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To provide optimal image quality, digital filters should account for both the count level and the
object imaged. That is, they should be image-dependent. By using the constraint equation of
constrained least-squares (CLS) restoration to determine one parameter of the Metz filter, a
filter which adapts to the image has been developed. This filter has been named the
Constrained Least-Squares Metz filter. The filter makes use of a regression relation to
convert the Metz filter parameter determined using the CLS criterion to the value which would
minimize the normalized mean square error (NMSE). The regression relation and the
parameters which specify the general form of the Metz filter were determined using images of
the Alderson liver and spleen phantoms. The designed filter was tested for its ability to adapt
to other objects with images from each of three different test objects. When the values of the
Metz filter parameters for these images determined by the CLS-Metz filter were compared by
a regression analysis to those which minimized the NMSE for each image, a correlation
coefficient of 0.98, a slope of 0.95, and a zero intercept of 0.1 were obtained. With clinical
images, the CLS-Metz filter has been shown to provide consistently good image quality with
images as diverse as heart perfusion images and bone studies.
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uring the process of image acquisition, nuclear
medicine images are degraded by the limited spatial
resolution of cameras and collimators, by scatter and
septal penetration, and by Poisson noise which is in
herent in the radioactive decay process. The use of two-
dimensional restoration has been shown to be able to
improve planar image quality (1-4). Also, a significant
improvement in the quality of single-photon emission
computed tomographic (SPECT) images has been dem
onstrated through the use of two-dimensional pre-
reconstruction filtering of SPECT acquisition images
(5-9).

In the frequency domain, linear restoration filters
usually consist of the product of two terms. The first
term is the inverse filter, which is the reciprocal of the
system modulation transfer function (MTF). This term
is used to reduce (or deconvolve) the biases introduced
into the image during acquisition. The second term is
a low-pass filter, which is used to reduce high-frequency
noise. The balance between these two terms is depend
ent upon the object, the MTF, and the count-level at
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which the object is imaged. Thus, image-dependent
filters (i.e., filters which adapt to the object, the degree
of blurring, and the noise content of the image) should
be employed for maximal gain in image quality.

The success of the constrained least-squares (CLS)
filter in adapting to images of different organ systems
(10,11) provided motivation for the formulation of an
automatically adaptive, image-dependent Metz filter.
The CLS filter adapts through the iterative solution of
a constraint equation. This constraint equation selects
the filter which makes the square of the residual error
(difference between the original image and the re-
blurred, restored image) equal to the total noise energy
(10-12). By substituting the Metz filter in place of the
CLS filter in the constraint equation, an image-depend
ent formulation of the Metz filter was obtained which
we have called the CLS-Metz filter. When comparing
the Metz filters selected using the constraint equation
with those selected according to the minimization of
the normalized mean square error (NMSE) as previ
ously used with the count-dependent Metz filter (7,5,
8), it was noted that the filters were generally signifi
cantly different. However, a regression relation was
determined to be able to convert the CLS determined
filter into the filter selected on the basis of minimization
of the NMSE. As a test of the ability of this method to
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adapt to the degraded image, CLS-Metz filters designed

solely through use of one test image (Alderson liver and
spleen, Alderson Research Laboratories. Stamford,
CT), were applied to sets of 60 simulated images (ten
noise realizations at each of six count levels) from three
significantly different test images. Both the filter param
eters and the NMSEs obtained were observed to not be
significantly different from the count-dependent Metz

filters designed specifically for these other test images.

MATERIALS AND METHODS

Object Images and Generation of Simulated Images
Four different 128 x 128 pixel, (technetium-99m ("Te),

images were used as "object" images in this study. These are

shown in Figure 1. The first was an image of the Alderson
liver and spleen phantoms filled with a 99mTcsolution, and

placed in contact with a super high resolution collimator on
a large field of view SPECT camera (Dyna-Scan. Picker Inter
national, Highland Heights. OH). Over 200 million counts
were collected to minimize noise in this "object" image.

Similarly, images of an Iowa heart phantom (Cardiac Insert.
Data Spectrum Corp.. Chapel Hill, NC) (acquired at 1.5
magnification) and Alderson kidney phantoms were collected.
The fourth "object" image was that of a posterior view of a

patient undergoing bone imaging. It was collected with a
super-high resolution collimator, a 15% energy window, and
contained more than eight million counts.

Each of the "object" images had 60 simulated acquisition

images generated from it in the following manner. First, the
"object" image was blurred in the frequency domain by an
MTF selected to simulate the "average" blurring which occurs
during the acquisition of 99mTcSPECT images with our cam

era system (13). Next the blurred image was scaled to six

different total count levels (25,000; 50.000: 100,000: 250,000:
500,000 and 1,000,000). Finally, ten Poisson noise realizations
at each count level were generated from each of the scaled
images (13).

The images of the Alderson liver and spleen phantoms were
used to develop the CLS-Metz filter as detailed below. Then,
the three other sets of images were used to test the adaptability
of this filter to other objects. This was done by forming count-
dependent Metz filters separately for each of these sets as
described in the next section. Then, the filter parameters, and
NMSEs obtained with these filters were compared to those
obtained by applying the CLS-Metz filter designed using the
Alderson liver and spleen images to these images.

Metz Filter
The linear restoration filter which was modified to be

image-dependent was the Metz filter (14). The one-dimen
sional frequency domain form of the Metz filter is defined as:

M(f) = MTF(f)-'-[l-(l-MTF(f)2)x],
(0

where f is the spatial frequency, MTF is the modulation
transfer function, and X is a factor which controls the extent
to which the inverse filter (first term on the right side of Eq.
1) is followed in the frequency domain before the low-pass
portion of the filter (second term) dominates. In the present
formulation of this filter, the MTF in the low-pass filter
portion is replaced by a generalized exponential of the form

H(f) = exrX-fp/S), (2)

where P is the exponent of the spatial frequency and S is a
constant analogous to the variance of a Gaussian function (8,
14J5).

Values for the parameters X, P, and S were obtained from
optimization studies. These used the minimization of the
NMSE between the liver and spleen "object" image and the

simulated acquisition images generated from it as the opti-

B

t FIGURE 1
The four high count images used as
"object" images in simulation studies.

(A) Alderson liver and spleen, (B)
Iowa heart phantom, (C) Alderson
kidney phantoms and sphere to rep
resent bladder, and (D) clinical pos
terior bone image.
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mization criterion (8,13,15). Count-dependent Metz filters
were formulated by determining P and S as fixed constants
for a given MTF, and then linear regression was used to
develop a functional relation between X and the total image
count ( 13). In the past, S was also allowed to vary with count
(/,5). However, the adoption of the use of the "true" MTF in

the inverse filter portion of Eq. 1 eliminated the need for this
added degree of complexity. This is demonstrated in Tables 1
and 2 where no significant difference in NMSEs was found
between count-dependent Metz filters with S allowed to vary
(row one) for the liver and spleen images, and when S was
held fixed (row two). Holding S fixed reduced to one (X of
Eq. 1) the number of variables which were needed to adapt
for count level and object. Although not necessary for the
formulation of the CLS-Metz filter, this simplification did
facilitate the design task with virtually no loss in image quality
as judged by the NMSE.

With S and P of Eq. 2 fixed to the values determined
through use of the Alderson liver and spleen images, count-
dependent Metz filters (values of X as a function of count)
were determined in a similar manner for the other three sets
of images. When the NMSEs resulting from this optimization
process were compared to those determined for the same
images when S, P, and X were allowed to vary, again no
significant difference in the NMSE values was observed as
shown in rows 1 and 2 of Tables 1 and 2. Thus, with the
present formulation of the Metz filter (Eqs. 1 and 2), it is
believed that S and P should be tailored to the MTF, and X
to the individual images. The goal of the CLS-Metz filter was
to automatically vary X for images significantly different from
the Alderson liver and spleen images based upon parameters
formulated using the Alderson liver and spleen images.

CLS-Metz Filter Formulation

In the frequency domain the constraint equation for the
CLS filter is (10,11)

[G(f)-MTF(f)-F(f).G(f)]2 = n2N, (3)

where G is the Fourier transform of the image, F is the
restoration filter, n is the image dimension, and N is the
average value of the noise power spectrum. This equation sets
the sum of the squared residuals (the difference between the
acquired image and the reblurred estimate of the true object)
equal to the sum of the squared noise (10-12). With insertion
of Eqs. 1 and 2 into Eq. 3, an estimate of N (2,10), and P and
S of Eq. 2 determined for a given MTF, the only unknown is
that of X. X can then be solved for in an iterative fashion
(10) as that value which makes the two sides of Eq. 3 equal
to within some tolerance (0.05% in the present implementa
tion).

When the values of X resulting from use of Eq. 3 were
compared with those which minimized the NMSE for the 60
simulated Alderson liver and spleen images, two problems
were noted. First, there was an excessive amount of random
variation in the values of X resulting from using Eq. 3 to
determine X. The estimate of the noise power spectrum used
in Eq. 3 when the scatter was noted was simply the total count
(10). This has been shown to be a good estimate of the average
value of the noise power spectrum (2). It does, however, have
a certain amount of uncertainty associated with it. Another
estimate of the noise power spectrum can be obtained by
averaging the magnitudes of the image power spectrums at
frequencies large enough for the contributions of the blurred
object to be negligible. It was hypothesized that this average

TABLE 1NMSEs' for ten 50,000 Count/Frame Simulated Images

PhantomFilter"True"

Minimum NMSEMetz'"Constant

S Minimum NMSEMetz""Count-Dependent

MetzCLS-MetzWienerCLSCount-Dependent

ButterworthLiver

and
spleen0.0095(0.0004)0.0095(0.0004)0.0096(0.0004)0.0096(0.0004)0.0148"(0.0029)0.0131"(0.0037)0.0200"(0.0006)Iowaheart0.0080(0.0006)0.0081(0.0007)0.0148"(0.0007)0.0084(0.0007)0.0114"(0.0017)0.0108"(0.0022)0.0347"(0.0012)Aldersonkidneys0.0124(0.0007)0.0125(0.0007)0.0191"(0.0004)0.0127(0.0007)0.0196"(0.0015)0.0168"(0.0023)0.0389"0.0007)Posteriorbone0.0357(0.0014)0.0361(0.0014)0.0362(0.0015)0.0364(0.0015)0.0451"(0.0017)0.0393"(0.0024)0.0463"(0.0011)

' Average (SD) for ten simulated images of each phantom.
" Significant difference (p > 0.05) from true minimum NMSE value with S of Eq. 2 allowed to vary.
"' Value obtained from optimization of filter for the individual Â¡magesof each object image set (i.e., liver and spleen, Iowa heart,

Alderson kidneys, and bone, separately) with both X and S of Eqs. 1 and 2 allowed to vary.
"" Value obtained from optimization of filter for the individual images of each object image set (i.e., liver and spleen, Iowa heart,

Alderson kidneys, and bone, separately) with X of Eq. 1 allowed to vary and S of Eq. 2 fixed at the value obtained with the liver and
spleen images.
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TABLE 2NMSEs' for ten 500,000 Count/Frame Simulated Images

PhantomFilter"True"

Minimum NMSEMetz'"Constant

S Minimum NMSEMetz""Count-Dependent

MetzCLS-MetzWienerCLSCount-Dependent

ButterworthLiver

and
spleen0.0037(0.0001)0.0037(0.0001)0.0037(0.0001)0.0038(0.0001)0.0063"(0.0009)0.0045"(0.0037)0.0169"(0.0002)Iowaheart0.0025(0.0001)0.0026(0.0002)0.0034"(0.0001)0.0027(0.0002)0.0041"(0.0014)0.0029"(0.0004)0.0302"(0.0002)Aldersonkidneys0.0050(0.0003)0.0050(0.0003)0.0073"(0.0003)0.0051(0.0003)0.0063"(0.0010)0.0061"(0.0004)0.0341"(0.0003)Posteriorbone0.0151(0.0003)0.0152(0.0003)0.0160(0.0003)0.0152(0.0003)0.0286"(0.0025)0.0190"(0.0011)0.0362"(0.0004)

' Average (SD) for ten simulated images of each phantom.
" Significant difference (p < 0.05) from "true" minimum NMSE value with S of Eq. 2 allowed to vary.
'"Value obtained from optimization of filter for the individual images of each object image set (i.e., liver and spleen, Iowa heart,

Alderson kidneys, and bone, separately) with both X and S of Eqs. 1 and 2 allowed to vary.
"" Value obtained from optimization of filter for the individual images of each image set (i.e., liver and spleen, Iowa heart, Alderson

kidneys, and bone, separately, with X of Eq. 1 allowed to vary and S of Eq. 2 fixed at the value obtained with the liver and spleen
Â¡mages.

value may provide a better estimate of the noise power for use
in Eq. 3.

The second problem noted was that the values of X deter
mined using the CLS method were consistently lower than
those obtained using the minimization of the NMSE as the
criterion. This is not too surprising since they are two different
filter design criteria, and thus would probably produce differ
ent results. What was surprising, however, was that a regres
sion equation could be used to closely predict the latter from
the former. Nonlinear regression using the Gauss-Newton

method (16) was used to fit the 60 values of X determined
using the minimization of the NMSE as the criterion (XNMSE)
to the 60 values of X determined using the CLS constraint
relation (Xct), to the following form

= A.XC (4)

Here A, B, and C are the constants determined from the
regression analysis.

For a given MTF, it was hypothesized that the regression
equation developed for the simulated images of the Alderson
liver and spleen could be used to obtain estimated values of
XNMSEfrom XCLSfor any other object. The test of this hypoth
esis is detailed in the section describing the test of the adapt
ability of the CLS-Metz filter.

Implementation of the CLS-Metz Filter
For a given MTF, once the parameters of the count-

dependent Metz filter and the above regression relation have
been defined using the simulated images of the Alderson liver
and spleen phantoms, the CLS-Metz filter is implemented in

the following manner for use with planar images. First, the
image is windowed (multiplied by an array of values which
decrease toward the edge) by a circularly symmetric function

(17). The window used was symmetric about the center of the
image with the central portion of the window equal to 1.0.
The sides of the window rolled off from a value of 1.0 to a
value of 0.0 by following a raised cosine function for the outer
10% of the diameter of the function (17). The window was
used to minimize the influence of truncation of the object by
the camera field of view on the image power spectrum. With
out the windowing, the filter was observed, on occasion, to
adapt to recovering edges at the sides of the camera field of
view at the expense of image quality in the center.

Next, the Fourier transform of the image (G) is determined
and an estimate of the average value of the noise power
spectrum is obtained from the image power spectrum (G2) to

allow calculation of the right hand side of Eq. 3. For 128 x
128-images. this is estimated as the two-dimensional average
of all frequency terms over one-half the Nyquist frequency.
For 64 x 64-images. the two-dimensional average of all fre
quencies above seven-eighths of the Nyquist frequency is used.

The count-dependent Metz filter as optimized from the

Alderson liver and spleen images is then used to provide an
initial value for the value of X. This initial value is substituted
into the following expression, which is the left-hand side of

Eq. 3 after some algebraic manipulation using Eqs. 1 and 2:

[G(f).(l-H(f)2)X (5)

The value of Eq. 5 is the frequency domain equivalent of the
sum of the square of the residuals or the total "difference
energy" (10). Notice that the term raised to the power X is

just a high-pass filter since H of Eq. 2 is a low-pass filter. If
the value of Eq. 5 is less than the total noise energy (right-

hand side of Eq. 3), then X is increased by a factor of two
(more deconvolution is performed). Evaluation of the differ-
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enee energy is then conducted with this new value of X and
the process repeated until the difference energy is less than the
total noise energy. At this point, a Newton-Raphson iterative
scheme (JO) is used to obtain a final value of X which brings
the agreement of the two sides of Eq. 3 to within 0.05%. If
the initial value of X yielded a difference energy less than the
total noise energy, X is decreased, rather than increased, by
factors of two. This scheme prevents wild oscillations in
successive values of X. The processing time to carry out such
calculations varied with the number of iterations necessary to
obtain agreement between the two sides of Eq. 3. On the
average it took 4 sec for a 128 x 128-image and <2 sec for a
64 x 64-image when implemented on an array processor
(AP400. Analogic Corp., Wakefield, MA).

The method used for determining CLS-Metz filters for
SPECT images was slightly different because the SPECT ac
quisition set provides multiple, low-count, views of the same
object. For SPECT images the value of XCLSwas determined
for each image and then the average of these values was used
to calculate a single value of XNMSEand hence a single filter
to be applied to the entire acquisition image set. An alternative
method of Wiener low-pass filtering the individual values of
XCLS,and then using the filtered values of XCLSto determine
a different value of XNMSEfor each image has also been
investigated for the CLS filter and could be used with the
CLS-Metz filter (//). However, that method would have the
drawback of allowing the filtering to produce an anisotropic
point spread function.

Test of the CLS-Metz Filter's Adaptability

Since the parameters of the CLS-Metz filter, (P, S, and
regression terms of Eq. 4) were developed solely through use
of the simulated images from the Alderson liver and spleen
phantoms, it was essential to test the adaptability of this filter
to other objects before any claim of reasonable image-depend
ence can be made. This testing was performed in two parts.
In the first the predicted values of XNMSEobtained from the
CLS-Metz filter were compared using linear regression (18) to
the values of X obtained when the Metz filter was individually
optimized using the minimization of the NMSE as the crite
rion for each of the 60 simulated images of the three test
phantoms. Since the probability distribution for these values
of X was unknown, the nonparametric sign test (18) was used
to compare the predicted and actual minimum NMSE values
of X for a statistically significant difference.

The second test of adaptability was to compare the NMSE
values (an index of overall image fidelity) obtained when using
the CLS-Metz predicted and actual minimum NMSE deter
mined values of X to form filters. Calculation of the NMSE
also allowed comparison of the CLS-Metz filter to other
image-dependent restoration filters. The filters selected for this
comparison were the Wiener (2), and the CLS (10) filter. It
should be noted that neither of these filters required simulated
images to optimize their parameters. Comparison to a count-
dependent Butterworth low-pass filter (10) also was performed
to determine the extra gain in image quality provided by use
of restoration filters. This filter was designed using the Alder-
son liver and spleen images. The statistical significance of the
variation in NMSEs between filters was determined using one
way analysis of variance (18). When a significant difference
was observed between the means of the various filters at a p
value of 0.05 or less, Sheffe's method of comparing paired

means for a significant difference was used to compare each
to the "true" minimum NMSE values.

RESULTS

Figure 2 shows count-dependent Metz filters derived
for each of the four test image sets of the objects of
Figure 1. In each of the plots, the system MTF (bottom
curve), the inverse filter (top curve), and six Metz filters
for the counts used in creating the simulated image sets
(25,000; 50,000; 100,000; 250,000; 500,000; and
1,000,000 counts) are plotted. Spatial frequency is re-

0.21 O.U! 0.62 C
SPRTIRL FREQUENCY ICYClES/CMi

t 00 O'.ZI O.H2 i,'.'.- 0'.Â«3

SPOTIflL FREQUENCY(CTCLES/CM)

.00 0.21 O.UZ 0.62 0.83
SPflTlflL FREQUENCY[CYCLES/CM)

tVoO O'.21 O'.<42 O'.62 .

SPRY1RL FREQUENCT(CYCLES/CM)

FIGURE 2
Plots of a "Tc system MTF (lowest curve), inverse filter
(highest curve), and six Metz filters for total counts of
25,000; 50,000; 100,000; 250,000; 500,000; and
1,000,000 (the six curves in between) for (A) Alderson liver
and spleen phantom; (B) Iowa heart phantom; (C) Ander
son kidney phantoms; and (D) posterior clinical bone im
age.
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ported as cycles/cm in the plots. The end-point fre

quency in each is equivalent to 0.25 cycles/pixel for a
128 x 128-pixel acquisition or 0.5 cycles/pixel for a
64 x 64-pixel acquisition. Notice the large variation

between the filters at a given count level and variation
with count for a given object. This verifies the need for
both count- and object-dependence in filter formula

tion.
Figure 3 illustrates the steps in the development of

the CLS-Metz filter. Figure 3A shows a plot of the 60

values of X determined to minimize the NMSE in each
of the simulated images of the Alderson liver and spleen
phantoms vs. the values of X determined from the CLS-

Metz filter using the total image count as an estimate
of the noise power spectrum and no use of the regression
relation of Eq. 4. The line in this figure, and all subse
quent figures, is the line of identity to be used for
comparison purposes. Notice the large amount of scat
ter in the values and the trend of the predicted value of
X to be lower than the actual value of X which mini
mized the NMSE. Table 3 gives the results of the linear
regression and Sign test comparison of the predicted
and actual values of X. A low slope, poor correlation
coefficient, and significant difference by the Sign test

UI

I

28

were obtained with this formulation. Use of the average
of the high frequency values of the image power spec
trum as an estimate of the noise power spectrum was
observed to decrease the scatter in the values of X as
shown in Figure 3B, and by the improved correlation
coefficient of Table 3. However, there is still a signifi
cant bias between the two sets of values. The regression
relation of Eq. 4 is seen to be able to remove this bias
as illustrated in Figure 3C and by the slope of nearly
1.0 and lack of a significant difference by the Sign test
as reported in Table 3. Thus, the final formulation of
the CLS-Metz filter is seen to be able to perform as well
as the count-dependent Metz filter for the images used

to develop it. It is when it is applied to other images
that the advantage of the CLS-Metz's image dependent

formulation manifests itself.
Figure 4 and Table 3 summarize the results of the

first part of the test of the adaptability of the CLS-Metz
filter. From Table 3 it can be seen that the count-

dependent Metz filter formed for the Alderson liver and
spleen images performs poorly when applied to the 180
test images (ten at each of six count levels for the three
different starting objects of Figure 1B-D). The CLS-

Metz filter without use of the regression relation of Eq.

B
FIGURE 3
Plot of the logarithm of the values of
X of Eq. 1 resulting from the resolu
tion of Eq. 3 vs. the logarithm of the
values of X determined by minimizing
the NMSE for the 60 simulated im
ages of the Alderson liver and spleen
phantom. The diagonal line in each
case is the line of identity not the
regression line. (A) Estimate of noise
power equal to the total image count.
(B) Estimate of noise power equal to
the average of the high frequency
portion of the image power spectrum
and (C) estimate of the noise power
equal to the average of the high fre
quency portion of the image power
spectrum and use of the regression
relation.

Volume 29 â€¢Number 12 â€¢December 1988 1985



TABLE 3
Linear Regression Relations Between Predicted Values of X and Values of X Determined to Minimize the NMSE

PhantomLiver

SpleentThree

test objectsFilterCount'CLS-Metz"CLS-Metz'"CLS-Metz""Count'CLS-Metz'"CLS-Metz""Slope0.990.340.360.980.210.290.95Intercept0.50.30.10.114.80.10.1Correlation

coefficient0.990.930.990.990.810.970.98SigntestNS<0.05<0.05NS<0.05<0.05NS

' Count-dependent Metz filter optimized for Alderson liver and spleen Â¡mages.
" CLS-Metz filter optimized for Alderson liver and spleen images with the noise power estimated as the total image count and no

use of regression relation of Eq. 4.
'" CLS-Metz filter optimized for Alderson liver and spleen images with the noise power estimated as the average of the high

frequency components and no use of the regression relation of Eq. 4.
"" CLS-Metz filter optimized for Alderson liver and spleen images with the noise power estimated as the average of the high

frequency components and with use of the regression relation of Eq. 4 developed for the Alderson liver and spleen images.

4 developed for the liver and spleen phantoms is seen
to perform a little better. In particular, it has a better
correlation coefficient. The good correlation coupled
with the results of the plot of Figure 4A indicate that a
single regression relation would likely work for all three
sets of test images. In Figure 4B and Table 3, it can be
seen that the regression relation developed for the Al
derson liver and spleen phantoms works quite well for

these other test images. Notice the slope near 1.0, the
good correlation coefficient, and the lack of a significant
difference by the Sign test. This is true even though the
values of X for these phantoms covered a considerably
larger range than those of the Alderson liver and spleen
images. Thus, it appears that the CLS-Metz filter can
be developed for one set of clinically reasonable simu
lated images and be able to adapt, in a near-optimal

2'
o

EC
o.

0.50 1.00
LOG10 NMSE

1.50 2.00 2.50
VfiLUES FOR X

B
0.50 1.00

LOG10 NMSE
1.50 2.00
VflLUES FOR

FIGURE 4
Plot of the logarithm of the values of X of Eq. 1 resulting from the solution of Eq. 3 vs. the logarithm of the values of X
resulting from minimizing the NMSE for 60 images of each of the three test images. The diagonal line in each case is
the line of identity not the regression line. (A) No use of regression relation and (B) use of regression relation.
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fashion, to images from other test objects. This conclu
sion has been verified for other MTFs. However, it
should be noted that for each MTF a new set of param
eters needs to be determined.

The second test of adaptability was that of comparing
the NMSE values obtained with the use of various filters
to the "true" minimum values obtained when the Metz

filter was optimized for each image. The results of this
comparison for the 50,000 count level images are shown
in Table 1, and for the 500,000 count level images in
Table 2. In these it can be noted that the CLS-Metz
filter never results in an NMSE significantly different
from the true minimum values; whereas, the liver and
spleen optimized count-dependent Metz, the Wiener,
and CLS filters do. It also should be noted that the
restoration filters in all cases perform significantly better
than two-dimensional low-pass filtering. Comparison
of the NMSE values of Tables 1 and 2 shows that as
the count increases from 50,000 to 500,000 counts/
frame, the restoration filters are able to produce more
of an improvement in image fidelity than the low-pass
filter. This is because as the count increases, the resto
ration filters are able to deconvolve the image to a
greater extent in the frequency domain (7).

The data in Table 3 indicate that the image-depend
ent Metz filter can more accurately predict the optimal
value of X in Eq. 1 than the count-dependent Metz
filter can for objects other than the liver-spleen phan
tom. The difference in image quality when these filters
are applied to clinical images is illustrated in Figures 5

and 6. In these figures, all three of the two-dimensional
filters were designed using solely the Alderson liver and
spleen images. The image quality improvement due to
the CLS-Metz filter, which is seen in this example, also
has been consistently noted in clinical studies.

DISCUSSION

This study reports the development and testing of an
image-dependent, restoration filter. A linear filter was
studied because its relatively fast execution time makes
it attractive for use with the array processors presently
at clinical sites. Nonlinear, statistically based restoration
techniques may ultimately provide better image quality
(79); however, their increased computational burden
makes them too time consuming for extensive clinical
use at present.

In terms of the NMSE, the CLS-Metz filter was
shown to provide significantly better image fidelity than
two other image-dependent filters to which it was com
pared (Tables 1 and 2). The CLS filter (70) performed
better than the Wiener (2) and the count-dependent
Metz filter for the Iowa Heart and Alderson kidney
phantoms. In terms of the NMSE, it never performed
as well as the CLS-Metz filter, however. This may be
an unfair comparison, though, because the minimiza
tion of the NMSE is not the criterion of the CLS filter
(70). In a test of image preference (70), the CLS filter
was observed to perform better than the Metz. Also, it

FIGURE 5
Comparison of different methods of
filtering a posterior view from planar
acquisition SPECT image set of a
180Â° clinical bone study. (A) Raw
data; (B) Two-dimensional Butter-
worth smoothing; (C) Count-depend
ent Metz restoration; and (D) Image-
dependent Metz restoration.

Volume 29 â€¢Number 12 â€¢December 1988 1987



FIGURE 6
Comparison of four selected coronal
slices from the bone study of Figure
3. Images were reconstructed by
"ramp" filtering the projection data
after two-dimensional filtering of ac
quisition images by: (A) no prefilter-
ing; (B) Butterworth smoothing; (C)
count-dependent Metz restoration;
and (D) image-dependent Metz res
toration.
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is easier to implement because it does not require the
use of parameters obtained from optimization studies
with simulated images. At present, an ROC study is
being planned to help differentiate between these filters
on the basis of observer performance.

The use of the average of the magnitudes of the image
power spectrum at frequencies large enough for the
contribution of the blurred object to be negligible was
determined to be better than using the total count as
the estimate of the noise power spectrum as seen in
Figure 3 and Table 3. By Eq. 5, the difference energy is
calculated as the sum of the squared magnitudes of the
product of the Fourier transform of the image and a
high-pass filter. At frequencies where the high-pass filter
is essentially 1.0, this becomes the sum of the image
power spectrum. Thus use of the average of the high
frequency terms as the estimate of the noise power
spectrum provide a matching of the values obtained
from each side of Eq. 3 at these frequencies. This is one
way of explaining the poorer results (Fig. 3 and Table
3) seen with use of the total count as the estimate of
the noise power spectrum.

CONCLUSIONS

Image-dependent restoration filters are required to
provide an optimal compromise between noise suppres
sion and image deconvolution (removal of blurring).
An image-dependent Metz filter has been formulated
which adapts to different test "object" images to provide

near optimal image fidelity in the NMSE sense. It also
has been shown to provide consistently good image
quality with clinical images as diverse as liver and spleen
studies and bone studies.
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