisition time
points (;45–60 min after injection).

In addition to the dynamic acquisition, the 7 patients in the
20-s/120-m group underwent a whole-body static acquisition at
the end of the dynamic acquisition, on which the node and heart
uptake was seen at the late time point (between 90 and 150 min,
depending on the number of steps before reaching the tumor
location, step duration, scan starting time). The time associated
with the node (or the heart) level was computed from the whole-
body starting time and the slice including the node (or the heart).

Data Processing
Image Reconstruction. Images were reconstructed at 2 mm/

pixel into a 256 · 256 matrix using ordered-subset expectation
maximization (4 iterations, 28 subsets, 5-mm gaussian postrecon-
struction filtering) including attenuation, scatter, random, dead
time, and decay corrections. The reconstructed images had a trans-
axial and axial resolution of approximately 7 mm.

Input Function. The A(t)s were needed for Patlak analysis,
which was used as the reference method against which we
compared SKA and ESKA. If the tumors were at the level of
the heart, A(t) was directly derived from the dynamic images by
placing a volume of interest manually in the left atrial cavity (as
visualized from the sum of the early arterial phase dynamic
images), because this structure is less affected by activity spillover
from atrial muscle than the left ventricle cavity, which can be
strongly affected by spillover from the myocardium. When the
tumor was not at the level of the heart, A(t) was also estimated
from the images for the first 25 min (because the first 25 min of
data were always acquired at the level of the heart). Then, when
the scanner was moved to the level of the tumor, the later A(t) time
points were obtained from blood samples taken approximately
every 5 min thereafter.

In the Patlak analysis, the data from 25 min after injection to
the end of acquisitions were used to obtain the slope Ki and the
distribution volume U.

In SKA and ESKA, the input function was estimated using tlate
(;55 min for the 20-s/55-m and 120-s/55-m groups and;120 min
for the 20-s/120-m group).

Volumes of Interest. Volumes of interest were drawn over the
tumors on each patient from the late tumor static scan using an
automatic 3-dimensional region-growing program based on a
threshold in uptake (i.e., a percentage of maximum voxel intensity)
as implemented in the MedX software (Sensors System). These
volumes of interest were used for calculation of the SKA Ki

and ESKA Ki values and the Patlak Ki. For the whole-body im-
ages, we computed the tumor volumes of interest with the same
3-dimensional region-growing program, using the same tumor
uptake threshold as when using dynamic images.

Data Analysis
Performances of SKApub, SKAopt, and ESKA were assessed by

comparing the estimated A(t) with the PET image–derived A(t). A
percentage error between the estimated area under the curve
(AUC) and the AUC derived from the continually sampled A(t)
was calculated.

SKApub Ki, SKAopt Ki, and ESKA Ki were compared with our
gold standard Patlak Ki using correlation analyses and percentage
errors. Estimated DKi based on estimated Ki from SKApub,
SKAopt, and ESKAwere also compared with DKi based on Patlak
Ki, to study the accuracy and precision in measuring changes in
Ki.

Averaged percentage errors, with the percentage error defined
by 100 · (estimated_value – reference_value)/reference_value,
and associated variance were compared using the nonparametric
Wilcoxon matched-pairs signed-rank test and Friedman test,
respectively, with an a 5 0.05 level of significance. Statistical
difference of the nonparametric Spearman correlation coefficients
was computed using the Fisher r-to-Z transformation.

RESULTS

We first evaluated the methods for the 120-s/55-m and
20-s/55-m groups, corresponding to acquisitions of about
55 min obtained using two 18F-FDG infusion protocols. We
then tested the robustness of the 3 methods for the delayed
imaging protocol.

A(t) and AUC Estimates

Figure 2 shows the A(t) (first 10 min only), obtained
using SKApub, SKAopt, and ESKA, compared with the
reference A(t) for the training and test subsets of the
20-s/55-m group. Large differences between estimated
and true A(t) can be seen with SKApub. This result was
expected because SKA was not meant to reproduce the
shape of the A(t)s at early times. However, a good agree-
ment between the estimated A(t) and the reference A(t) was
observed with both SKAopt and ESKA.

Table 2 gives the percentage errors in AUC estimated for
SKApub, SKAopt, and ESKA, compared with the reference
AUC and the correlation coefficients between reference and
estimated AUC. With ESKA, the maximum error in AUC
estimate for the 120-s/55-m and 20-s/55-m groups was
8.4%, and the mean error was 20.3% 6 4.3% (computing
a combined error for the 2 groups). For these same groups,
the maximum error reached 193.8% and 56.7% for SKApub

and SKAopt, respectively, and the combined-group mean
errors were 52.9%6 45.2% and 9.1%6 15.0%, respectively.
The correlation coefficients for ESKA were always signifi-
cantly higher than the ones obtained for the SKA approaches.

The trends for the 20-s/120-m group were the same as
those observed for the 120-s/55-m and 20-s/55-m groups.
SKApub resulted in the largest AUC overestimation for all
groups. The decrease in the mean percentage error between
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SKApub and SKAopt and the decrease in the mean percent-
age error between SKAopt and ESKA were statistically sig-
nificant. The correlation coefficient was significantly higher
for ESKA than for SKAopt and SKApub, except for the 20-s/
120-m group (possibly because of the low number of sub-
jects in that group). For all methods, except again for the
20-s/120-m group, the magnitude of the error in AUC esti-
mate was not correlated with the magnitude of the reference
AUC (results not shown).

Ki Estimates

Table 3 presents the mean percentage error in the esti-
mation of the Patlak Ki for the 3 approaches and the r2

values between estimated and reference Ki. Although the
AUC estimates were more accurate for SKAopt than for
SKApub (Table 2), the Ki values from SKAopt were signifi-
cantly less accurate than the Ki values from SKApub. Ki

estimates were the most accurate with ESKA, although
the percentage errors were highly variable. To test whether
the large SD of errors for ESKA was due to using a single
Umean to estimate the 18F-FDG distribution volume, we
used the true tumor’s distribution volume (Utrue) of 18F-

FDG computed from the Patlak analysis with the known
T(t) and A(t) (results not shown). When accounting for
Utrue in ESKA, the SD associated with the mean percentage
error in Ki estimates was strongly reduced (mean errors of
26.4% 6 15.2% and 0.9% 6 4.9% for the 120-s/55-m and
20-s/55-m groups, respectively). The impact on the error
induced by the use of a unique Umean was statistically sig-
nificant (P , 0.05) only for the 20-s/55-m group. Utrue

values ranged from 0.1 to 0.9 vs. 0.5 for the Umean value.
In the 20-s/120-m group, ESKA also resulted in a

statistically better estimate of Ki than did SKA (P , 0.05),
associated with a lower SD (P , 0.05 for SKApub vs. ESKA
and for SKAopt vs. ESKA).

For all methods, the magnitude of the error in Ki estimate
was not correlated with the magnitude of the reference Ki

(results not shown).
The correlation coefficients between the reference and

estimated Ki with the SKA methods were similar to or
significantly lower than those with the ESKA methods.
The ESKA Ki values were more strongly correlated with
the Patlak Ki values for the delayed acquisitions than for
the 55-min acquisitions (P , 0.05 for the 120-s/55-m vs.

FIGURE 2. (Left) Comparison of original

A(t) (first 10 min) with SKA method of Hunter

et al. (7), using both published and opti-
mized parameter values to compute ASKA(t).

(Right) For same patient studies, compari-

son of AESKA(t) with original resampled A(t).

TABLE 2
Mean Percentage Differences (6SD) Between Estimated and True AUC and Spearman Correlation for SKA and ESKA

SKApub SKAopt ESKA

Group Mean 6 SD r2 Mean 6 SD r2 Mean 6 SD r2

20 s/55 m (n 5 27) 71.4* 6 53.6%† 0.89 2.5% 6 11.9% 0.71 20.4% 6 4.1% 0.98‡

20 s/120 m (n 5 7) 82.0* 6 41.2%† 0.96 72.5* 6 43.8%† 0.93 6.3* 6 3.2%† 0.96

120 s/55 m (n 5 23) 31.2* 6 15.4%† 0.62 16.9* 6 14.6%† 0.64 20.2* 6 4.6%† 0.93‡

*Results for approach significantly different from those of other 2 in terms of mean (Wilcoxon test).
†Results for approach significantly different from those of other 2 in terms of variance (Friedman test).
‡Results for approach significantly different from other 2 in terms of correlation (Fisher r-to-Z transformation).
All AUCs were computed as area from t 5 0 to midpoint of static image.
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20-s/120-m groups and for the 20-s/55-m vs. 20-s/120-m
groups).

DKi Estimates

Table 4 shows the relative errors (estimated_DKi –
Patlak_DKi)/Patlak_DKi when DKi was calculated on the
basis of SKApub, SKAopt, and ESKA Ki estimates for the
20-s/55-m and 120-s/55-m groups (no data available for
the 20-s/120-m group). The smallest mean errors in DKi

were obtained with ESKA, followed by SKAopt and then
SKApub. The errors were always highly variable (SD .
100%), but the smallest variability was observed with ESKA.
The magnitude of the error in DKi estimate was not correlated
with the magnitude of the reference DKi (results not shown).

DISCUSSION

In 18F-FDG PET, the glucose metabolic rate is related to
the net rate of 18F-FDG influx Ki, which can be estimated
using a full kinetic analysis and a measurement of the A(t)
or using a Patlak analysis (8). However, full kinetic analysis
and Patlak analysis are rarely used in clinical practice
because of the time-consuming, full dynamic acquisition
protocol they involve. In clinical practice, glucose meta-
bolic rate is usually replaced with the SUV, because use
of SUVs requires only 1 late image acquisition. Freedman
et al. (1) showed that different conclusions could be reached
regarding tumor follow-up depending on whether SUV or
Patlak analysis was used.

SKAs differ in the method used to estimate the amount of
18F-FDG delivered to the tumor. The SKA proposed by
Hunter et al. (7) uses a single parametric expression for
A(t) for all patients and a single blood sample to scale
the curve for each subject. Adaptation to different infusion
protocols or to different patient populations is only through
adjustment of the exponential parameters (as in our SKAopt)
and by scaling the resulting A(t) using the single blood
sample, to correctly estimate the AUC. The A(t) shape
actually depends on the injection rate and on the patient’s
metabolic status. In SKA, this variability is considered
using only the scaling factor associated with the third expo-
nential function of the model (Eq. 2). The injection phase is
thus neglected, unlike in our ESKA approach. Nor does
SKA attempt to account for unmetabolized 18F-FDG in
tumor. Sundaram et al. (9) proposed a hybrid model
between the SKA method proposed by Hunter et al. (7)
and Patlak analysis, using multiple blood samples to
account for unmetabolized 18F-FDG. However, only 1
blood sample (40 min after injection) was used to scale
each individual patient’s A(t). Another approach has been
proposed to estimate A(t) using a triexponential function
(13) for Na18F-PET data. The authors (13) reported a good
correlation between true and estimated A(t) but used the
same population of patients to determine the model param-
eters and validate the model.

Other groups used image-derived input functions without
scaling (14,15), an approach limited by the PET image
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partial-volume effect and radiolabel uptake in tissue sur-
rounding the region of interest.
In this paper, we first considered an approach that

optimizes the model parameters for each injection proto-
col—an alternative version of the SKA method proposed by
Hunter et al. (7). Our approach might be more appropriate
than the original SKA method when the injection protocol
varies. We also derived an alternative model for A(t), with 2
principal components derived from the PCA of a subset of
fully sampled A(t) measured using a specific injection pro-
tocol. We found (results not shown) that considering more
principal components increased variability without reduc-
ing error in AUC estimates. Naganawa et al. (16) used
independent component analysis to estimate the A(t), along
with the tissue time–activity curve, directly from dynamic
brain PET series. To deal with the nonunique solution of
independent component analysis, these authors introduced
anatomic constraints specific to cerebral physiology, which
are difficult to adapt in an oncology situation. Their method
has the advantage of being independent of the injection
protocol and image time sampling and not requiring any
manual delineation of the arterial region of interest (16).
However, an arterial blood sample was required to scale the
estimated input function.
ESKA requires 2 venous blood samples rather than the

single sample required by SKA. We do not consider this
requirement a significant drawback, because once the patient
has a venous line in place to draw the 1 sample required by
SKA, it is simple to acquire an additional sample later. To
improve the robustness of the fit, 1 early and 1 late sample are
required. The first blood sample should be drawn as soon as
possible after equilibration between arterial and venous blood
has been reached, to accurately estimate the early part of the
A(t). From visual examination of the A(t) of the training sets,
we chose to draw our first sample at approximately 15 min
after injection for the 120-s injection protocol and approx-
imately 10 min after injection for the 20-s injection protocol.
Neither the SKA nor the ESKA methods require dynamic
imaging. Only a single, late static image is necessary.
Another advantage of the ESKA method is that unlike

SKA, ESKA attempts to account for the presence of
unmetabolized 18F-FDG when deriving the Ki, based on

the average distribution volume of 18F-FDG observed in
the training set.

A(t) and AUC Estimates

As illustrated in Figure 2, the A(t) curves recovered using
ESKA agree well with the original A(t). ESKAyielded both
a better estimate of the AUC and a better correlation with
the true AUC than did SKA, for all groups (Table 2).

Ki Estimates

For the 120-s/55-m group, our correlations between SKA
Ki and Patlak Ki are consistent with values reported else-
where in the literature (7,9,10). We found an r2 coefficient
between SKApub and true Ki of 0.91, whereas previous
correlations of 0.89 (10), 0.92 (9), and 0.98 (7) have been
reported. However, this high correlation is accompanied by
an overestimation of the SKApub Ki indices similar to that
reported by Hunter et al. (7) (although Sundaram et al. (9)
reported a 20% underestimation of Ki when using the
approach of Hunter et al.).

For the 20-s/55-m group, true Ki and SKApub Ki agreed
less well (r2 5 0.59), although there was only a small
underestimation of the SKApub Ki index, underlining the
variability in SKA performance as a function of the injec-
tion protocol. SKApub Ki correlated slightly better with
Patlak Ki for 120-min acquisitions than for 55-min acquis-
itions (Table 3).

There was excellent correlation between Patlak Ki and
ESKA Ki for both 20-s and 120-s injections (r2 $ 0.92).
The mean error in Ki with ESKA was also small for both
injection protocols, compared with SKAopt (Table 3). To
clarify whether the improvement in Ki estimates observed
with ESKA was mostly due to better A(t) estimate or to
accounting for unmetabolized 18F-FDG, we calculated the
mean error in Ki estimates using SKApub and SKAopt with U
set to Umean (as in ESKA) and using ESKAwith Umean 5 0
(Table 3). Table 3 demonstrates that the 2 original features
of ESKA (original A(t) estimate and accounting for Umean)
are needed to make ESKA accurate, whatever the injection
protocol and acquisition time, and that SKA cannot perform
as well as ESKA, even when accounting for unmetabolized
18F-FDG. With ESKA, a residual error was still observed
due to the use of a mean Umean value. Error was reduced in

TABLE 4
Percentage Errors in Estimation of Change in Ki Between 2 Successive PET/CT Scans When Using

SKApub, SKAopt, or ESKA Ki Estimates

Group SKApub SKAopt ESKA

20 s/55 m (n 5 13) 2135.6* 6 181.3%† 31.2% 6 131.5% 0.7% 6 103.8%

120 s/55 m (n 5 31) 2123.5% 6 622.1% 295.4% 6 535.1%† 252.3% 6 212.0%

*In 20-s/55-m group, SKApub was significantly different from 2 other approaches in terms of mean error. In 120-s/55-m group, mean

error was only significantly different between SKApub and SKAopt (Wilcoxon test).
†In 20-s/55-m group, SKApub was significantly different from 2 other approaches in terms of associated variance. Also, variance of

SKAopt was significantly different from that of SKApub and ESKA (Friedman test).

Data are mean 6 SD.
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the 120-min acquisitions, compared with 55-min acquisi-
tions, presumably because of the decrease of unmetabolized
18F-FDG with time. Also, the SD associated with the mean
error was reduced to 6.2% (20-s/120-m group), compared
with 28.8% and 22.4% for the 120-s/55-m and 20-s/55-m
groups, respectively (P , 0.05).
Compared with ESKA, the larger SD in the SKA methods

was due to not accounting for unmetabolized 18F-FDG, as
demonstrated in Table 3, in which the SD systematically
decreased when Umean was included in the SKA methods.

SKApub Versus SKAopt

In all our patient groups, the AUC was overestimated using
SKApub. The results in Figure 2 show the need to adapt the
parameters to the injection protocol if the objective is to
estimate the A(t) shape accurately. However, even when opti-
mizing the SKA parameters for our injection protocols, SKA
still resulted in an AUC overestimation, probably because a
single AUC shape, even scaled, cannot be appropriate for
every patient. Using SKAopt instead of SKApub left the cor-
relation with true Ki unchanged or improved the correlation,
but it did not necessarily improve the Ki estimates, because
with SKApub the underestimation of Ki due to the overesti-
mation of AUC is partially compensated by not accounting
for unmetabolized 18F-FDG (i.e., overestimating Ki).

DKi Estimates

Results in Table 4 show that ESKA tends to estimate DKi

more accurately and more precisely than SKA, demonstrat-
ing that the reduction of bias in Ki estimates obtained using
ESKA is not at the expense of increased variability. These
results are consistent with the correlation results shown in
Table 3 and suggest that ESKA might be preferable to SKA
when using Ki for patient monitoring.

Limitations of ESKA

A source of A(t) variability is the time lag between the
start of the scanning and the arrival of activity in the field of
view. To remove such variability and correctly align the
A(t) peak time in ESKA, we aligned the original A(t)s
during the resampling step so that each A(t) peaked at the
same time point. This realignment can be done a posteriori,
as we did here, or by synchronizing the scanning start time
with the detection of activity in the field of view.
In ESKA, the unmetabolized 18F-FDG in the tumor is

accounted for using the Umean obtained from the training set
from each population (Eq. 5). However, only a true kinetic
analysis could determine the exact distribution volume.
Using only a mean value may cause variability in Ki, as
previously reported (1). Variability in tumor distribution
volume likely reflects real variations in tumor viable cell
density, edema, and other factors that are hard to predict on
the basis of other observables—that is, tumor or back-
ground uptake, input function, patient weight, and Ki esti-
mate. Note that delayed imaging protocols (e.g., 120 min
after injection or longer) have recently proven of clinical
interest (17–19). Because unmetabolized 18F-FDG is usu-

ally quite low in these cases, the errors in estimating unme-
tabolized 18F-FDG by ESKA should be less important.

CONCLUSION

By accounting for variability in the shape of A(t) using 2
venous blood samples and partially accounting for unmetabolized
18F-FDG in the tumors, the ESKA approach proposed here yields
significantly more accurate and more precise estimates of the net
18F-FDG Ki than those achieved with the conventional SKA.
These improvements also translate into more accurate estimates
of changes in Ki over time.
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