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Quantitative brain '8F-FDG PET studies often require the plasma
time—activity curve (input function) for estimation of the cerebral
metabolic rate of glucose (CMRglc). The gold standard for input
function measurement is arterial blood sampling, which is invasive
and time-consuming. Alternatively, input function can be esti-
mated from dynamic images. This estimation often implies the
use of manually placed regions of interest (ROIs) over cerebral vas-
culature, which is an operator-dependent and time-consuming
task. The aim of our study was to compare 3 algorithms of image
segmentation (local means analysis [LMA], soft-decision similar
component analysis [SCA], and k-means) to automatically seg-
ment internal carotid arteries from dynamic '8F-FDG brain studies.
Methods: The accuracy of automatic carotid segmentation algo-
rithms was first tested using numeric phantoms of the human
brain, by quantitatively assessing the overlap between the seg-
mented carotids and the reference regions in the phantom.
Then, the algorithm that yielded the best results was applied to
data from 4 healthy volunteers, who underwent an '8F-FDG dy-
namic 3-dimensional PET brain study. Concordance between
manual and automatic ROIs, both uncorrected and after partial-
volume effect and spillover correction, was first assessed. Linear
regression was then used to compare manual versus automatic
CMRglc values obtained using Patlak analysis. CMRglc values
obtained by arterial sampling were used as a reference. Results:
In phantom studies, LMA was shown to be superior to the other
segmentation algorithms. By visual inspection, volunteers’ internal
carotids segmented by LMA were anatomically relevant. No signif-
icant difference was found between ROI values obtained by man-
ual and automatic segmentation, either uncorrected or corrected
for partial-volume effect. Linear regression demonstrated excel-
lent agreement between the manual and automatic image-derived
CMRglc values (P < 0.0001), and both correlated well with the ref-
erence values obtained by plasma samples. Conclusion: The
LMA segmentation algorithm allows accurate automatic delinea-
tion of internal carotids from dynamic PET brain studies. After cor-
rection for partial-volume effect, the main application would be the
estimation of an image-derived input function.
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Kinetic modeling of data obtained from PET can provide
quantitative information on the spatial distribution of radio-
pharmaceuticals (/). This modeling often requires knowledge
of the input function, traditionally obtained by arterial
sampling, which is a burdensome and potentially risky
procedure (2). Image-based time—activity curves obtained by
placing regions of interest (ROIs) over vascular structures on
PET dynamic studies is an appealing way to obtain individual
input functions, while reducing the need for or obviating blood
samples. This approach has been validated for different large
vascular structures such as cardiac cavities or aortic segments
(3-7). For brain scans, several studies have demonstrated the
possibility of obtaining a reliable input function using the
smaller intracranial vessels, such as internal carotids (8,9) or
venous sinuses (/0).

However, these methods usually require manual posi-
tioning of ROIs, a process that may be operator dependent
and is time-consuming. Semiautomated and automated
methods of organ segmentation have been designed for
the analysis of PET studies, and some of these methods
have been evaluated for segmentation of small brain ves-
sels. A clustered-component analysis, which models signals
by a combination of projections on subspaces in kinetic
space (/1), has been validated for determining the input
function from cerebral vessel time-activity curves (/2).
Brankov et al. (/3) proposed the soft-decision similar
component analysis (SCA), based on similarity metrics
and an expectation-maximization optimizer. They com-
pared this method with k-means, with the gaussian mixture
model (/4), and with a variant of a mixture of probabilistic
principal component analyzers (/5) in 3 regions of a PET
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2-dimensional dynamic image generated from a slice of the
brain phantom of Zubal et al. (/6). In this comparison, SCA
showed the best segmentation quality in terms of percent-
age of correctly classified voxels in a shorter computational
time (/3). Therefore, this method is considered the refer-
ence for automated organ segmentation.

Recently, an unsupervised segmentation algorithm based
on voxel pharmacokinetic analysis has been described and
validated on rodent whole-body PET images (/7). The
method, named LMA for local means analysis, is an
automated algorithm in which ROIs are defined on the
basis of local differences in the kinetics of radiotracers and
in activity levels.

MATERIALS AND METHODS

In this study, we first compared the performance of 3 automated
methods, that is, k-means (/2), SCA (/3), and LMA (I7), for
segmentation of the anatomic carotids in simulated '8F-FDG brain
studies. For the simulation, we used 2 numeric brain phantoms
with carotids of different diameter.

Second, the algorithm that yielded the best results in the
phantom studies was applied to the data of 4 healthy volunteers
who underwent a dynamic 3-dimensional '8F-FDG brain study.
The partial-volume effect—corrected measurements from the seg-
mented carotids were used to obtain an individual image-derived
input function for calculating the cerebral metabolic rate of
glucose (CMRglc). These automatic measurements were com-
pared with those obtained by standard manual carotid segmenta-
tion. Interobserver variability in manual ROI positioning was
assessed as well. Input function obtained by arterial sampling was
used as a reference.

Segmentation Algorithms

K-Means. When used to classify time—activity curves from
dynamic PET images, the k-means algorithm clusters the voxels
on the basis of their kinetics into k classes through minimization
of the total intracluster variance. The initial partitioning is
randomly performed, and the class centroids, that is, the mean
time—activity curves of the classes, are computed. At each itera-
tion, each voxel is assigned to the closest class with respect to the
Euclidian distance between the voxel time—activity curve and the
class centroid. The new centroids are then computed iteratively.
The algorithm is stopped when convergence is obtained.

SCA. The SCA method is an expectation-maximization algo-
rithm using a similarity metric, that is, a metric that depends only
on the shape of the time—activity curve. The likelihood function of
the complete data is thus maximized iteratively.

Each iteration comprises 2 steps: first, computation of the
probability that each voxel belongs to a given class, in view of
both the observed data and the data model parameters; second,
estimation of the parameters that maximize the likelihood of the
data, that is, the class kinetics shapes, the prior probability of each
class, and parameters describing the degree of intraclass variation.

LMA. LMA generates ROIs by clustering voxels that have
comparable levels of activity and similar pharmacokinetics.

The first step of the method excludes the noisy background using
a histogram-based algorithm. Points in the organ core are then
extracted automatically, and the local mean time-activity curves
and global noise properties are computed in the neighborhood of
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these points. Next, the image is segmented into regions, each
corresponding to a homogeneous time—activity curve around the
extracted points. Finally, regions with similar local mean time—
activity curves are merged using a hierarchic linkage algorithm.

A more detailed overview of the LMA method can be found in
the supplemental appendix (supplemental materials are available
online only at http://jnm.snmjournals.org).

Phantom Study

We used a modified numeric phantom of the human brain (76),
into which 2 sets of internal carotids, with diameters of 5 and
8 mm, were added (Fig. 1A). The time—activity curves associated
with the anatomic labels of each brain structure of the phantom
were obtained by averaging the tissue time—activity curves of the 4
healthy subjects included in the clinical study, to obtain “typical”
ISF-FDG brain pharmacokinetics.

PET images were generated using an analytic simulator that
accounts for tomograph geometry, detector arrangement, and detec-
tor characteristics (/8). The scanner simulated for the study was the
ECAT HR+ (Siemens Medical Solutions) used in 3-dimensional
mode. The analytic simulator also includes a 4-dimensional smooth-
ing of the projections in the sinogram space to account for the
experimentally measured point-spread function of the scanner. The
shape of the 4-dimensional smoothing kernel was the sum of 2

A B

FIGURE 1. (A) Transaxial slice of phantom head at level of
horizontal carotid sinuses. (B) Early frame of reconstructed
PET images. Top: phantom with 5-mm-diameter carotids.
Bottom: phantom with 8-mm-diameter carotids.
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gaussian functions with variable full widths at half maximum
(FWHMs) to account for variation of the point-spread function
according to the radial position of the line of response. FWHM and
full width at tenth maximum of the simulated point source were
measured according to the National Electrical Manufacturers Asso-
ciation NU 2-2001 protocol (/9). These values were, along the radial
axis, 4.8 mm for FWHM and 9.8 mm for full width at tenth maximum
at aradial distance of 1 cm, and 6.4 mm for FWHM and 12.0 mm for
full width at tenth maximum at a radial distance of 10 cm.

Each anatomic structure of the human brain phantom (carotids;
frontal, temporal, parietal, and occipital gray matter; white matter;
caudate nuclei; putamina and thalami; and bones and soft tissues) is
projected into the sinogram space with the analytic simulator. The
dynamic PET acquisition is computed by linear combination of the
projected structures, weighted by the associated kinetics, sampled
into time frames, whose number and duration reproduce exactly
those of the clinical studies. Poisson noise was added to the gen-
erated sinograms to match the average number of true coincidences
measured in the clinical study. Attenuation, random coincidences,
and scattered coincidences were not simulated. The 3-dimensional
noisy sinograms were rebinned in 2 dimensions with the Fourier
rebinning algorithm and then reconstructed with 2-dimensional
filtered backprojection with a Hann apodization window and a
Nyquist cutoff frequency. The voxels were 1.01 x 1.01 x 2.43 mm.
The 256 x 256 reconstructed slices have a transaxial resolution of
6.8 mm in FWHM at the center of the field of view. Figure 1B shows
a transaxial slice of the reconstructed phantoms.

Phantom Carotid Segmentation

First, internal carotids were manually segmented using the sum
of the first 5 dynamic frames. Then, the 3 different segmentation
algorithms were compared. Automatic segmentations were run on
the first 5 frames, during which the radioactive signal from
carotids is the strongest. The 3 algorithms were run on PET
images of the head of the phantom isolated from the background
following step 1 of LMA. For LMA, smoothing with a gaussian
of FWHM equal to the image spatial resolution is applied. For
k-means and SCA, the number of classes selected for the carotid
segmentation varied from 1 to 6. For each image to be segmented,
10 runs were made for each of the 1-6 classes, with random
initialization, and the image showing the best segmentation
quality over the internal carotid regions was chosen.

Once the ROI of the carotid was obtained, it was copied to all
frames. The carotid time-activity curves were generated as the
time sequence of the averaged values of the carotid ROIs.

Clinical Studies

Four healthy fasting and normoglycemic volunteers underwent
dynamic 3-dimensional PET of the brain after injection of
I8F.FDG (mean activity, 140 MBq) on an ECAT HR+ PET
machine. The protocol of the study was approved by the local
ethical committee. Each volunteer gave written informed consent
to participate in the study. Head movements were minimized using
a thermoplastic mask. A transmission map for attenuation correc-
tion was first obtained with an external °®Ge source. The acqui-
sition started at the time of the injection and comprised a dynamic
image sequence of about 70 min. The dynamic PET time sequence
was as follows: 12 frames of 10 s each, 2 frames of 20 s each, 2
frames of 150 s each, 3 frames of 5 min, 1 frame of 7 min, and
1 frame of 20 min. Then, 3 last frames of 5, 10, and 5 min were
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acquired. Image reconstruction was the same as for the phantom
studies.

During examination, blood from the radial artery was sampled
every 10 s for the first 2 min, then every 30 s for the third minute,
then at 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, and 70 min. Venous
samples were also obtained during the last part of the examination
using a separate access catheter, to avoid cross-contamination with
the injected activity.

Internal carotids were segmented both manually and automat-
ically using the first 5 frames, and the 2 sets of data were
compared using the figures of merit described below. For the
automatic segmentation, a lower bounding box, to separate intra-
cranial arteries from neck vasculature, is imposed on the z-axis (by
a mouse click).

Partial-Volume Effect and Spillover Correction

To use carotid time—activity curves as a valid input function, we
corrected them for partial-volume effect and spillover using the
approach proposed by Chen et al. (9). In this method, measure-
ment from the carotid artery is assumed to be a linear combination
of the radioactivity from the blood vessel and from the surround-
ing background tissue ROI. Measurement of the spillover-free
radioactivity in the blood vessel is approximated by late venous
samplings. Because venous samplings were not available for 2
patients in the clinical data of the present study, arterial samples
were used to fit the late part of the curve. Equilibrium exists
between arterial and late venous blood '8F-FDG concentrations;
therefore, either can be used (9).

In the phantom studies, the values of activity attributed to the
carotid labels in late frames were used as blood sample surrogates
for correction of partial-volume effect and spillover.

Figures of Merit Used for Comparison of Different
Segmentation Methods

Segmentation Quality Criterion. The overlapping area between
the original anatomic labels of the phantoms’ carotids, considered
the gold standard, and the carotid ROIs obtained by both manual
and automatic segmentation was used as the criterion of segmen-
tation quality (20). We defined Q score as the cardinal of the
intersection of the segmented organ (SO) and the gold standard
organ (GO), that is, the anatomic label, divided by the cardinal of
their union:

Q = 100% x #(SO N GO)/#(SO U GO).

The automatic method that gave the highest Q score in the
phantom studies was selected for the clinical data.

Comparison of Time-Activity Curves. In both simulated and
clinical data, the numeric values of carotid time—activity curves
obtained by manual or automatic segmentation (with and without
correction for partial-volume effect) were compared using a ¢ test
for correlated samples. A P value of 0.05 was considered signif-
icant. In the 4 clinical studies, the areas under the curve obtained
by automatic segmentation and by arterial blood sampling were
compared with 1-way ANOVA.

CMRglc Calculation. CMRglc was calculated with Patlak
analysis (2/) using both the manually defined internal carotid
artery ROIs and the automatic ROIs. For the phantom studies,
CMRglc was obtained for 20 different anatomic labels of the
phantom brain. For clinical studies, CMRglc was calculated on 62
different brain regions, defined on the superimposed MR image of
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each healthy volunteer. Linear regression was used to compare
manual versus automatic CMRglc. CMRglc values obtained using
the arterial blood samples were considered reference values.

Interobserver Variability of Manually Defined ROls

To assess the interobserver variability of the manual segmen-
tations, 3 investigators independently defined ROIs over the
internal carotids of both phantoms and the 4 volunteers. The 3
operators used the same background tissue ROIs for partial-
volume effect correction. The area under the curve for each set
of ROIs was calculated, and their variability was assessed with
1-way ANOVA.

RESULTS

Phantom Study

Figure 2 shows the segmentation results using the LMA,
SCA, and k-means algorithms.

Q scores are reported in Table 1. Q scores obtained by
manual segmentation of PET images were 0.5486 for the
8-mm-carotid phantom and 0.2476 for the 5-mm phantom.
The LMA Q scores for the segmentation of the 8- and 5-mm
carotids were 0.7153 and 0.3385, respectively. Carotids
segmented with LMA were anatomically relevant in both
phantoms. Of note, LMA-segmented carotids appear of
similar diameter in both phantoms, despite differences in
original size. This similarity is due to the gaussian smooth-
ing used for LMA. This additional filtering leads to similar
PET images of the carotids. Therefore, the segmented
carotids are similar. The SCA segmentation method ob-
tained a much lower Q score (0.0022) in the 8-mm-carotid
phantom. Indeed, even if the algorithm could delineate the
carotids, this region was merged with many smaller non-
relevant classes. SCA was unable to detect the 5-mm
carotids. For the k-means segmented ROI carotids, Q scores
could not be calculated, because the method was unable to

A B

FIGURE 2. Visual assessment of segmentation of
5-mm-diameter (top) and 8-mm-diameter (bottom) carotids in
numeric phantoms using LMA (A), SCA (B), and k-means (C).
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TABLE 1. Segmentation Accuracy for Phantoms

Method Carotids (mm) Accuracy (Q score)
Manual ROI placement 8 0.5486
5 0.2476
LMA 8 0.7153
5 0.3385
SCA 8 0.0022
5 _
k-means 8 —
5 _

differentiate the carotids from other contiguous cerebral
structures.

For both uncorrected and corrected data and in both
phantoms, no significant difference was observed between
time—activity curves obtained by manual positioning and
automatic segmentation using LMA (P < 0.001). Figure 3
compares the reference carotid time—activity curves in the
8-mm phantom and the image-derived, partial-volume
effect—corrected time—activity curves obtained using LMA.

The linear regression results for CMRglc for both phan-
toms are reported in Table 2. An excellent correlation was
found between CMRglc obtained by manual and automatic
carotid segmentation using LMA. Both manual and auto-
matic image-derived CMRglc values correlated well with
the original phantom values.

Clinical Studies

LMA was chosen for the clinical studies. The visual
inspection shows that the internal carotids were success-
fully segmented in each patient. Figure 4 shows the results
for 1 patient. Intracranial venous sinuses were segmented as
well (data not shown). No significant differences were

35 -
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FIGURE 3. Comparison between reference time-activity
curves (solid line) and automatic carotid time—activity curves
(dashed line with dots), obtained using LMA in 8-mm-carotid
phantom, corrected for spillover and partial-volume effect.
Dashed line without dots is raw carotid time-activity curve
not yet corrected for partial-volume effect.
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TABLE 2. Correlation Between CMRglc Obtained by Arterial Sampling and Manual and Automatic Image-Derived

Input Function After Correction for Partial-Volume Effect

Manual vs.
automatic
image-derived
input function

Automatic
image-derived
input function vs.
reference values

Manual
image-derived
input function vs.
reference values

Subject Slope R? Slope R Slope R2
Phantom with 1.0266 + 0.2426* 0.9923 1.0563x — 0.0403* 0.9959 1.0261x — 0.236* 0.9982
5-mm carotids
Phantom with 0.9802x — 0.0319* 0.9982 0.9912x - 0.0108* 0.9999 1.0090x + 0.0624* 0.9973
8-mm carotids
Subject 1 0.9753x + 0.0565* 0.9899 1.0057x — 0.0731* 0.9841 0.9634x + 0.2497* 0.9927
Subject 2 0.9668x + 0.4445* 0.9831 0.9420x + 0.5106* 0.9751 1.0118x + 0.1752* 0.9800
Subject 3 1.0729x - 0.7729* 0.9898 1.0662x — 1.0193* 0.9849 1.0006x + 0.3892* 0.9936
Subject 4 1.0463x — 0.4045* 0.9843 1.1002x — 1.1035* 0.9871 0.9462x + 0.7405* 0.9871
*P < 0.0001.

observed between time—activity curves, with and without
correction for partial-volume effect, extracted from ROIs
obtained by manual positioning and automatic segmenta-
tion using LMA (P < 0.001). Figure 5 compares arterial
input function and automatic image-derived input function,
obtained after partial-volume effect correction, for 1 subject.
In all image-derived vascular time-activity curves from
clinical data, both with manual and with automatic ROI
placement, the peak height was underestimated, as compared
with arterial plasma samples (mean value, —26%). However,
the width of the peak was similar and no statistically
significant difference was found in the total area under the

FIGURE 4. Internal carotid segmentation results using
LMA in volunteer. Shown is right inferior view of MRI-derived
3-dimensional mesh of volunteer’s brain. Segmented ca-
rotids are in red.
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curve between the image-derived and the reference input
functions.

Of note, in all clinical studies the activity peak on the
images occurred slightly earlier than the arterial peak (Fig.
5B), thus reflecting the different transit time to the carotids
and to the radial arteries. However, this time difference has
no consequences on the estimation of CMRglc (9).

The image-derived CMRglc values correlated well with
those obtained by arterial sampling (Table 2).

Interobserver Variability

Visual analysis of the time—activity curves obtained from
manually defined ROIs showed a good concordance be-
tween the 3 observers in most cases. ANOVA did not show
statistically significant differences between the areas under
the curve obtained manually by the 3 observers.

DISCUSSION

We have shown that the LMA algorithm effectively
delineates internal carotids on dynamic PET images, faring
better than 2 other existing segmentation algorithms, SCA
and k-means. The time—activity curves thus obtained can be
used, after correction for partial-volume effect and spill-
over, to calculate the input function for cerebral PET
studies. Noteworthy is that LMA delineates intracranial
venous sinuses as well, which have been validated for the
estimation of image-derived input function by manual
segmentation (10).

Segmentation of small vessels in PET images is chal-
lenging because of both their diameter, which may lie at the
limit of the spatial resolution of modern PET cameras, and
their tortuous shape. Therefore, small intracranial vessels
have traditionally been segmented manually (8—10). In the
present study, automatic segmentation using LMA yielded
statistically similar results, in terms of ROI values and
CMRglc quantification, to those obtained by manual seg-
mentation.
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FIGURE 5. (A) Corrected image-derived input function
obtained by automatic ROI placement in 1 subject (dashed
line with dots), compared with arterial blood samples (solid
line). Dashed line without dots represents uncorrected
carotid time-activity curve. (B) Expanded view of first
10 min of same curve. Although late part of image-derived
curve coincides well with reference values, peak is under-
estimated.

The LMA segmentation algorithm has several advan-
tages over the other 2 methods. First, LMA is a local
method of segmentation, so that erroneous local estimations
entail only local errors. In the case of k-means or SCA,
each voxel that is affected by movement or reconstruction
artifacts, even those at a distance in the matrix, contributes
to the estimation of the organ kinetics. Second, our algo-
rithm does not require that the number of classes in the
images be selected before segmentation: the number of
regions can be chosen in the final image at the end of the
segmentation process. Third, LMA is 15-20 times faster
than SCA and k-means (/7). Indeed, no iterative process is
required for estimation of the local mean kinetics, because
they are extracted once in the core of each organ. Moreover,
computational time for LMA is independent of the number of
organs, whereas for SCA and k-means the time increases with
the number of classes. With LMA, the automatic segmentation
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of internal carotids requires about 10-20 s per subject on a Dell
computer running on a 1.86-GHz dual-core Xeon processor
(Intel). Fourth, LMA implements a connectivity constraint;
that is, spatially separated regions are considered different,
even if the kinetics are similar. This allows one to correctly
differentiate arterial and venous segments, provided that they
are anatomically separated, as in the case of internal carotids
and intracranial venous sinuses.

Besides the obvious advantage of requiring little effort
from the operator, the use of automatic algorithms for ROI
definition should in principle be preferred over manual
delineation for 2 reasons. First, through selection of those
voxels that are kinetically similar, only those regions that
have a similar response can contribute to the averaging of
the vascular time—activity curve. Thus, larger ROIs can be
obtained, with better statistical properties and better signal-
to-noise ratios (6,72). In the present study on phantoms, we
obtained better results with LMA than with manual seg-
mentation, as assessed by Q scores, although there was no
significant difference in the estimation of CMRglc values.
The most obvious explanation is that the algorithm can
more accurately detect the boundary between the vascular
structure and background tissues, as the algorithm is in-
sensitive to variable levels of saturation in the image and to
different color scales.

Second, automatic algorithms may obviate interobserver
variability. However, in the present study, differences in
areas under the curve obtained by the 3 observers were not
statistically significant. One likely explanation is that
carotids have a good signal-to-noise ratio in the early
frames and are easily recognizable. Moreover, the small
size of carotids would force the observers to define similar
ROIs. Van der Weerdt et al. (6) obtained vascular time—
activity curves by manually drawing ROIs on different
cardiac and aortic structures. Their data show that the larger
the vascular structure, the lower the interobserver repro-
ducibility. Therefore, automatic algorithms should be the
most useful for larger vascular structures.

To be used for CMRglc calculation in PET brain studies,
internal carotid time—activity curves should be corrected for
partial-volume effect. Predictably, as compared with refer-
ence values, estimation of CMRglc was on average more
accurate in the phantom studies than in the clinical data.
This greater accuracy is probably partly due to a more
heterogeneous background tissue activity in clinical data,
thus lowering the precision of corrections for spillover and
partial-volume effect. Moreover, small movement artifacts
are always possible during clinical studies.

On the image-derived curves of the healthy volunteers,
we observed an underestimation of the early part of the
curve, particularly of the peak height (Figs. SA and 5B).
Compared with the original study of Chen et al. (9), the
estimations of the early curves in our study are somewhat
less accurate, probably because of the coarser PET framing
in our study. In fact, each PET frame corresponds to the
integral of the signal over a time period. Conversely, for the
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phantom studies, each frame corresponds to a punctual
detection at a given time. Therefore, the phantom peaks are
fully resolved. A poor assessment of the early part of the
curve precludes the possibility of a reliable estimation of
the underlying rate constants of the kinetic model. How-
ever, the total area under the curve was not statistically
different between image-derived input functions and refer-
ence arterial values. When using Patlak graphical analysis
for estimation of the macroparameter K = K;k,/k, + kg,
errors in the estimation of the peak height entail only
negligible variations on the final CMRglc values (9).

In contrast, a poor assessment of '8F-FDG activity at
later times could be a major cause of CMRglc miscalcu-
lation. These errors are mainly due to partial-volume effects
and spillover from surrounding tissues. Different image-
based methods, aimed at correctly scaling the late part of
the curve, have been proposed in the literature (8,10,22,23).
However, the feasibility of CMRglc calculation without any
blood sampling is currently being debated (24).

Therefore, for the present study, we chose a simple and
straightforward method that relies on late venous blood
samples to approximate the arterial radioactivity (9). More-
over, it must be remembered that venous blood sampling is
the most accurate way to obtain the blood glucose concen-
tration, which is required for CMRglc quantification.

CONCLUSION

The LMA segmentation algorithm allows accurate auto-
matic delineation of internal carotids from dynamic PET
brain studies with minimal manual, subjective effort. After
correction for partial-volume effect, the main application
would be the estimation of an image-derived input function.
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