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Tracer dilution curves are useful for describing blood flow through vessels and
organs. Empirically determined curves for flow through nonbranching vessels have
been shown to correspond to a mathematical function called the gamma variate.
This paper presents a derivation of the gamma-variate relationship, discusses

some of the properties of the gamma variate and its use in problems involving
organ blood flow and recirculation.
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The gamma variate is a mathematical function that
can be used to describe tracer dilution curves. The ex
pression for a gamma variate is

'"

where a and ÃŸare parameters (a > â€”1),t is the inde
pendent variable, and F(a + 1) is the gamma function
defined by

i)=r
Jo

xae~xdx (2)

(The gamma variate should not be confused with the
gamma function, though the two are closely related, as
will be shown). Thompson et al. (/ ) showed that gamma
variÃ¢tescould be fitted to measured tracer dilution
curves with very good agreement, either by the method
of least squares or by the method of moments. A family
of gamma-variate curves is shown in Fig. 1.

The gamma variate is a well-known function of
probability theory. A stochastic model has been proposed
to account for its relationship to tracer dilution curves
(2). The purpose of this paper is to present a determin
istic theoretical model from which the gamma-variate
relationship is derived. This model allows for a physio
logical interpretation of the parameters of the function.
In addition, it suggests an application to the measure
ment of organ blood flow.
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DERIVATION

We will begin by assuming that flow in a blood vessel
can be modeled as a series of mixing chambers, each
completely stirred and of equal volume, V. Let Q be the
rate of flow through the vessel. The amount of tracer in
a chamber after a small time, At, has passed will be equal
to the amount in the chamber at time t plus the amount
that enters from the previous chamber, minus the
amount that flows into the next chamber. If we let DÂ¡
designate the amount of tracer in chamber i we then
have

Di(t + At) = Dj(t) + ^ DÂ¡_,(t)At- Q DÂ¡(t)At. (3)

Dividing this equation by V and letting CÂ¡designate the
concentration of tracer in chamber i, we have

Ci(t + At) = Q(t) + ^ Ci_,(t)At - Q Q(t)At. (4)

This equation may be rearranged to give

By taking the limit of Eq. (5) as At approaches zero, we
have

dt
(6)

This relationship holds for all chambers but the first. We
will assume that the concentration of tracer in the blood
flowing into the first chamber is zero. Later the case of
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FIG. 1. Family of gamma-variate curves with different values of

parameters.

recirculation can be dealt with. For the first chamber we
have

The solution to Eq. (7) is

C,(t) =

(7)

(8)

where Co is an arbitrary constant that will later be
determined by normalization. Equation (6) can now be
solved iteratively. By substituting the expression for Ci
in the equation for â‚¬2,we have

(9)

The solution to this is

where CQis again an arbitrary constant to be determined
by normalization. Using this expression in the equation
for â‚¬3,we have

(11)

(12)

This process may be continued. The general pattern that
emerges from the above is

which has the solution

It can be verified by direct substitution that Eq. (13) is
the solution of Eq. (6).

We can now pass from the discrete case to the con
tinuous case. We will define the continuous parameters
a and ÃŸto be

a = n â€”1

ÃŸ

(14)

(15)

The gamma function of Eq. (2) is the continuous analog
of the factorial. It can easily be shown through integra
tion by parts that, for integral values n,

r(n) = (n-l)! (16)

Making these substitutions in Eq. (13), we have

C(o, ÃŸ,t) = (17)ÃŸÂ«T(a)'

CQnow can be determined. Since the total amount of
tracer injected at the beginning of the vessel is assumed
to be unity, we must have

fJo
C(a,j8,t)dt= l.and (18)

by substituting from Eq. (17) we can solve the inte
gral:

fÂ°"c(Â«,j8,t)dt
Jo

- CÂ° fVe
Jo/MXÂ«)

_ CoÃŸ f*~Ã®>)Jo

Therefore

C0ÃŸT(a+l)

(10) The final expression is then

(19)

(20)

-t-e-'/". (21)C(a, i8, t) =

This is the expression for the gamma variate, which
concludes the derivation.

DISCUSSION

Other authors have obtained similar results. Newman
(3) derived an expression for tracer dilution in a model
of central circulation with two mixing chambers, which
can be reduced to Eq. (73) for the case of n = 2. Shep-
pard (2) has suggested a stochastic model to account for
the gamma-variate relationship. In this model the tracer
particles are assumed to follow a one-dimensional ran
dom walk process through a series of identical mixing
chambers. The distribution of tracer can then be shown
to satisfy a Poisson distribution
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C(t) =
tn-le-nt

(22)

where n is the number of mixing chambers. By making
the substitutions

and

a = n â€”1,

0-1/n,

(23)

(24)

Eq. (22) can be reduced to a gamma variate. However,
this presents a problem with the interpretation of the
parameter ÃŸ.Thompson (7) showed that values of ÃŸ
obtained by curve-fitting were all greater than 1,whereas
the stochastic model necessitates that they be less than
1, since n is always greater than unity.

The principal advantage of the derivation presented
in this paper is the physiologic interpretation of the pa
rameters a and ÃŸ.From Eq. (14) we see that a desig
nates the number of theoretical mixing chambers, which
in turn reflects the degree of turbulance in the flow. It
has dimensions of time, and can be thought of as the time
required to empty a theoretical mixing chamber at the
given flow rate. From Eq. ( 15) we see that ÃŸis the ratio
of the volume of a theoretical mixing chamber to the rate
of flow. There is no theoretical reason why this value
should not be greater than unity, thus obviating the
problem of Sheppard.

The parameters a and ÃŸare in a sense antagonistic.
At a given flow rate, Q, when a is largeâ€”meaning that
there are relatively more theoretical mixing cham
bersâ€”ÃŸwould be expected to be small, since the volume
of each chamber relative to the flow would be less.
Similarly when a is small, ÃŸwould be expected to be
increased. The tendency for a and ÃŸto vary in this in
verse way was in fact observed by Thompson et al.
(/)-

Gamma variÃ¢tesprobably have their most important
use in the interpretation of organ blood-flow studies.

Suppose that a radioactive tracer were injected as a
bolus directly into an organ's arterial blood supply. Then

a time-activity curve for the organ, f(t), could be gen
erated. In many situations, direct arterial injection is
impossible. Instead the tracer is injected somewhere
upstream so that the distribution reaching the organ
would be described by a gamma variate. The time-ac
tivity curve for the organ would then be given by the
convolution product

f*C= ftf(t-T)C(a,0,T)dr.

Jo
(25)

The time-activity curve can be recovered using the
convolution theorem for Laplace transforms. The La
place transform is defined to be

L[f(s)] = f
Jo

e-Â«f(t)dt. (26)

The original function, f(t), may be recovered from the
L[f(s)] by the inverse Laplace transform

f(t)= fC "~L[f(s)]ds, (27)

%JCâ€”iÅ“

where the constant C is selected so that the path of in
tegration is to the right of all singularities of L[f] within
the complex plane. The convolution theorem states
that

L[f]L[g] = L[f*g];

therefore

f(t) = L- L[f*C]

L[C]

(28)

(29)

where L ' [ ] designates the inverse Laplace transform.

Since the Laplace transform is closely related to the
Fourier transform, an algorithm for evaluating Eq. (29)
can readily be implemented on a digital computer. It
would enable the measurement of organ's time-activity

curves without the distortion caused by dispersion of the
tracer bolus in passing through the circulation.

The Laplace transform of a gamma variate can be
calculated by

L[C(o, ÃŸ,t)]

e~stC(a, ÃŸ,t)dt- f
Jo

l /â€¢OD= â€¢ I e-sltae-t/<Ã®dt
0Â«+T(a + l) Jo

1/0)
â€” f fe-'dt
0+1 Jo

(s0+ 1)Â«+1' (30)

A consequence of this is that the convolution of two
gamma variÃ¢teswith the same ÃŸparameter yields an
other gamma variate. For generality, we will let one of
the functions be shifted to the right by a constant T. This
corresponds to the situation of two vessels in series. We
will make use of the shift property of the Laplace
transform. It can be shown by a change of variables that
for any function f(t) such that f(t) = 0 for t < 0:

L[f(t-T)]=e-sTL[f(t)] (31)

for any constant T > 0. Using this and the convolution
theorem wehave

L[(C(a,,0,t)*C(a2,0,t-T))]

â€¢L[C(alf0,t)lL[C(a2,0,t)]e-'T

(80+ l)a'

1 >-sT
(S0+ l).(Â»l

a2+l,0,t-T)]. (32)
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FIG. 2. Illustration of recirculation given by Eq. 36. a = 1, ÃŸ= 1/2,
T = 3.

Therefore by taking inverse Laplace transforms of both
sides of Eq. (32) we have

C(a,,/3,t)*C(a2/3,t-T)
(33)

This result is just what one would expect intuitively.
If we had two vessels in series with the same flow pa
rameter, ÃŸ,the distribution of tracer at the end of the
combined vessel should be described by a gamma variate
with an a parameter equal to the sum of those of the two
vessels. The fact that the a parameter turns out to be oc\
+ a2 + 1 simply indicates that the junction between the
two vessels accounts for an additional theoretical mixing
chamber.

We can now discuss the effect of recirculation. Sup
pose that a closed circulatory system is modeled by a
single loop with a time delay. The delay, T, represents
the transit time for the fluid to make one complete circuit
under laminar flow conditions. If a single bolus of tracer
were injected into the system, then after one circuit the
distribution, D(t), would be given by a gamma variate

D(t) = C(a, ÃŸ,t) (34)

After two circuits (that is, one recirculation), the dis
tribution would be

D(t) = C(a, j8, t) + C(a, ÃŸ,t)*C(a, ÃŸ,t - T). (35)

The first term represents the original bolus. The second
term represents the output of the first circuit with delay
feeding back into the input of the system. Since the
system is linear, the output of a sum of two inputs is just
the sum of the individual outputs. Using the convolution
relation for gamma variÃ¢tes[Eq. (33)], Eq. (35) reduces
to

D(t) = C(a, ÃŸ,t) + C(2 a + l, ÃŸ,Ã•- T). (36)

This is illustrated in Fig. 2. Similarly, two recirculations
would give

D(t) = C(a, ÃŸ,t) + C(2a + l, ÃŸ,t - T)
+ C(3a + 2, ÃŸ,t - 2T). (37)

The general expression for any number of recirculations
is clearly apparent.

CONCLUSIONS

The gamma-variate relationship for tracer dilution
curves can be derived from a simple deterministic model
of flow through a series of mixing chambers. This model
givesa physiological interpretation of the two parameters
of the gamma variate.

The gamma variate is useful when transform tech
niques are applied to problems of organ blood flow and
recirculation. These theoretical relationships should
make the analysis and interpretation of results obtained
from tracer dilution methods easier and more rig
orous.
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