⁶⁸Ga-PSMA-11 PET/CT in Primary and Recurrent Prostate Carcinoma: Implications for Radiotherapeutic Management in 121 Patients

Stefan A. Koerber ¹⁻³	Stefan.Koerber@med.uni-heidelberg.de	
Leon Will ⁴	leon.will@stud.uni-heidelberg.de	
Clemens Kratochwil ^{4,5}	Clemens.Kratochwil@uni-heidelberg.de	
Matthias F. Haefner ¹⁻³	Matthias.Haefner@med.uni-heidelberg.de	
Henrik Rathke ⁴	Henrik.Rathke@med.uni-heidelberg.de	
Christophe Kremer ⁴	Christophe.Kremer@med.uni-heidelberg.de	
Jonas Merkle ⁴	Jonas.Merkle@med.uni-heidelberg.de	
Klaus Herfarth ¹⁻³	Klaus.Herfarth@uni-heidelberg.de	
Klaus Kopka ^{6,7}	<u>k.kopka@dkfz.de</u>	
Peter L. Choyke ⁸	pchoyke@nih.gov	
Tim Holland-Letz ⁹	t.holland-letz@dkfz-heidelberg.de	
Uwe Haberkorn ^{4,5}	Uwe.Haberkorn@med.uni-heidelberg.de	
Juergen Debus ¹⁻³	Juergen.Debus@med.uni-heidelberg.de	
Frederik L. Giesel ^{4,5,7}	frederik@egiesel.de	corresponding author

1 Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany

2 Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany

3 National Center of Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany

4 Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany

5 Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany

6 Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany

7 German Cancer Consortium (DKTK), Heidelberg, Germany.

8 Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda/ Maryland, USA

9 Department of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany

Corresponding author:

Frederik L. Giesel, Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; phone: +49-6221-5639461; fax: +49-6221-565288; email: frederik@egiesel.de

First author:

Stefan A. Koerber, Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; phone: +49-6221-5636589; fax: +49-6221-565353; email: <u>Stefan.Koerber@med.uni-heidelberg.de</u>

Running title: PSMA-11: implications for RT management

Total words: 4368 Word count abstract: 200 1

ABSTRACT

The present study analyzed the impact of Gallium-68 (⁶⁸Ga)-labeled prostate-specific membrane antigen-HBED-CC (⁶⁸Ga-PSMA-11) positron-emission tomography (PET)/computed tomography (CT) on radiotherapeutic management in a large cohort of men with primary or recurrent disease. **Methods**: This study investigated 121 men with carcinoma of the prostate who underwent ⁶⁸Ga-PSMA-11 PET/CT as well as conventional imaging. 50 patients were treatment naive, 11 had persistent prostate-specific antigen (PSA) soon after surgery and 60 presented with recurrent PSA following definitive therapy. Changes in TNM classification of malignant tumors (TNM) stage and radiotherapeutic management after ⁶⁸Ga-PSMA-11 imaging were compared to results achieved with conventional imaging. **Results**: In total, a change in TNM stage and radiotherapeutic management was observed for 49 patients (40.5%) and 62 patients (51.2%), respectively. In treatment naive patients, a change in TNM stage and radiotherapeutic plan occurred in 26.0% and 44.0% of the cohort respectively. For patients with PSA persistence or recurrence, TNM and radiotherapeutic management changed in 50.7% and 56.3% respectively. **Conclusion**: ⁶⁸Ga-PSMA-11 PET/CT may shortly become an indispensable tool for detecting prostate cancer lesions in treatment-naïve patients as well as in men with recurrent disease or persistent PSA and seems to be very helpful in personalizing radiotherapeutic management to the individual patients' distribution of disease.

Key words: prostate cancer, PSMA, PET/CT, radiotherapy, staging

INTRODUCTION

Since the development of ⁶⁸Ga-PSMA-11 PET/CT about seven years ago, the ability to accurately stage prostate cancer has improved dramatically. ⁶⁸Ga-PSMA-11 PET/CT enables a highly accurate identification of prostate cancer both within and outside the prostate. With a sensitivity and specificity for prostate cancer of up to 80% and 95% respectively in higher grade disease, the detection of lymph node metastases or bone lesions which would otherwise remain undetected using conventional imaging such as magnetic resonance imaging (MRI) or computed tomography and bone scan is allowed. This is especially true for patients with high risk disease but low prostate-specific antigen (PSA)-levels (*1-4*). Eiber et al. demonstrated detection rates of 72.7% and 57.9% at PSA levels of 0.5-1 and 0.2-0.5 ng/mL for a cohort of 248 patients after surgery (*5*). Detection rates with ⁶⁸Ga-PSMA-11 are superior to other PET probes such as ¹⁸F-Fluorocholine PET/CT, especially in patients with low PSA-values (*6*). Therefore, as it becomes more available, ⁶⁸Ga-PSMA-11 PET/CT is increasingly used to stage high or intermediate risk patients with newly diagnosed or recurrent prostate cancer (*7*).

The role of PSMA imaging in radiation oncology has not been widely discussed. Since histologic confirmation of PSMA imaging results in patients undergoing radiation therapy has trailed behind surgical series in which histologic validation is routine, there has been less data to report. However, data supporting the accuracy of PSMA imaging based on surgery has improved confidence in using the results to guide radiotherapy. Using ⁶⁸Ga-PSMA-11 PET/CT to guide radiation could lead to a more individualized and precise delivery of radiotherapy improving effectiveness while decreasing side effects. While several studies have discussed the impact of ⁶⁸Ga-PSMA-11 PET/CT on prostate cancer management, most of them are focused on recurrent disease (*8-12*) or have included only a small number of patients (*13,14*). Thus, the purpose of this study was to evaluate the role of ⁶⁸Ga-PSMA-11 PET/CT in a large cohort of patients with treatment naïve or recurrent prostate cancer in altering TNM stage and radiotherapy planning.

MATERIALS AND METHODS

Study Design and Patient Characteristics

This retrospective single-center exploratory study was approved by the local institutional review board (S-636/2017) and conducted in agreement with the Declaration of Helsinki and its later amendments. Between July 2011 and August 2017, ⁶⁸Ga-PSMA-11 PET/CT was performed in 2186 patients with prostate carcinoma at initial diagnosis or with PSA persistence/recurrence after primary treatment. Of this cohort, 2065 patients were excluded because no comparable conventional imaging or insufficient clinical data were available for evaluation. In the remaining 121 men conventional imaging for staging was available at a maximum of four months prior to or after ⁶⁸Ga-PSMA-11 PET/CT (median: 28 days, range: 0 - 124 days). In this study, conventional imaging was performed either by MRI or CT according to national guidelines. 110 patients (90.9%) received CT and 44 (36.4%) MRI scan. Bone scan was performed for all symptomatic patients and for men with ⁶⁸Ga-PSMA-11 PET/CT-positive bone lesions without CT-correlate. Eleven patients had only bone scan due to the detection of multiple bone metastases.

⁶⁸Ga-PSMA-11 PET/CT Imaging

53 patients underwent imaging on a Biograph mCT Flow scanner (*Siemens, Erlangen, Germany*) using the following parameters: PET in 3D mode (matrix 200×200) was acquired using FlowMotion. For the emission data, correction for randoms, scatter and decay was performed. Reconstruction of the images was done with an ordered subset expectation maximization algorithm with 2 iterations/21 subsets and Gauss-filtered to a trans axial resolution of 5 mm at full-width at half-maximum. An unenhanced low-dose CT reconstructed to a slice thickness of 5 mm with an increment of 3–4 mm was used for attenuation correction.

The remaining 68 patients underwent imaging on a Biograph 6 PET/CT scanner (*Siemens, Erlangen, Germany*) and examinations were performed using the following parameters: a whole-body PET in 3D mode (matrix 168×168) was acquired. A four-minute acquisition time with a 15.5 cm field of view was used for each bed position (16.2 cm, 4.2 cm overlapping scale). For the emission data, correction for randoms, scatter and

decay was performed. Reconstruction of the images was done with an ordered subset expectation maximization algorithm with 2 iterations/8 subsets and Gauss-filtered to a transaxial resolution of 5 mm at full-width at half-maximum. An unenhanced low-dose CT reconstructed to a slice thickness of 5 mm with an increment of 1.5 mm was used for attenuation correction.

PET imaging was acquired 63 ± 9 min after injection of a median activity of 231 MBq (range: 77 – 361 MBq) ⁶⁸Ga-PSMA-11. Synthesis of ⁶⁸Ga-PSMA-11 was performed according to sterile methods as previously described (*15-17*).

Image Evaluation

Image analysis was performed using Syngo TrueD (*Siemens, Erlangen, Germany*) and an appropriate workstation. ⁶⁸Ga-PSMA-11 PET/CT scans were evaluated retrospectively by two board-certified nuclear medicine physicians and one board-certified radiation oncologist. Any tracer-accumulation that was not related to physiological tracer-uptake with relevant difference to the background, was considered tumor-positive. All findings on ⁶⁸Ga-PSMA-11 PET/CT were interpreted in consensus. Evaluation of conventional imaging was done by two board-certified radiologists in consensus without knowledge of ⁶⁸Ga-PSMA-11 PET/CT results thus establishing the pre-⁶⁸Ga-PSMA-11 PET/CT TNM classification. Lymph nodes were considered tumor-positive on CT and MRI when they had a short-axis diameter ≥8 mm. On MRI, focal contrast-enhancement in a lesion or suggestive findings on diffusion weighted imaging were considered positive for tumor. On bone scan activity not related to degenerative processes was considered tumor-positive. According to clinical routine, physicians were not blinded to patient history. Stage and radiotherapeutic management was documented before and after ⁶⁸Ga-PSMA-11 PET/CT imaging by two nuclear medicine physicians and one radiation oncologist.

Statistical Analysis

For statistical analysis Microsoft Excel for Mac Version 15.41 (Microsoft Corporation, Redmond/ Washington, USA) and SPSS Statistics Version 24 (IBM Corp., Armonk/ NY, USA) were used. Descriptive analyses were performed for patients and their tumor characteristics. Normality was tested using the Kolmogorov-Smirnov-test and mean and standard deviation are given where normality was observed. In all other cases, median and range are used. The correlation of TNM change was determined by using McNemar test. A p-value of < 0.05 was considered statistically significant.

RESULTS

In total, 121 men (median age: 71 years, range: 50 - 84) with prostate carcinoma underwent ⁶⁸Ga-PSMA-11 PET/CT. Fifty patients (41.3%) were scanned at initial diagnosis, 11 patients (9.1%) presented with PSA persistence after surgery and were scanned soon thereafter and 60 men (49.6%) presented with recurrent disease at variable times after initial definitive therapy. Overall, 100 patients (87.6%) had high-risk disease at diagnosis according to D'Amico risk classification (*18*) (**Table 1**).

Conventional imaging (CT or MRI ± bone scan) was performed in all patients. Using conventional imaging, lymph node metastasis was diagnosed in 5 of 50 (10.0%) treatment-naïve patients and 10 of 71 men (13.2%) after definitive treatment. Three patients (6.0%) at initial diagnosis and 23 men (32.4%) with persistence or recurrence had distant metastases (defined as extra-pelvic lymph nodes, bone metastases and/ or soft tissue metastases) on conventional imaging. ⁶⁸Ga-PSMA-11 PET/CT detected lymph node metastases in 39 out of 121 patients (32.2%) including 16.0% of the treatment-naïve group and 43.7% of the persistence/recurrence group. Five patients (10.0%) at initial diagnosis and 36 men (50.7%) with persistence or recurrence had distant metastases on ⁶⁸Ga-PSMA-11 PET/CT imaging. For men with recurrent or persistent PSA, CT and/ or MRI lead to inconclusive findings in 46.5% regarding local relapse, while PSMA-imaging was able to exclude recurrent disease in the prostate bed in 74.6% (Table 2). Overall, ⁶⁸Ga-PSMA-11 PET/CT resulted in a change in TNM staging in 49 patients (40.5%), including 26.0% in the treatment naïve group and 50.7% in the persistence/recurrence group. In addition to the previously described changes in nodal and distant metastases status, T-classification also changed in 14.9% of the entire cohort (treatment-naïve: 8.0%; persistence/recurrence: 19.7%) following ⁶⁸Ga-PSMA-11 PET/CT imaging. By focusing on patients with a TNM change, 11 of 13 (84.6%) treatment naïve patients and 36 of 36 patients (100%) with persistence/recurrence were upstaged after ⁶⁸Ga-PSMA-11 PET/CT. The changes in TNM classification often lead to a different radiotherapeutic approach. Comparing radiotherapeutic management with and without consideration of PSMAdata for all patients, in total, for 62 of 121 men (51.2%) a change occurred after ⁶⁸Ga-PSMA-11 PET/CT (Fig.

In subgroup analyses, there was an alteration in the treatment plan in 44.0% of treatment-naïve patients and 56.3% of patients with persistence/recurrence (**Table 3**). In general terms, ⁶⁸Ga-PSMA-11 PET/CT data resulted in a reduction of the target volume (de-escalation of radiotherapy) in the treatment naïve group (68.2%) while de-escalation occurred in only 2.5% of the persistence/recurrence group. However, ⁶⁸Ga-PSMA-11 PET/CT also resulted in substantive changes in the treatment plan without de-escalation in 10% of treatment naïve patients and 52% of persistence/recurrence patients (**Fig. 1 and Table 4**).

DISCUSSION

Radiation therapy usually benefits from more accurate depiction of the anatomic distribution of disease; for a fixed radiation dose, therapy can be directed to areas of higher risk, sparing noninvolved tissues, thus improving the therapeutic index. Due to its high sensitivity for prostate cancer, ⁶⁸Ga-PSMA-11 PET/CT is very helpful in individualizing treatment plans, thereby overcoming the limitations of existing conventional imaging which is quite insensitive for extraprostatic and recurrent disease. Our study showed that TNM stage changed in 50.7% of patients after ⁶⁸Ga-PSMA-11 PET/CT. This is comparable to the findings of other studies such as a study of 57 patients in which ⁶⁸Ga-PSMA-11 PET/CT resulted in a change in TNM classification in 50.8% (14). Schiller et al. reported that ⁶⁸Ga-PSMA-11 PET/CT changed TNM stage in 45.2% of patients with recurrent disease (19). ⁶⁸Ga-PSMA-11 PET/CT seems to produce TNM changes in fewer treatment naïve patients. In our cohort, 26% of such patients had a TNM stage change after ⁶⁸Ga-PSMA-11 PET/CT. Confirmatory studies in this population are scarce, however, one prospective study of 431 patients, of whom 108 were treatment naïve and the remainder were recurrent, confirmed that the rate of TNM change was much higher in the latter group (20). In contrast, in a smaller study of 15 treatment-naïve prostate cancer patients with comparable patient characteristics to our study, TNM change was reported in 53.3% of treatment naïve patients after ⁶⁸Ga-PSMA-11 PET/CT (13). This wide range of TNM stage alteration in treatment naïve patients may be explained by differences in the aggregate risk of each patient population and by the quality and thoroughness of conventional imaging at different institutions.

The degree to which TNM stage is altered influences the degree of changes in radiotherapeutic management. Lower rates of TNM change have commensurately lower rates of treatment plan changes. In the current study, the radiotherapeutic management was altered in 44.0% of all treatment naïve patients. This contrasts with the results of Dewes et al. (33.3% treatment plan change) and Roach et al. (21% treatment plan change) (*13,20*). In recurrent or persistent disease ⁶⁸Ga-PSMA-11 PET/CT lead to a change in the radiotherapy plan in 56.3% in this study, which is in accordance with the results of a study of 100 men with recurrent disease in which ⁶⁸Ga-PSMA-11 PET/CT resulted in a change of radiotherapy planning in 59.0% of cases (*21*). Schmidt-

Hegemann et al. reported 129 men with recurrent prostate carcinoma scanned with ⁶⁸Ga-PSMA-11 PET/CT and showed changes in the radiotherapy plan in 56.6% (22). These consistent results are also supported by numerous other studies supporting the role of ⁶⁸Ga-PSMA-11 PET/CT in this setting (*11,12,23,24*). ⁶⁸Ga-PSMA-11 PET/CT imaging identification of isolated bone metastases has led to an increase in the use of stereotactic body radiation therapy and the detection of small nodes often leads to increased use of simultaneous integrated boost to affected areas (**Fig. 2**). These treatment modifications can be achieved without increased acute toxicity. For instance, Zschaeck et al. reported a low rate of acute toxicity in 21 men treated with ⁶⁸Ga-PSMA-11 PET/CT-guided radiotherapy. Other studies in patients with recurrent disease confirm these findings and demonstrate superior PSA response rates (*25*). Similarly, for treatment naïve patients ⁶⁸Ga-PSMA-11 PET/CT offers the ability to provide an individualized radiotherapeutic treatment approach which boosts radiation to the dominant intraprostatic lesion, hopefully resulting in better local control and clinical outcome (*26*). Interestingly, in as many as 30% of the patients in our cohort, ⁶⁸Ga-PSMA-11 PET/CT results allowed de-escalation of radiotherapy in treatment naïve patients by, for instance, reducing the target volume (usually in the pelvic nodes) thus reducing side effects, particularly Grade 3+ gastrointestinal adverse events (**Fig. 3**) (*27*).

Although this is one of the largest studies exploring the effect of ⁶⁸Ga-PSMA-11 PET/CT on radiation treatment planning, it has several limitations. The major limitation is the retrospective nature the study which makes it prone to patient selection biases. This can only be overcome by prospective randomized trials in which one arm employs ⁶⁸Ga-PSMA-11 PET/CT to guide therapy and the other arm does not. As PSMA imaging becomes more widely available such trials will likely be conducted. Also, there was a relatively small number of patients with PSA persistence, although persistence may simply be considered as part of the spectrum of recurrent disease and it may not be necessary to subclassify this group.

CONCLUSION

This study confirms that ⁶⁸Ga-PSMA-11 PET/CT is well suited to detect intra- and extraprostatic prostate cancer in men with high risk disease, both at initial diagnosis and at the time of PSA persistence/recurrence. In clinical terms, the use of ⁶⁸Ga-PSMA-11 PET/CT often results in a change in TNM staging and therefore, radiotherapeutic management. Even when considering that the impact might be greater for men with recurrent disease, this innovative new technology can be seen as a first step towards the realization of individualized radiation oncology for patients with advanced prostate carcinoma.

DECLARATION

List of Abbreviations

⁶⁸ Ga-PSMA-11	Gallium-68 (⁶⁸ Ga)-labeled prostate-specific membrane antigen-HBED-CC
PET	positron-emission tomography
СТ	computed tomography
PSA	prostate-specific antigen
TNM	TNM classification of malignant tumors
MRI	magnetic resonance imaging

Conflicts of Interests

No potential conflicts of interest relevant to this article exist.

Acknowledgments

None.

REFERENCES

 Afshar-Oromieh A, Avtzi E, Giesel FL, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. *Eur J Nucl Med Mol Imaging*. 2015;42:197-209.

2. Hijazi S, Meller B, Leitsmann C, et al. Pelvic lymph node dissection for nodal oligometastatic prostate cancer detected by 68Ga-PSMA-positron emission tomography/computerized tomography. *Prostate*. 2015;75:1934-1940.

3. Giesel FL, Sterzing F, Schlemmer HP, et al. Intra-individual comparison of (68)Ga-PSMA-11-PET/CT and multi-parametric MR for imaging of primary prostate cancer. *Eur J Nucl Med Mol Imaging*. 2016;43:1400-1406.

4. Perera M, Papa N, Christidis D, et al. Sensitivity, Specificity, and Predictors of Positive 68Ga-Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer: A Systematic Review and Meta-analysis. *Eur Urol.* 2016;70:926-937.

 Bluemel C, Krebs M, Polat B, et al. 68Ga-PSMA-PET/CT in Patients With Biochemical Prostate Cancer Recurrence and Negative 18F-Choline-PET/CT. *Clin Nucl Med.* 2016;41:515-521.

Eiber M, Maurer T, Souvatzoglou M, et al. Evaluation of Hybrid (6)(8)Ga-PSMA Ligand
 PET/CT in 248 Patients with Biochemical Recurrence After Radical Prostatectomy. *J Nucl Med.* 2015;56:668-674.

7. Calais J, Cao M, Nickols NG. The Utility of PET/CT in the Planning of External Radiation Therapy for Prostate Cancer. *J Nucl Med.* 2018;59:557-567.

8. Bluemel C, Linke F, Herrmann K, et al. Impact of 68Ga-PSMA PET/CT on salvage radiotherapy planning in patients with prostate cancer and persisting PSA values or biochemical relapse after prostatectomy. *EJNMMI Res.* 2016;6:78.

9. Verburg FA, Pfister D, Heidenreich A, et al. Extent of disease in recurrent prostate cancer determined by [(68)Ga]PSMA-HBED-CC PET/CT in relation to PSA levels, PSA doubling time and Gleason score. *Eur J Nucl Med Mol Imaging*. 2016;43:397-403.

10. Calais J, Czernin J, Cao M, et al. (68)Ga-PSMA-11 PET/CT Mapping of Prostate Cancer Biochemical Recurrence After Radical Prostatectomy in 270 Patients with a PSA Level of Less Than 1.0 ng/mL: Impact on Salvage Radiotherapy Planning. *J Nucl Med.* 2018;59:230-237.

11. Afaq A, Alahmed S, Chen SH, et al. Impact of (68)Ga-Prostate-Specific Membrane Antigen PET/CT on Prostate Cancer Management. *J Nucl Med.* 2018;59:89-92.

12. Grubmuller B, Baltzer P, D'Andrea D, et al. (68)Ga-PSMA 11 ligand PET imaging in patients with biochemical recurrence after radical prostatectomy - diagnostic performance and impact on therapeutic decision-making. *Eur J Nucl Med Mol Imaging*. 2018;45:235-242.

13. Dewes S, Schiller K, Sauter K, et al. Integration of (68)Ga-PSMA-PET imaging in planning of

primary definitive radiotherapy in prostate cancer: a retrospective study. Radiat Oncol. 2016;11:73.

14. Sterzing F, Kratochwil C, Fiedler H, et al. (68)Ga-PSMA-11 PET/CT: a new technique with high potential for the radiotherapeutic management of prostate cancer patients. *Eur J Nucl Med Mol Imaging*. 2016;43:34-41.

15. Eder M, Schafer M, Bauder-Wust U, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. *Bioconjug Chem.* 2012;23:688-697.

16. Schafer M, Bauder-Wust U, Leotta K, et al. A dimerized urea-based inhibitor of the prostatespecific membrane antigen for 68Ga-PET imaging of prostate cancer. *EJNMMI Res.* 2012;2:23.

17. Eder M, Neels O, Muller M, et al. Novel Preclinical and Radiopharmaceutical Aspects of
[68Ga]Ga-PSMA-HBED-CC: A New PET Tracer for Imaging of Prostate Cancer. *Pharmaceuticals*(*Basel*). 2014;7:779-796.

18. D'Amico AV, Whittington R, Malkowicz SB, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. *JAMA*. 1998;280:969-974.

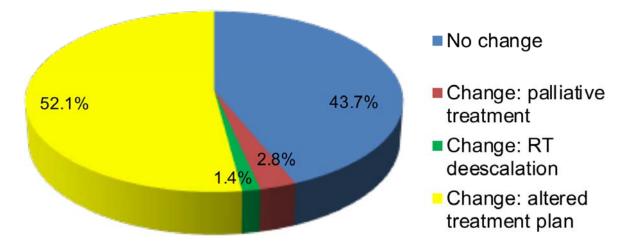
19. Schiller K, Sauter K, Dewes S, et al. Patterns of failure after radical prostatectomy in prostate cancer - implications for radiation therapy planning after (68)Ga-PSMA-PET imaging. *Eur J Nucl Med Mol Imaging*. 2017;44:1656-1662.

20. Roach PJ, Francis R, Emmett L, et al. The impact of 68Ga-PSMA PET/CT on management intent in prostate cancer: results of an Australian prospective multicenter study. *J Nucl Med.* 2017.

21. Habl G, Sauter K, Schiller K, et al. 68 Ga-PSMA-PET for radiation treatment planning in prostate cancer recurrences after surgery: Individualized medicine or new standard in salvage treatment. *Prostate*. 2017;77:920-927.

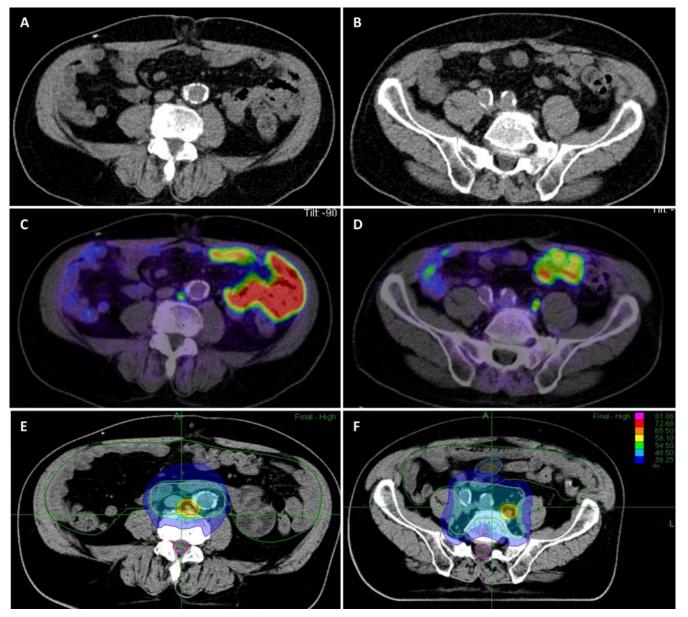
22. Schmidt-Hegemann NS, Fendler WP, Buchner A, et al. Detection level and pattern of positive lesions using PSMA PET/CT for staging prior to radiation therapy. *Radiat Oncol.* 2017;12:176.

23. Gupta SK, Watson T, Denham J, et al. Prostate-Specific Membrane Antigen Positron Emission Tomography-Computed Tomography for Prostate Cancer: Distribution of Disease and Implications for Radiation Therapy Planning. *Int J Radiat Oncol Biol Phys.* 2017;99:701-709.


24. Kabasakal L, Demirci E, Nematyazar J, et al. The role of PSMA PET/CT imaging in restaging of prostate cancer patients with low prostate-specific antigen levels. *Nucl Med Commun.* 2017;38:149-155.

25. Zschaeck S, Wust P, Beck M, et al. Intermediate-term outcome after PSMA-PET guided highdose radiotherapy of recurrent high-risk prostate cancer patients. *Radiat Oncol.* 2017;12:140.

26. Koerber SA, Utzinger MT, Kratochwil C, et al. (68)Ga-PSMA-11 PET/CT in Newly Diagnosed Carcinoma of the Prostate: Correlation of Intraprostatic PSMA Uptake with Several Clinical Parameters. *J Nucl Med.* 2017;58:1943-1948.


27. Roach M, 3rd, DeSilvio M, Valicenti R, et al. Whole-pelvis, "mini-pelvis," or prostate-only external beam radiotherapy after neoadjuvant and concurrent hormonal therapy in patients treated in the Radiation Therapy Oncology Group 9413 trial. *Int J Radiat Oncol Biol Phys.* 2006;66:647-653.

Initial diagnosis • No change • Change: palliative treatment • Change: RT deescalation • Change: altered treatment plan

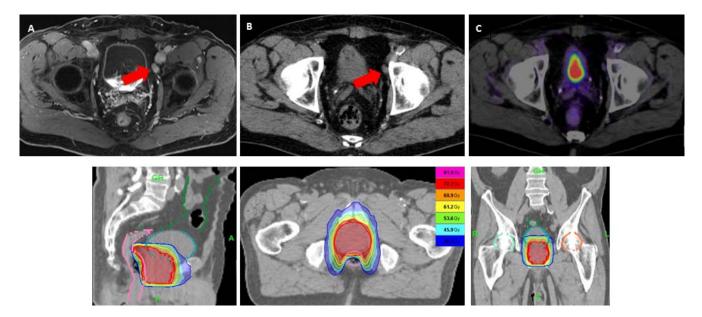


FIGURE 1. Impact of ⁶⁸Ga-PSMA-11 PET/CT imaging on radiotherapeutic management. (RT = radiation therapy)

FIGURE 2. ⁶⁸Ga-PSMA-11 PET/CT (C and D) guided radiotherapy (E and F) with SIB of two lymph node metastases for a high-risk prostate cancer patient with negative CT-scan (A and B).

FIGURE 3. ⁶⁸Ga-PSMA-11 PET/CT guided radiotherapy de-escalated after ⁶⁸Ga-PSMA-11 PET/CT. Whereas MRI and CT demonstrated suspicious nodes (A and B), ⁶⁸Ga-PSMA-11 PET/CT showed no increased activity in the nodes (C): Thus, treatment could be planned for the prostate itself with reduced doses to the pelvic side walls.

TABLES

TABLE 1: Patient characteristics.

(iPSA = initial prostate-specific antigen serum level; ADT = androgen deprivation therapy; RP = radical prostatectomy; RT =

radiotherapy)

Characteristic	All patients	Initial diagnosis	PSA persistence after surgery	PSA recurrence	
Patient number	121	50	11	60	
Age [years], median (range)	71 (50-84)	72 (50-84)	67 (53-75)	69 (50-84)	
Gleason score, n (%)					
≤ 6	6 (5.0%)	4 (8.0%)	-	2 (3.3%)	
7	59 (48.8%)	18 (36.0%)	2 (18.2%)	39 (65.0%)	
≥ 8	55 (45.5%)	28 (56.0%)	9 (81.8%)	18 (30.0%)	
unknown	1 (0.8%)	-	-	1 (1.7%)	
iPSA [ng/mL], median (range)	9.95 (1.40-520.00)	11.9 (3.50-313.13)	18.58 (5.20-87.55)	9.14 (1.40-520.00)	
Nadir PSA [ng/mL]	0.09 (<0.01-9.70)	-	1.36 (0.53-9.70)	0.07 (<0.01-3.00)	
PSA at PET [ng/mL] Risk-group according to D'Amico, n (%)	3.06 (0.03-41.24)	9.76 (0.06-37.10)	1.27 (0.03-9.70)	1.10 (0.10-41-24)	
Low	3 (2.5%)	3 (6.0%)	-		
Intermediate	12 (9.9%)	9 (18.0%)	-	3 (5.0%)	
High	106 (87.6%)	38 (76.0%)	11 (100.0%)	57 (95.0%)	
Ongoing ADT, n (%)					
Yes	26 (21.5%)	12 (24.0%)	5 (45.5%)	9 (15.0%)	
No	95 (78.5%)	38 (76.0%)	6 (54.5%)	51 (85.0%)	
Prior RP only	34 (28.1%)	-	11 (100.0%)	23 (38.3%)	
Prior RT only	5 (4.1%)	-	-	5 (8.3%)	
Prior RP and RT	32 (26.4%)	-	-	32 (53.3%)	
Surgery margin	. ,				
R0	40 (33.1%)	-	2 (18.2%)	38 (69.1%)	
R1	24 (19.8%)	-	9 (81.8%)	15 (27.3%)	
Rx	2 (1.7%)	-	-	2 (3.6%)	

TABLE 2: Comparison of conventional and ⁶⁸Ga-PSMA-11 PET/CT imaging.

*some patients with multiple forms of lymphatic/ distant spread

[†]also, some patients with change in T-staging

Characteristic		Conventional imaging	⁶⁸ Ga-PSMA-11 PET/CT	Change	
Local relapse, n (%)					
PSA recurrence/					
persistence	Total			30/71 (42.3%)	p < 0.001
	rcTx	33/71 (46.5%)	8/71 (11.3%)		
	rcT0	33/71 (46.5%)	53/71 (74.6%)		
	rcT+	5/71 (7.0%)	10/71 (14.1%)		
Lymph node spread, n (%)				· · · · · · · · · · · · · · · · · · ·	
All patients		15/121 (12.4%)	39/121 (32.2%)	25/121 (20.7%) [†]	p < 0.001
Initial diagnosis	· · · · ·	5/50 (10.0%)	8/50 (16.0%)	5/50 (10.0%)	
	Intern iliac vessels	-	2/50 (4.0%)*		
	Extern iliac vessels	5/50 (10.0%)*	5/50 (10.0%)*		
	Presacral	1/50 (2.0%)*	2/50 (4.0%)*		
	Obturatoric vessels Other	-	2/50 (4.0%)*		
PSA recurrence/	Other	-	1/50 (2.0%)*		
persistence		10/71 (14.1%)	31/71 (43.7%)	20/71 (28.2%)	
persistence	Intern iliac vessels	3/71 (4.2%)*	10/71 (14.1%)*	20//1 (28.278)	
	Extern iliac vessels	3/71 (4.2%)*	13/71 (18.3%)*		
	Presacral	3/71 (4.2%)*	12/71 (16.9%)*		
	Obturatoric vessels	5//1 (4.270)	2/71 (2.8%)*		
	Other	2/71 (2.8%)*	8/71 (11.3%)*		
Distant metastases, n (%)					
All patients		26/121 (21.5%)	41/121 (33.9%)	23/121 (19.0%) [†]	p < 0.001
Initial diagnosis		3/50 (6.0%)	5/50 (10.0%)	7/50 (14.0%)	1
8	Lymph nodes	2/50 (4.0%)	3/50 (6.0%)*		
	5 1	1/50 (2.0%)	3/50 (6.0%)*		
	Bone	1/50 (2.070)	5/50 (0.070)		
	Other	-	-		
PSA recurrence/		22/51/22 10/2			
persistence		23/71 (32.4%)	36/71 (50.7%)	16/71 (22.5%)	
	Lymph nodes	2/71 (2.8%)	8/71 (11.3%)*		
	Bone	18/71 (25.4%)	27/71 (38.0%)*		
	Other	3/71 (4.2%)	3/71 (4.2%)*		

Characteristic	All patients	Initial diagnosis	PSA persistence/ recurrence	
Individual RT-concept, n (%)		5/22 (22.7%)	37/40 (92.5%)	
SIB lymph node	26/62 (41.9%)	4/22 (18.2%)	22/40(55.0%)	
SBRT lymph node	5/62 (8.1%)	1/22 (4.6%)	4/40 (10.0%)	
SBRT bone lesion	6/62 (9.7%)	-	6/40 (15.0%)	
Other	5/62 (8.1%)	-	5/40 (12.5%)	
RT-de-escalation, n (%)	16/62 (25.8%)	15/22 (68.2%)	1/40 (2.5%)	
Palliative treatment, n (%)	4/62 (6.5%)	2/22(9.1%)	2/40 (5.0%)	

(RT = radiotherapy; SIB = simultaneous integrated boost; SBRT = stereotactic body irradiation)

TABLE 4: Changes in radiotherapeutic management after additional ⁶⁸Ga-PSMA-11 PET/CT imaging in detail

[n, (%)].

(RT = radiotherapy; pLN = pelvic lymph nodes; SIB = simultaneous integrated boost; SBRT = stereotactic body radiotherapy, ADT = androgen deprivation therapy; BSC = best supportive care)

		RT after ⁶⁸ Ga-PSMA-11 PET/CT imaging							
		RT prostate only	RT prostate and pLN	RT prostate, pLN and SIB	SBRT only	ADT	Other, individual RT concept	RT pLN and SIB	Systemic chemo- therapy
	RT prostate only	Х	-	4/62 (6.5%)	2/62 (3.2%)	1/62 (1.6%)	1/62 (1.6%)	-	-
	RT prostate and pLN	15/62 (24.2%)	х	8/62 (12.9%)	-	-	1/62 (1.6%)	-	-
Planned RT prior to ⁶⁸ Ga- PSMA-11 PET/CT imaging	RT prostate, pLN and SIB	-	1/62 (1.6%)	x	1/62 (1.6%)	2/62 (3.2%)	3/62 (4.8%)	-	-
	SBRT only	-	-	-	X	-	3/62 (4.8%)	1/62 (1.6%)	1/62 (1.6%)
	ADT	-	-	-	5/62 (8.1%)	х	4/62 (6.5%)	6/62 (9.7%)	-
	Individual RT concept	-	-	-	-	-	x	2/62 (3.2%)	-
	BSC	_	-	-	1/62 (1.6%)	-	-	-	-