⁹⁰Y Bremsstrahlung Imaging for Absorbed-Dose Assessment in High-Dose Radioimmunotherapy

David Minarik¹, Katarina Sjögreen-Gleisner¹, Ola Linden², Karin Wingårdh^{1,2}, Jan Tennvall², Sven-Erik Strand¹, and Michael Ljungberg¹

¹Department of Medical Radiation Physics, Clinical Sciences, Lund University, Lund, Sweden; and ²Department of Oncology, Lund University and Skåne University Hospital, Lund, Sweden

This feasibility study demonstrates ⁹⁰Y quantitative bremsstrahlung imaging of patients undergoing high-dose myeloablative ⁹⁰Y-ibritumomab treatment. Methods: The study includes pretherapy ¹¹¹In SPECT/CT and planar whole-body (WB) imaging at 7 d and therapy ⁹⁰Y SPECT/CT at 6 d and ⁹⁰Y WB imaging at 1 d. Time-activity curves and organ-absorbed doses derived from ⁹⁰Y SPECT images were compared with pretherapy ¹¹¹In estimates. Organ activities derived from ⁹⁰Y WB images at the first day were compared with corresponding pretherapy estimates. Results: Pretherapy ¹¹¹In images from 3 patients were similar to the ⁹⁰Y images. Differences between absorbed-dose estimates from pretherapy ¹¹¹In and ⁹⁰Y therapy were within 25%, except for the lungs. Corresponding activity differences derived from WB images were within 25%. Differences were ascribed to incomplete compensation methods and real differences in pharmacokinetics between pretherapy and therapy. Conclusion: Quantitative bremsstrahlung imaging to estimate organ activities and absorbed doses is feasible.

Key Words: yttrium; bremsstrahlung; imaging; radioimmunotherapy; activity quantification

J Nucl Med 2010; 51:1974–1978 DOI: 10.2967/jnumed.110.079897

Kadioimmunotherapy is established for the treatment of relapsing follicular or transformed B-cell lymphomas. Two radioimmunoconjugates, ⁹⁰Y-ibritumomab (Zevalin; Spectrum Pharmaceuticals) and ¹³¹I-tositumomab (Bexxar; GlaxoSmithKline), were approved. A dose–response relationship can be inferred from several observations (1,2), and the best clinical results published have made use of myeloablative radioimmunotherapy (3).

In standard ⁹⁰Y-ibritumomab treatments, administered activity is based on patient weight. For high-dose ibritumomab studies involving bone-marrow stem-cell support, an accurate dosimetry is required. The organs at risk in these studies are the liver, kidneys, and lungs. To maximize the

therapy effect, it is important to not exceed the maximumtolerable dose (MTD). We have an ongoing clinical absorbed dose-escalation study to determine MTD for the liver based on a pretherapy dose planning. The pretherapy dosimetry is performed by imaging with ¹¹¹In-labeled ibritumomab to predict the 90Y activity required for treatment. There is also a need to monitor the actual treatment for dose verification. A mixture of ¹¹¹In- and ⁹⁰Y-labeled ibritumomab could allow for imaging; however, this method has potential drawbacks. First, any labeling instability produces free-circulating ¹¹¹In, which gives nonrepresentative image information. Second, ⁹⁰Y bremsstrahlung may contaminate the ¹¹¹In energy windows, leading to errors in the activity quantification. Third, an ¹¹¹In-ibritumomab kit can be costly. If quantitative ⁹⁰Y bremsstrahlung imaging is feasible, such a study could confirm both targeting and delivery of the prescribed absorbed dose.

Previously, we have experimentally investigated quantitative bremsstrahlung SPECT and planar whole-body (WB) imaging (4,5). To our knowledge, no studies have been performed on quantitative bremsstrahlung imaging of patients given radiolabeled monoclonal antibody. In this work, the feasibility of quantitative bremsstrahlung imaging to verify predicted absorbed doses was investigated for SPECT and WB imaging using data from our escalation study. That study includes a pretherapy study with ¹¹¹Inlabeled ibritumomab in which SPECT/CT and WB imaging allow for a comparison of quantitative ⁹⁰Y with quantitative ¹¹¹In imaging.

MATERIALS AND METHODS

Patients and Study Protocol

In this work, 3 patients were evaluated (2 men [ages, 74 and 57 y; weights, 74 and 79 kg] and 1 woman [age, 71 y; weight, 70 kg]). The organ at risk was the liver, because bone-marrow stemcell support was given. All patients received 300 MBq of ¹¹¹Inibritumomab in the pretherapy study, followed by SPECT/CT and WB imaging on 7 occasions (at 1, 24, 48, 72, 144, 166, and 192 h after imaging). The SPECT/CT data determined the necessary therapy activity to give 12 Gy to the liver, and the WB studies served as an independent activity-quantification method to confirm the SPECT dosimetry. The ⁹⁰Y activities were calculated to 2,915, 4,990, and 1,825 MBq. Before ⁹⁰Y infusion, all patients received cold rituximab. The therapy study included 6 measurements at 1,

Received Jun. 3, 2010; revision accepted Sep. 8, 2010.

For correspondence or reprints contact: David Minarik, Department of Medical Radiation Physics, Barngatan 2:1, 221 85 Lund, Sweden. E-mail: david.minarik@med.lu.se

COPYRIGHT © 2010 by the Society of Nuclear Medicine, Inc.

24, 48, 120, 144, and 166 h after injection. Both SPECT/CT and WB images were acquired on the first occasion, but only SPECT/CT measurements were performed on the other 5 occasions.

Imaging System

A SPECT/CT Discovery VH system (GE Healthcare), equipped with 2.54-cm NaI(TI) crystals and a Hawkeye CT, was used. ¹¹¹In images were acquired from two 15% energy windows centered over the 245- and 172-keV peaks. A medium-energy general-purpose collimator was used for ¹¹¹In imaging, and ⁹⁰Y images were acquired using a high-energy general-purpose collimator and a 60% energy window centered at 150 keV. Anterior and posterior WB images were acquired in 384×1.024 matrices, with a pixel size of 2.21 mm. The scan speed was 20 cm/min for the first 3 measurements in the pretherapy study and 10 cm/min for all other measurements. SPECT data were acquired in a 64 × 64 matrix for 60 projections and 360°. For each time point, a CT study was conducted. The acquisition times per SPECT projection for ¹¹¹In and ⁹⁰Y were 45 and 60 s, respectively. All images were processed using the LundAdose software (6). The system sensitivities were measured from a known activity in air for ¹¹¹In and behind a 10-mm clear acrylic sheet for 90Y and were 72, 12, 1, and 0.16 cps/MBq for ¹¹¹In SPECT, ¹¹¹In WB, ⁹⁰Y SPECT, and ⁹⁰Y WB imaging, respectively.

SPECT Activity Quantification

SPECT images were reconstructed with an iterative orderedsubset expectation maximization algorithm (7) using 6 angles per subset. Attenuation correction was made using a CT-based density map (8) scaled to proper photon energy, with either soft-tissue– or bone-equivalent mass-attenuation coefficients, depending on a threshold of 1.2 g·cm⁻³. Scatter was modeled using the effective source scatter estimation (9) including compensation for the collimator–detector response. Both effective source scatter estimation and collimator–detector response kernels were generated from Monte Carlo simulations (10). The ¹¹¹In images were reconstructed using 6 iterations and the ⁹⁰Y images using 3 iterations. The mean organ activity concentration was calculated from volumes of interest delineated with sufficient margins to avoid partial-volume effects.

Planar Activity Quantification

Organ activities were quantified using a pixel-based conjugateview method (4,6). A patient-specific narrow-beam attenuation map was determined from an x-ray scout image (11) to correct for attenuation. To scale the map to the 90Y energy window, energy abundance-weighted linear attenuation coefficients were calculated from bremsstrahlung emission spectra obtained using MCNPX (12). Because of the 40-cm difference between the camera heads and x-ray unit, the patients were repositioned between the emission and scout scans. A software-based image registration, based on mutual information between the geometric mean-averaged WB image and the scout image (13,14), was applied for a correct pixel-based attenuation correction (15). The spatial change included the transformation of regions covering the head, torso, and left and right legs and was based on second-degree polynomials with translation, rotation, shearing, and second-degree curving included (15). Compensation for scatter, collimator response, and counts from backscattered photons was applied (4).

Organ activities were calculated from regions of interest (ROIs), and corrections for background activity and overlapping activities were made on a pixel basis in the activity images (16).

Absorbed-Dose Calculation and Evaluation

SPECT ⁹⁰Y images were evaluated by comparing ¹¹¹In and ⁹⁰Y SPECT–based time–activity curves and absorbed doses for the liver, spleen, kidneys, and lungs. Differences in administered activities, half-lives, and times were considered by renormalizing the ¹¹¹In activity, A_{In} :

$$A_{In \to Y} = A_{In} \cdot e^{(\lambda_{In} - \lambda_Y) \cdot t} \cdot \frac{A_{o,Y}}{A_{o,In}}, \qquad \text{Eq. 1}$$

where λ represents the decay constant, A_o the administered activity, and *t* the time between infusion and imaging. Organ time–activity curves were calculated by a biexponential fit using Levenberg– Marquardt least-squares minimization of the χ^2 statistical metric. Organ-absorbed doses were calculated by multiplying the cumulated activity concentration (MBq·h/cm³) by the emitted energy per megabecquerel divided by the mass density. The kinetic energy was assumed locally absorbed, because the range of the β -particles from ⁹⁰Y are comparable to the SPECT spatial resolution.

Planar WB ⁹⁰Y images were evaluated by comparing ¹¹¹In and ⁹⁰Y activities in the liver, spleen, kidneys, lungs, and total body, for which ¹¹¹In images were normalized as:

$$A_{In \to Y} = A_{In} \cdot e^{\lambda_{In} \cdot t_{In} - \lambda_Y \cdot t_Y} \cdot \frac{A_{o,Y}}{A_{o,In}}, \qquad \text{Eq. 2}$$

where t_{In} and t_Y are the elapsed times between infusion and first measurement for pretherapy and therapy, respectively.

RESULTS

SPECT

Figure 1 shows time–activity curves for patient 1. The ⁹⁰Y time–activity curve for the liver is consistent with the ¹¹¹In time–activity curve, apart from the first time point. The spleen time–activity curves differ somewhat between ¹¹¹In and ⁹⁰Y, showing a slightly lower initial uptake for ⁹⁰Y. The ¹¹¹In and ⁹⁰Y time–activity curves for the kidneys correspond well, and the left and right kidneys exhibit almost identical kinetics. For the lungs, the ⁹⁰Y time–activity curves are elevated, compared with the ¹¹¹In time–activity curve, but the kinetics for the left and right lungs are similar.

Table 1 shows calculated organ-absorbed doses. For the liver, organ-absorbed doses agreed well for patients 1 and 3, but for patient 2 the absorbed-dose calculated from 90 Y images was 25% higher than that estimated from 111 In images. The spleen values were within 20% for patients 1 and 2 and within 30% for patient 3, and the kidney values were within 14%. Considerable differences were seen in the absorbed doses to the lungs.

Figure 2 shows SPECT images through the liver and spleen for ¹¹¹In and ⁹⁰Y for patient 1. It is evident that the ¹¹¹In images have better spatial resolution and image contrast. However, the ⁹⁰Y images compare well with ¹¹¹In images, despite apparent background and nonuniform organ boundaries.

WB Imaging

Table 2 summarizes activity estimates based on the planar ¹¹¹In images and ⁹⁰Y images. Figure 3 demonstrates the

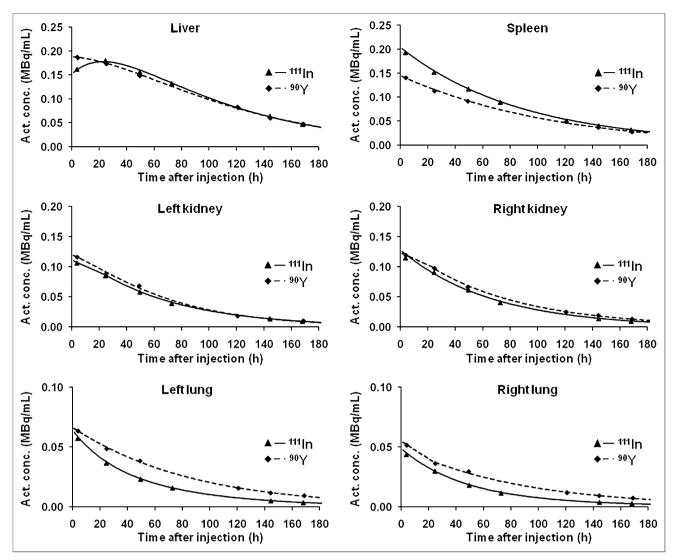


FIGURE 1. Mean activity concentration in liver, spleen, kidneys, and lungs calculated from SPECT for patient 1. Act. conc. = activity concentration.

improvement in image quality from the restoration filtering and the quantitative procedure. The ROIs used to quantify both the ¹¹¹In and the ⁹⁰Y images are also displayed. For all patients and organs, the differences in activities obtained from the 90 Y images and from 111 In imaging are within 25%. Estimated total-body activities, compared with the administered activities, showed deviations of -7%, -5%, and -7% for the 111 In-based estimates and 9%, 5%, and

Organ	Patient 1			Patient 2			Patient 3		
	⁹⁰ Y	¹¹¹ ln	%	⁹⁰ Y	¹¹¹ ln	%	⁹⁰ Y	¹¹¹ ln	%
_iver	12.1	12.1	0.0	14.7	11.8	24.6	10.8	11.0	-1.8
Spleen	7.5	9.3	-19.4	15.0	13.1	14.5	5.8	4.5	28.9
Left kidney	4.6	4.1	12.2	8.7	8.0	8.7	2.8	3.1	-9.7
Right kidney	5.0	4.4	13.6	8.4	8.2	2.4	3.3	3.1	6.5
Left lung	10.5	6.4	64.1	13.5	11.1	21.6	9.1	5.6	62.5
Right lung	8.1	4.9	65.3	12.2	9.1	34.1	7.8	4.8	62.5

 TABLE 1

 Absorbed Doses to Organs, Calculated from SPECT Images

Corresponding 90 Y-absorbed doses were calculated from 111 In images using Equation 1. Percentages were calculated by (90 Y - 111 In)/ 111 In × 100%.

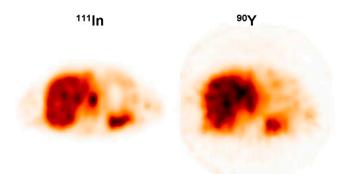


FIGURE 2. ¹¹¹In and ⁹⁰Y images from patient 1 at first time point.

8% for the ⁹⁰Y-based estimates for patients 1, 2, and 3, respectively.

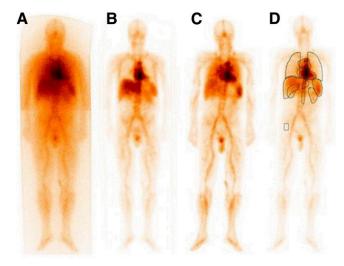
DISCUSSION

The feasibility of clinical quantitative bremsstrahlung imaging has been investigated by comparing absorbed doses calculated from multiple SPECT/CT scans of ¹¹¹In-labeled ibritumomab acquired before therapy with those acquired during therapy with ⁹⁰Y-ibritumomab. The activities obtained from WB ¹¹¹In images and planar WB ⁹⁰Y images have also been compared.

The difference between the ¹¹¹In and ⁹⁰Y time-activity curves (Fig. 1), the corresponding absorbed-dose estimates, and the planar WB activities were mostly of the same magnitude for all patients. There were some differences that could be related to measurement uncertainties or actual differences in pharmacokinetics. Regarding the liver, the absorbed doses corresponded well for patients 1 and 3. For patient 1, a slightly higher activity was obtained for the ⁹⁰Y-based estimation at the first SPECT measurement, and a similar difference was seen for the WB-derived value. For this patient, there could be a difference in the actual uptake because the pretherapy study was performed 4 mo before therapy. The 90Y liver time-activity curve, compared with the ¹¹¹In time-activity curve, for patient 2 (not shown) was elevated, and the absorbed dose to the liver was estimated to be 14.7 Gy from the 90Y time-activity curve but only 11.8 Gy from the ¹¹¹In extrapolation. The reason for the 24.6% difference is not yet understood. For patient 3, the liver time–activity curves and absorbed doses were in good agreement. The 11 Gy estimated from the ¹¹¹In images was based on the actual amount of delivered ⁹⁰Y activity and therefore deviates from the prescribed 12 Gy.

For all patients, the difference in the absorbed dose before therapy and during therapy was larger for the spleen than for the liver and kidneys. The spleen is relatively small, and size differs between the patients. Partial-volume effects could therefore influence the estimates differently between the patients. The kidneys are also relatively small, but ¹¹¹In- and ⁹⁰Y-derived kidney absorbed doses were similar for all patients. The differences for the spleen could therefore be interpreted as a real difference in uptake. The washout rate for patient 1 (Fig. 1) seems similar, but the initial uptake is slightly lower for the therapeutic infusion. Generally, the spleen can be regarded as a target organ, and the number of available binding sites of the antigen CD20 before therapy and during therapy can differ because of the infusion of cold monoclonal antibody.

For the lungs, the 90Y time-activity curves, compared with the ¹¹¹In time-activity curves, were generally elevated, with corresponding absorbed-dose deviations up to 65%. These deviations may relate to insufficient compensation methods. A bremsstrahlung image has a more diffuse background with a higher intensity than an ¹¹¹In image (Fig. 3). Most counts seen outside the patient boundary in Figure 3A stem from photons that have scattered in or penetrated the septa, passed the crystal, and then backscattered. This scatter background, combined with the fact that lungs are located between organs with elevated uptake (liver and blood in the heart), could explain some of the obtained differences. The effective source scatter estimation kernels are invariant regarding density, and the method is therefore not expected to be accurate in areas with heterogeneous attenuation.


Total-body activities, compared with administered activities, from WB ⁹⁰Y images were approximately 10% higher than corresponding ¹¹¹In estimates—on average 7%. There

Organ	Patient 1			Patient 2			Patient 3		
	⁹⁰ Y	¹¹¹ ln	%	⁹⁰ Y	¹¹¹ ln	%	⁹⁰ Y	¹¹¹ ln	%
Total body	3,180	2,831	12	5,243	4,755	10	1,979	1,689	17
Liver	243.5	220.0	10.7	488.1	451.6	8.1	221.9	243.3	-8.8
Spleen	25.8	26.2	-1.6	140.2	187.2	-25.1	63.8	59.1	8.0
Left kidney	36.1	38.7	-6.7	76.1	82.7	-8.0	31.6	27.4	15.3
Right kidney	26.4	30.5	-13.5	57.8	55.9	3.5	24.7	25.0	0.0
Left lung	87.6	91.4	-4.1	135.6	173.4	-21.8	40.5	54.0	-24.
Right lung	94.5	106.5	-11.2	173.5	195.9	-11.4	41.9	55.7	-24.

 TABLE 2

 Organ Activities at 1 Hour After injection, Calculated from WB Images

Corresponding ⁹⁰Y activity was calculated from ¹¹¹In images using Equation 2. Percentages were calculated by $({}^{90}Y - {}^{111}In)/{}^{111}In \times 100\%$.

FIGURE 3. Unprocessed (A) and processed (B) ⁹⁰Y WB images and corresponding unprocessed (C) and processed (D) ¹¹¹In images. Curvature comes from registration process. ROIs used are shown in D.

are 2 reasons for this. First, the mean energy of the bremsstrahlung image in the 105- to 195-keV energy interval is about 140 keV, which means that the overestimation that arises from the source thickness when applying the geometric mean is larger for 90Y. Second, the diffuse background in ⁹⁰Y images is difficult to correct for. It has been found that organ activities based on WB studies can be underestimated by a few percentage points (4). Also for this study, the 90 Y activity estimates were often lower than ¹¹¹In estimates, contrary to results from SPECT. These lower estimates were especially evident for the lungs, for which 90Y activity concentration from SPECT estimates for the first time point were between 10% and 25% higher than the ¹¹¹In-based estimates. The planar-based ⁹⁰Y activity estimates were up to 20% lower than the ¹¹¹In-based estimates. Generally, for the ¹¹¹In and ⁹⁰Y measurements at the first time point the WB estimates deviated by the same order of magnitude as the SPECT estimates. However, conjugate-view quantification may be more prone to variation because it is sensitive to subjective actions such as defining ROIs.

CONCLUSION

This work shows that adequate compensations for attenuation, scatter, and collimator response make ⁹⁰Y bremsstrahlung imaging feasible, with a relatively good image quality and useful quantitative accuracy. These compensations may be of great importance for absorbed-dose planning of high-dose radioimmunotherapy and for future improved dosimetry protocols for present ⁹⁰Y-based radionuclide therapies, such as standard ⁹⁰Y-ibritumomab treatment.

ACKNOWLEDGMENTS

This work was funded by the Swedish Research Council, Swedish Cancer Foundation, Gunnar Nilsson Foundation, Bertha Kamprad Foundation, and Lund University Medical Faculty Foundation and by Lund University Hospital Donation Funds.

REFERENCES

- Du Y, Honeychurch J, Cragg MS, et al. Antibody-induced intracellular signaling works in combination with radiation to eradicate lymphoma in radioimmunotherapy. *Blood.* 2004;103:1485–1494.
- Koral KF, Francis IR, Kroll S, Zasadny KR, Kaminski MS, Wahl RL. Volume reduction versus radiation dose for tumors in previously untreated lymphoma patients who received iodine-131 tositumomab therapy: conjugate views compared with a hybrid method. *Cancer*. 2002;94(4, suppl):1258–1263.
- Liu SY, Eary JF, Petersdorf SH, et al. Follow-up of relapsed B-cell lymphoma patients treated with iodine-131-labeled anti-CD20 antibody and autologous stem-cell rescue. J Clin Oncol. 1998;16:3270–3278.
- Minarik D, Ljungberg M, Segars P, Gleisner KS. Evaluation of quantitative planar ⁹⁰Y bremsstrahlung whole-body imaging. *Phys Med Biol.* 2009;54: 5873–5883.
- Minarik D, Sjogreen GK, Ljungberg M. Evaluation of quantitative ⁹⁰Y SPECT based on experimental phantom studies. *Phys Med Biol.* 2008;53:5689–5703.
- Sjogreen K, Ljungberg M, Wingardh K, Minarik D, Strand SE. The LundADose method for planar image activity quantification and absorbed-dose assessment in radionuclide therapy. *Cancer Biother Radiopharm.* 2005;20:92–97.
- He B, Du Y, Song X, Segars WP, Frey EC. A Monte Carlo and physical phantom evaluation of quantitative In-111 SPECT. *Phys Med Biol.* 2005;50: 4169–4185.
- Sjogreen-Gleisner K, Rueckert D, Ljungberg M. Registration of serial SPECT/ CT images for three-dimensional dosimetry in radionuclide therapy. *Phys Med Biol.* 2009;54:6181–6200.
- Frey EC, Tsui BMW. A new method for modeling the spatially-variant, object-dependent scatter response function in SPECT. *IEEE Nuclear Science Symposium*. 1996;2:1082–1086.
- Ljungberg M, Strand SE. A Monte Carlo program for the simulation of scintillation camera characteristics. *Comput Methods Programs Biomed.* 1989;29:257– 272.
- Minarik D, Sjogreen K, Ljungberg M. A new method to obtain transmission images for planar whole-body activity quantification. *Cancer Biother Radiopharm.* 2005;20:72–76.
- Hendricks JS. MCNPX, Version 2.6.A. Vol. LA-UR-05-8225. Los Alamos, NM: Los Alamos National Laboratory; 2005.
- Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image registration by maximization of mutual information. *IEEE Trans Med Imaging*. 1997;16:187–198.
- Wells WM III, Viola P, Atsumi H, Nakajima S, Kikinis R. Multi-modal volume registration by maximization of mutual information. *Med Image Anal.* 1996;1: 35–51.
- Sjogreen K, Ljungberg M, Wingardh K, Erlandsson K, Strand SE. Registration of emission and transmission whole-body scintillation-camera images. J Nucl Med. 2001;42:1563–1570.
- Sjogreen K, Ljungberg M, Strand SE. An activity quantification method based on registration of CT and whole-body scintillation camera images, with application to ¹³¹I. J Nucl Med. 2002;43:972–982.