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ABSTRACT 

 

Background: Functional magnetic resonance imaging (fMRI) studies have reported altered integrity of 

large-scale neurocognitive networks (NCNs) in dementing disorders. However, findings on specificity 

of these alterations in patients with Alzheimer’s disease (AD) and behavioral variant frontotemporal 

dementia (bvFTD) are still very limited. Recently, NCNs have been successfully captured using positron 

emission tomography (PET) with F18-fluordesoxyglucose (FDG). Methods: Network integrity was 

measured in 72 individuals (38 male) with mild AD, bvFTD, and healthy controls using a simultaneous 

resting state fMRI and FDG-PET. Indices of network integrity were calculated for each subject, network, 

and imaging modality. Results: In either modality, independent component analysis revealed four major 

NCNs: anterior default mode network (DMN), posterior DMN, salience network, and right central 

executive network (CEN). In fMRI data, integrity of posterior DMN was found to be significantly 

reduced in both patient groups relative to controls. In the AD group anterior DMN and CEN appeared to 

be additionally affected. In PET data, only integrity of posterior DMN in patients with AD was reduced, 

while three remaining networks appeared to be affected only in patients with bvFTD. In a logistic 

regression analysis, integrity of anterior DMN as measured with PET alone accurately differentiated 

between the patient groups. A correlation between indices of two imaging modalities was overall low. 

Conclusions: FMRI and FDG-PET capture partly different aspects of network integrity. A higher disease 

specificity of NCNs as derived from PET data supports metabolic connectivity imaging as a promising 

diagnostic tool. 

 

 

Key words: Alzheimer’s disease, frontotemporal dementia, positron emission tomography, multimodal 
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INTRODUCTION 

In the last decades, resting state networks (RSNs) have been a hot topic of cognitive and clinical 

neuroscience. Using resting state functional magnetic resonance imaging (fMRI), abnormalities in so 

called neurocognitive networks (NCNs) have been found in numerous neuropsychiatric disorders (1). 

Neurodegenerative diseases including dementia are not an exception (2,3). In their seminal paper, 

Greicius et al. (4) reported decreased functional connectivity (FC) of the default mode network (DMN) 

in patients with Alzheimer’s disease (AD) as compared to healthy subjects. A further study suggested 

even a differential disruption of network connectivity in dementing disorders. Thus, DMN was reported 

to be affected in AD, while salience network (SN) in behavioral variant frontotemporal disease (bvFTD) 

(5). However, observations on this topic have been rather inconsistent. For instance, reduced in-phase 

connectivity with DMN was found in patients with bvFTD  (6). Others reported an increased FC within 

the frontal networks in AD subjects (7). In agreement with these heterogeneous results the clinical 

applicability of resting state fMRI remains very limited. Among putative reasons are a low signal-to-

noise ratio and reproducibility of the findings at a single subject level (8). Positron emission tomography 

(PET) with 18F-fluorodeoxyglucose (FDG) is an established clinical tool for early and differential 

diagnosis of dementing and movement disorders (9,10). While multivariate decomposition of PET data 

has been successfully applied in both neurodegenerative dementia (11) and Parkinsonian syndromes (12) 

RSNs could be identified in FDG-PET data only recently (13–16). In particular, our group has found 

spatially similar RSNs in fMRI and FDG-PET data in the same group of healthy subjects (15). The 

present study addressed the value of FDG-PET in assessing integrity of NCNs in dementing disorders, 

in comparison with fMRI. To this end, resting state fMRI and FDG-PET data were acquired 

simultaneously in the same group of patients with AD, bvFTD and healthy controls (HC). Of note, a 

simultaneous data acquisition allows to minimize variability in RSNs due to different brain states, 

excitement level or mood of the person (17,18).  
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MATERIALS AND METHODS 

Subjects  

We retrospectively analyzed data of patients who were referred to our center for a PET/MR 

examination as part of a diagnostic work-up for suspected neurodegenerative disorder. Only subjects 

with an expert diagnosis of AD or bvFTD were considered. The expert diagnosis was made by a 

consensus of at least two experienced psychiatrists under consideration of a clinical examination, results 

of neuropsychological and lab testing, imaging and CSF biomarkers. The imaging biomarkers included 

structural MRI, FDG-PET, and in some cases amyloid PET. The diagnosis of AD was made according 

to the NINCDS-ADRDA (19) or NIA-AA (20) criteria. In the latter case, the clinical diagnosis of MCI 

due to AD was supported by AD-typical biomarker findings. BvFTD was diagnosed according to the 

recent diagnostic criteria  (21). Only patients with a mini mental state examination (MMSE) score ≥18 

were included. The group of HC consisted of individuals without psychiatric and neurological symptoms 

and no complaints about cognitive impairment. They were recruited mainly via advertisements in local 

newspapers. 

The study was carried out in accordance with the latest version of the Declaration of Helsinki after 

the consent procedures had been approved by the local ethics committee of the medical faculty at the 

Technische Universität München (TUM). Written informed consent was obtained from all subjects. 

Image data acquisition 

Imaging was performed on a 3T Siemens Biograph mMR scanner (Siemens Healthineers AG, 

Erlangen, Germany) under standard resting conditions. Structural T1-weighted (MPRAGE) images were 

acquired using a three-dimensional (3D) normal gradient recalled sequence (repeat time (TR) 2300.0 ms; 

echo time (TE) 2.98 ms; 9.0º flip angle) measuring 160 sagittal slices (field of view (FOV) 240x256mm2; 

pixel spacing 1 mm, 256x240 scan matrix, slice thickness 1.0 mm). Resting state fMRI was performed 

with the following parameters: TR 2.000 ms; TE 30 ms; flip angle 90°; 35 slices (gap 0.6 mm), aligned 
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to anterior/posterior commissure (AC/PC) covering the whole brain; FOV 192 mm; matrix size 64x64; 

voxel size 3.0x3.0x3.0 mm3. PET acquisition ran in parallel for 15 minutes starting 30 minutes post 

injection i.v. of on average 198 (range 154-237) MBq. The subjects had fasted for at least 6 hours before 

scanning. Raw FDG-PET data were reconstructed using a filtered back-projection and filtered with an 

isotropic Hamming filter (5 mm full-width at half-maximum (FWHM)). Attenuation correction was 

performed using a default Dixon MRI sequence. 

Image preprocessing 

The image data were preprocessed mainly using SPM12 (Wellcome Trust Center for Neuroimaging, 

London, UK). After segmentation, T1 images were spatially normalized into the Montreal Neurological 

Institute (MNI) space. Echo-planar-imaging images were slice-time corrected, realigned, coregistered to 

subjects specific T1 images in MNI space and band-pass filtered (0.01 and 0.08 Hz). The first three 

images (6 s) of each subject’s fMRI data were discarded to allow for equilibration of the magnetic field. 

In addition, a component-based noise correction (aCompCor) (22,23) based on CSF signal was applied. 

The applied pre-processing pipeline is available as an open source software tool 

(https://github.com/neurita/pypes/tree/v0.2.1) (24). To minimize a negative methodological bias towards 

fMRI data, a particular attention was paid to potential motion artifacts (supplementary material). FDG-

PET images were spatially normalized to the MNI space using a study-specific FDG-PET template and 

smoothed with an 8 mm FWHM Gaussian kernel, in analogy with fMRI data. No correction for partial 

volume effects was applied. First, a uniform method for fMRI and FDG-PET data does not exist; different 

methods may have biased the results in favor of one imaging modality (25). Second, our analyses focused 

on larger cortical structures (networks), and patients with only mild disease severity, in whom a relevant 

atrophy is unlikely, were included.  
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Independent component analysis 

To extract RSNs, a spatial independent component analysis (ICA) was applied independently to 

fMRI and PET data. Individual subject fMRI time-series images were concatenated for the group ICA 

(26). A concatenation of one mean PET image per subject was used for the group ICA (13–15,27). We 

applied a 30 components’ ICA model for both imaging modalities. This intermediate model order (n=30) 

was chosen to extract robust spatial maps, preventing coherent RSNs to be splitted into several sub-

networks (28–30). Based on the known perturbations in NCNs in dementing disorders (see introduction), 

we a priori focused analyses on the following networks of interest: DMN, SN, and central executive 

network (CEN). Following previous studies, the primary visual and auditory networks were chosen as 

reference networks, as they are supposed to be unaffected in AD and bvFTD, at least at a clinically mild 

disease stage (31,32). In both imaging modalities, relevant spatial maps were selected using a spatial 

correlation with established functional templates (30).  

Indices of network integrity 

In both imaging modalities, subject-specific spatial maps and time courses were estimated with a 

GICA3 back-reconstruction method, consisting of a two-step multiple regression (33). This method is 

based on a principle component analysis compression and projection (26,34). To derive individual 

indices of network integrity for fMRI data, a spatio-temporal regression – also called dual regression – 

was computed against group-based maps (35,36). For PET data, we computed so called loading 

coefficients, a degree of component (RSN) expression in individual subjects (26,27). Of note, a 

conceptually equivalent representation underlies network integrity measures of both imaging modalities. 

Details are provided in supplementary material. Finally, indices of network integrity were available for 

each subject, network, and imaging modality.  
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White matter hyperintensities and hemorrhages  

Results of network analyses (see below) prompted us additional post-hoc analyses. First, we 

quantified a volume of white matter hyperintensities (WMH) upon T2 FLAIR images (37). Second, we 

assessed presence of eventual hemorrhages as index of (sporadic) cerebral amyloid angiopathy (CAA). 

To this end, an experienced neuroradiologist (DH) read T2*-weighted images for CAA according to 

established criteria (38).  

Statistics 

Integrity indices were compared between the groups independently for each modality using ANOVA 

with a post hoc 2-sample t-test. A p<0.05 Bonferroni corrected for multiple tests, i.e. RSNs of interest, 

was accepted as significance level. For explorative reasons we also present results with p<0.05 

uncorrected. A binary logistic regression (step-wise) with resubstitution and cross-validation (leave-one-

out classification) was performed to predict the diagnostic status (AD vs. bvFTD) using indices of 

network integrity (IBM SPSS statistics 22). An association between integrity indices of two modalities 

for the same network was tested using a non-parametric Spearman correlation. A non-parametric Mann-

Whitney U test was applied to test for differences in WMH volume between the groups. A chi-quadrat-

test was applied to test for differences in a proportion of subjects with CAA (possible and probable were 

pooled) between three groups. Results were considered significant at p<0.05. 

 

RESULTS 

Subjects 

Following the inclusion criteria 72 subjects were selected for the study. Their demographic 

characteristics are summarized in Table 1. There was no significant difference for age, gender or MMSE 

between the groups. Thus, no correction for these variables was applied (39). The AD group included 

patients with MCI due to AD (n=19) and dementia due to AD (n=10).   
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Independent component analysis 

Figure 1 depicts the RSNs of interest for each imaging modality. In both modalities, the DMN was 

split into the anterior and posterior networks. Only right CEN could be identified in PET data. Thus, 

further analyses focused on the following 6 networks: posterior DMN (pDMN), anterior DMN (aDMN), 

SN, right CEN, primary visual, and auditory. 

------------------------------------- Figure 1 around here -------------------------------------- 

 

Resting state networks of interest 

Figure 2 shows a distribution of the network integrity among the groups for each imaging modality. 

Note, each RSN (figure 1) was common for all subjects under the study, while network integrity measures 

were available in every single subject. In the FDG-PET data we observed a significantly lower integrity 

of aDMN and SN in bvFTD compared to AD. The integrity of pDMN was significantly higher in bvFTD 

compared to AD. In comparison to HC, the integrity of pDMN was significantly lower in AD, and the 

integrity of aDMN, SN and right CEN were significantly lower in bvFTD. For fMRI derived RSNs we 

observed a significantly lower integrity of pDMN, aDMN and right CEN in AD relative to HC. In bvFTD, 

a significantly lower integrity of pDMN compared to HC was found. At a p<0.05 uncorrected, integrity 

of each RSN of interest was lower in AD then in HC.  

 

------------------------------------- Figure 2 around here -------------------------------------- 
 
Regression and correlation analyses 

In fMRI data, integrity indices of the pDMN appeared as a single significant predictor of the 

diagnostic status, providing an accuracy of 64% (p=0.017; sensitivity 79%, specificity 43%). In PET 

data, aDMN was the strongest predictor with an accuracy of 94% (p=0.002; sensitivity 97%, specificity 

91%), while addition of SN slightly but significantly increased the accuracy up to 96% (p=0.016; 
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sensitivity 97%, specificity 95%). The correlation analyses revealed at best a low within-network-

between-modality correlation, with the highest R of 0.33 (p=0.005) for aDMN.  

 

White matter hyperintensities and hemorrhages 

 The volume of WMH was 4.8±9.3, 2.6±2.9 and 2.7±3.9 ml in the AD, bvFTD and control group, 

respectively. There was no statistically significant difference between the groups (p>0.05).  T2*-

weighted images were available in 25 subjects with AD, all subjects with bvFTD, and 21 HC. In the AD 

group there were four subjects with possible and one subject with probable CAA. None of subjects with 

bvFTD appeared to have CAA. In the HC group possible CAA was diagnosed in one subject. The 

proportion of subjects with CAA was significantly larger in the AD group relative to the bvFTD (p=0.03), 

but not the HC group (p=0.13). There was no difference between the bvFTD and HC groups (p=0.31).  

DISCUSSION 

In the present study we examined integrity of NCNs in AD and bvFTD using simultaneous resting 

state fMRI and FDG-PET. Like in our previous work on healthy subjects (15), spatially similar RSNs 

were found in both imaging modalities. In PET data, integrity of NCNs was differentially affected in two 

dementing disorders. In fMRI data, all networks of interest showed the lowest integrity in AD, and a 

lower integrity in bvFTD relative to HC. Integrity of aDMN - as measured with FDG-PET - accurately 

discriminated between the two patient groups. Such a distinction was not possible using the same NCNs 

from fMRI data.   

Whereas FDG-PET is supposed to capture neural/synaptic activity by estimating glucose 

consumption in terms of neurometabolic coupling (40), fMRI measures neural activity less directly, 

through amount of oxygen in blood supplying a given brain region (41). This so called neurovascular 

coupling is based on a complex interplay between local cerebral blood flow, volume, and cerebral 

metabolic rate of oxygen (42). Thus, the partly different findings in our fMRI and FDG-PET data, as 
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well as a low correlation between integrity measurements of fMRI- and PET-based networks, are not 

surprising. In particular, we observed a lower integrity across all fMRI-based NCNs plus primary visual 

network in both patients' groups relative to controls, with the AD group being consistently more impaired 

than the bvFTD group. The former observation may have both a biological and methodological 

background. Different neurodegenerative disorders are known to share common pathophysiological 

phenomena such as production of toxic oligomers that cause intercellular miscommunication (43,44). 

The toxic effects lead to a dissynchronity of network activity that may manifest as impaired RSN integrity 

(45). As compared to blood oxygenation level dependent (BOLD) fMRI, FDG-PET possesses a much 

lower temporal resolution. A snapshot of FDG delivery over minutes may be more robust to non-specific 

whole brain (e.g., toxic) effects. In addition, ICA on PET data as in the present study identifies brain 

regions sharing similar FDG uptake, rather than synchronicity of the BOLD signal fluctuations. Hence, 

relative to fMRI data, alterations in RSNs in FDG-PET data seem to be driven more by a disease-specific 

neurodegeneration. In the same vain and other than in fMRI data, integrity of reference (non-NCNs) 

RSNs in PET data appeared to be preserved.  

As a further finding, integrity of RSNs in fMRI data was consistently more impaired in the AD group 

than in the bvFTD one. This can be explained for instance by a more profound cerebrovascular disease 

in AD, as well by (sporadic) CAA that is often associated with AD (46). Thus, neurovascular decoupling 

as measured with fMRI was shown to be associated with severity of CAA. Hereby patients with CAA 

had lower amplitude of the fMRI response within the visual cortex during a visual task compared with 

controls (47). That study also reported a correlation between the impaired fMRI amplitude and a higher 

WMH volume in CAA patients. Of note, a recent study reported a limited reproducibility of functional 

connectivity networks particularly in patients with cerebral small vessel disease (48). On one hand, due 

to vascular lesions routine pathways of functional connectivity may be at least in part replaced by other, 

less consistent routes (48). On the other hand, vascular pathology may affect the BOLD hemodynamic 

response, reducing interregional correlations (49,50). Further, altered DMN connectivity was shown to 
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be significantly correlated with WMH burden (51), next to other studies confirming the central role of 

the white matter lesions in disrupting functional connectivity (52–54). Our post-hoc analyses support this 

hypothesis. Specifically, patients with AD showed a nearly double amount of WMH than patients with 

bvFTD and HC. Yet, apparently due to a high variability in the AD group the difference was statistically 

not significant. Furthermore, the proportion of subjects with CAA was higher among patients with AD 

than in two other groups.  

Overall, the pattern of NCN alterations in FDG-PET rather than in fMRI data is in agreement with 

the known pathological changes in AD and bvFTD. Thus, a posterior NCN such as pDMN appeared to 

be affected in AD, while anterior NCNs such as aDMN and SN were disturbed in bvFTD. The (right) 

CEN, covering both the anterior and posterior parts of the brain, was affected in bvFTD, in line with the 

known executive dysfunction in these patients (55). Of note, pDMN was consistently affected in both 

modalities, i.e., its integrity was significantly lower in AD than in bvFTD and HC. This observation 

agrees well with the fMRI literature (4,56). However, a significant difference in a test measure does not 

necessarily mean that this measure is accurate in respect to class prediction, or, in clinical terms, in 

respect to differential diagnosis. To address this issue, we performed a step-wise logistic regression 

analysis. Among fMRI-based NCNs, integrity of the pDMN appeared to be the only significant predictor 

of the diagnosis (AD vs. bvFTD) with an accuracy of only 64%. This result is well below the accuracy 

values of 100% reported by Zhou et al. (2010). Apart from methodological differences the discrepancy 

can be explained by smaller patients’ groups (n=12 each) and by a more advanced disease in patients 

with AD (average MMSE score of 21.2 vs. 24.3 in our study) in Zhou et al. (5). As for NCNs extracted 

from PET data, integrity of aDMN appeared to be the strongest predictor of the diagnostic status, 

providing an accuracy of 94%. All other NCNs on their own were significant predictors, too, but with a 

lower accuracy (data not shown). In a step-wise logistic regression with all PET-based NCNs, integrity 

of SN slightly improved the discrimination (96% accuracy).  
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An advantage of our study are well characterized and matched groups of patients and HCs. 

Furthermore, the PET and fMRI data were acquired simultaneously, pre-processed and analyzed in an 

analogous manner. To minimize a negative bias towards fMRI, we applied a state of the art image 

analysis, with a special attention to the quality control of fMRI data (e.g., analyses of motion artifacts). 

As a limitation, our study focused on the established NCNs. However, other networks, e.g., limbic, may 

also be of relevance in neurodegenerative dementia in general, and in bvFTD in particular (57). Future 

studies should address this issue. As a further limitation, results of the logistic regression were cross-

validated using a leave-one-out approach. Thus, they may be too optimistic; a prospective validation in 

another cohort is essential.  

 

CONCLUSION 

Our study provides novel insights into alterations of the established RSNs in AD and bvFTD, 

supporting metabolic connectivity imaging as a valuable tool in the field of brain connectivity. As a 

prospective, we propose to establish an atlas of FDG-PET-based RSNs similar to that by Allen et al. for 

fMRI (30). This would allow to characterize disease-specific connectivity patterns at the metabolic 

network level (12,58–60). 
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KEY POINTS:  
 

QUESTION: What is the value of altered network integrity – as measured with FDG-PET and fMRI – 

in dementing disorders?  

PERTINENT FINDINGS: The pattern of network alterations differed between the modalities, with the 

fMRI-based neurocognitive networks (NCNs) showing a generally lower disease specificity. Integrity 

of anterior default mode network as measured with PET alone accurately differentiated between 

patients with mild Alzheimer’s disease and behavioral variant frontotemporal dementia. 

IMPLICATIONS FOR PATIENT CARE: A higher disease specificity of NCNs as derived from PET 

data supports metabolic connectivity imaging as a promising diagnostic tool. 
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Figure 1: Resting state networks of interest 

 

Overlay of IC maps at a threshold of z>2.0 on a T1 template in the MNI space. The color bar represents 

z-values. A) posterior default mode network, B) anterior default mode network, C) salience network, D) 

right central executive network, E) primary visual, F) auditory, G) left central executive network 
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Figure 2: Distribution of network integrity indices  

The boxes show the quartiles of the dataset while the whiskers extend to show the rest of the distribution, 

except for points that are determined to be “outliers” using a method that is a function of the inter-quartile 

range. Y-axis indicates a spatio-temporal regression for fMRI and loading coefficients for FDG-PET, 

respectively. Both indicate an individual degree of network integrity.  
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Table 1: Demographics 

 AD bvFTD HC p-value 

N 29 21 22 - 

M/F 11/18 15/6 12/10 0.055* 

Age 64.3 ± 5.8 61.8 ± 9.4 60.4 ± 9.2 0.227** 

MMSE 24.3 ± 3.0 25.5 ± 3.3 n.a. 0.660*** 

AD, Alzheimer’s disease; bvFTD, behavioral variant frontotemporal dementia; HC, healthy control subjects; MMSE, mini 

mental state examination; n.a., not available. *Chi-quadrat test, **one-way ANOVA, ***t-test.  

 



Supplemental material 

Analyzes of motion artifacts  

A Rapidart ArtifactDetect algorithm from NiPype (1) was used for signal nuisance correction 

by regressing out motion and intensity artifacts, if present (2). The tool computes the movement of 

the center of each face of a cuboid centered around the head and returns the maximal movement 

across the center. It is also implemented in Artifact Detection Tools 

(http://web.mit.edu/swg/software.htm). The following measures were recorded: total number of 

volumes that are affected by movement (motion outliers), maximum norm of the movement vector 

(maximum norm), and the standard deviation of the movement norms of the subjects. Four patients 

with AD, 5 patients with bvFTD, and no HC were discarded from further analyses due to a 

significant movement. This was defined as more than 30 motion outliers, a maximum norm larger 

than 4 mm, or a standard deviation larger than 1 mm. 

Independent component analysis 

We used the GIFT toolbox v3.0a (Medical Imaging Analysis Lab, The Mind Research Network; 

http://mialab.mrn.org/software/gift). Basically, ICA attempts to decompose the linearly mixed 

signals from the temporal dimension into independent spatial sources which are maximally 

independent non-Gaussian signals. As a first step of subject-specific data whitening and reduction 

a principal component analysis (PCA) is performed. After this, a group data reduction step retaining 

the number of PCs defined using the expectation-maximization algorithm to avoid prohibitive 

memory requirements (3). Aggregate spatial correlation maps are estimated as the centrotypes of 

component clusters to reduce sensitivity to initial algorithm parameters. 

http://web.mit.edu/swg/software.htm


Calculation of loading coefficients 

ICA is a data driven method which extracts a set of components from a set of a mixed signal 

observations. The independent components are orthogonal to each other. Therefore, the different n 

component signals s = [s1, s2, … sn] are assumed to be independent, but linearly mixed in m 

observations. The generative model x = As, where A is the mixing matrix, separates the different 

signals. Hereby, the elements of A represent the loading coefficients measuring a subject’s spatial 

deviation from an average group derived component, i.e. RSN. Because the extracted components 

are expressed in individual subjects to a different degree, the mixing matrix entries (elements of 

A), i.e. the loading coefficients or integrity values, represent the spatial overlap between every 

subject’s specific RSN and the equivalent group based RSN (4,5). Herewith, loading coefficients 

around zero represent a strong coherence between the subject specific and group-based RSN. For 

fMRI derived RSN the network integrity is quantified as the multiple (spatio-temporal) regression 

coefficient between a given group derived RSN and the equivalent subjects’ specific RSN. 

Herewith, regression values around one represent a strong coherence between the subject specific 

and group based RSN.  
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