Journal of Nuclear Medicine, published on October 19, 2017 as doi:10.2967/jnumed.117.198440

1	Data driven prioritization and review of targets for molecular based
2	theranostic approaches in pancreatic cancer
3	
4	Authors: Marjory Koller ^{1*} , Elmire Hartmans ^{2*,} Derk Jan A de Groot ³ , Xiao Juan Zhao ³ ,
5	Gooitzen M van Dam ⁴ , Wouter B Nagengast ^{2*†} , Rudolf S N Fehrmann ^{3*†}
6	*Contributed equally; [†] Corresponding authors
7	
8	Affiliations:
9	1. Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, the
10	Netherlands;
11	2. Department of Gastroenterology and Hepatology, University of Groningen, University Medical Centre
12	Groningen, Groningen, the Netherlands;
13	3. Department of Medical Oncology, University of Groningen, University Medical Centre Groningen,
14	Groningen, the Netherlands;
15	4. Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of
16	Groningen, University Medical Centre Groningen, Groningen, the Netherlands;
17	
18	Corresponding author: Wouter B Nagengast ² and Rudolf S N Fehrmann ³ , University Medical Centre
19	Groningen (UMCG), Hanzeplein 1, PO-box 30 001, 9700 RB Groningen, The Netherlands, phone number:
20	+3150 3612620 / Fax number: +3150 3619306, w.b.nagengast@umcg.nl / r.s.n.fehrmann@umcg.nl
21	
22	Word count: 4000
23	
24	Running title: Theranostic targets in pancreatic cancer
25	
26	

27 ABSTRACT

Molecular targeted therapeutical and imaging strategies directed at aberrant signalingpathways in pancreatic tumor cells may improve the poor outcome of pancreatic ductal adenocarcinoma (PDA). Therefore, relevant molecular targets need to be identified.

Methods: We collected publicly available expression profiles of patient derived normal pancreatic tissue (n=77) and PDA samples (n=103). Functional Genomic mRNA (FGmRNA) profiling was applied to predict target upregulation on the protein level. We prioritized these targets based on current status of (pre)-clinical therapeutical and imaging evaluation in PDA.

Results: We identified 213 significantly upregulated proteins in PDA compared to normal pancreatic tissue. We prioritized mucin-1 (MUC1), mesothelin (MSLN), gammaglutamyltransferase 5 (GGT5) and cathepsin-E (CTSE) as the most interesting targets, since studies already demonstrated their potential for both therapeutic and imaging strategies in literature.

41 **Conclusion:** This study can facilitate clinicians and drug developers in deciding which 42 theranostic targets should be taken for further clinical evaluation in PDA.

43

Keywords: Pancreatic ductal adenocarcinoma (PDA), pancreatic cancer, theranostic
 approach, targeted molecular therapy, targeted molecular imaging, genetic profiling,
 biomarker

47

49 **INTRODUCTION**

50 PDA is the fourth leading cause of cancer-related mortality worldwide(1). Despite 51 extensive surgery and improved chemotherapeutic regimens, the prognosis of PDA 52 remains poor. Since symptoms often occur late in the disease process, the majority of 53 patients present with locally advanced or even metastatic disease, resulting in a 5 years 54 overall survival rate of only $\sim 8\%$ (1). Solely patients with local disease are candidate for 55 curative surgical treatment. Despite the curative intent, the 5 years survival in the 56 surgical treated patients is still as low as 20% (2). This poor survival is partially caused 57 by the rapid development of metastases shortly after surgery. Most likely, this is due to 58 microscopic dissemination that was already present at the time of surgery. Once distant 59 metastases are present, the best available palliative chemotherapy regimen with the 60 best overall survival rate is a combination of fluorouracil, leucovorin, irinotecan and 61 oxaliplatin. However, the overall survival benefit is modest and the toxicity is significant 62 (3).

63 In contrast to the traditional working mechanism of chemotherapy, which has a 64 cytotoxic effect on all rapidly dividing cells, molecular targeted therapies more selectively 65 target aberrant cell signaling-pathways that drive tumor growth. Therefore, in general 66 molecular targeted therapies are expected to be more tumor specific, which could 67 enhance therapy efficacy and decrease side-effects. However, patients that are likely to benefit from a particular targeted therapy have to be selected carefully, and target 68 69 overexpression needs to be demonstrated. To date, target expression is determined by 70 immunohistochemistry on tissue biopsies which are prone to be biased by sampling 71 error due to heterogeneity of tumors and metastases. Theranostics which integrate 72 diagnostics and therapeutics by fluorescently or radioactively labelling of drugs, can

provide insight in pharmacokinetics, tumor uptake and bio distribution of drugs which
 might be used for clinical decision making and individualized management of disease.

To enable a theranostic approach in PDA patients, there is an unmet need for identification and prioritization of relevant targets. To this end, we used the recently developed method of FGmRNA-profiling to predict overexpression of target antigens on the protein level (*4*). FGmRNA-profiling is capable to correct a gene expression profile of an individual tumor for physiological and experimental factors, which are considered not to be relevant for the observed tumor phenotype and characteristics.

The aim of this study was to identify potential target antigens in PDA using FGmRNA-profiling that will facilitate clinicians and drug developers in deciding which theranostic targets should be taken for further evaluation in PDA. Subsequently, an extensive literature search was performed to prioritize these potential target antigens for their utilization in a theranostic approach in the near-future.

86

87 MATERIALS AND METHODS

88 FGmRNA-profiling: Identification of Upregulated Genes in PDA

Data acquisition. We collected publicly available raw microarray expression data from the Gene Expression Omnibus for the affymetrix HG-U133 plus 2.0 and the HG-U133A platforms (*5*). We used automatic filtering on relevant keywords with subsequent manual curation to include patient derived PDA samples and normal pancreatic tissue. Cell line sample were deemed irrelevant and excluded for further analysis.

94 Sample processing. Non-corrupted raw data files were downloaded from the Gene 95 Expression Omnibus for the selected samples. After removal of duplicate files, pre-96 processing and aggregation of raw data files was performed with Affymetrix Power Tools 97 version 1.15.2, using apt-probe set-summarize and applying the robust multi-array
98 average algorithm. Sample quality control was performed using principal component
99 analysis as previously described (*6*).

100 FGmRNA-profiling. For a detailed description of FGmRNA-profiling we refer to 101 Fehrmann et al. (4). In short, we analyzed 77,840 expression profiles of publicly 102 available samples with principal component analysis and found that a limited number of 103 'Transcriptional Components' capture the major regulators of the mRNA transcriptome. 104 Subsequently, we identified a subset of 'Transcriptional Components' that described 105 non-genetic regulatory factors. We used these non-genetic Transcriptional Components 106 as covariates to correct microarray expression data and observed that the residual 107 expression signal (*i.e.* FGmRNA-profile) captures the downstream consequences of 108 genomic alterations on gene expression levels.

Class comparison. We performed a genome-wide class comparison analysis (Welch's T-test) between FGmRNA-profiles of normal pancreatic tissue and PDA to identify genes with upregulated FGmRNA-expression, which we considered a proxy for protein expression. To correct for multiple testing, we performed this analysis within a multivariate permutation test (1,000 permutations) with a false discovery rate of 1% and a confidence level of 99%. This will result in a list of significant upregulated genes, which contains (with a confidence level of 99%) no more than 1% false positives.

116 Literature search on protein expression. To compare targets identified with the class 117 comparison with known protein expression in PDA, we performed a literature search. 118 PubMed was searched for articles published in English from conception until February 119 2017. The following search terms were used: HUGO gene symbol of the target under 120 investigation in combination with 'pancreatic cancer'. 'expression' and *'immunohistochemistry'*. The cellular location and function of the protein product of thegene was explored at http://www.genecards.org.

123

Target Prioritization for Theranostic Approaches in PDA based on FGmRNA profiling

The prioritization process consisted of 1) consulting the drug-gene interaction database to select targets with a drug-gene interaction, 2) current status of (pre)clinical evaluation of therapeutic drugs directed at the protein, 3) current status of (pre)clinical evaluation of imaging tracers directed at the protein.

Consulting the Drug-Gene Interaction Database (DGIdb) to identify drug-gene interactions. The DGIdb, accessible at dgibd.genome.wustl.edu, integrates data from 13 resources that includes disease-relevant human genes, drugs, drug-gene interactions and potential druggability (7). Identified targets in the class comparison were explored in the DGIdb to get insight into drug-gene interactions to enable selection of targets for which a drug is available, or targets that are potential according to their membership in gene categories associated with druggability.

137 Current status of therapeutic efficacy at PubMed and Clinicaltrials.gov. Targets for 138 which a drug-gene interaction was reported by the DGIdb were reviewed in literature to 139 determine the current status of drugs targeting these genes in clinical translation. 1) we 140 explored the efficacy of drugs targeting the protein in pancreatic cancer. 2) we explored 141 the efficacy of drugs targeting the protein in patients with other cancer types, because 142 these therapies might be relatively easily translated to pancreatic cancer patients 3) we 143 explored the knowledge in preclinical studies. PubMed was searched for articles 144 published in English from conception until February 2017 and clinicaltrials gov was

explored for current (ongoing) clinical trials. PubMed was searched using the combination of **1**) HUGO gene symbol of the target under investigation; *'pancreatic* AND OR *cancer'*; and *'therapy'* or **2**) HUGO gene symbol; *'pancreatic* AND OR *cancer'*.

Current status of evaluation of imaging targets at PubMed and Clinicaltrials.gov. All targets with a drug-gene interaction were reviewed in literature to prioritize targets that are the furthest in clinical translation and have proved to be a suitable imaging target. An additional PubMed search was executed for articles published in English form conception until February 2017 to determine if the downstream proteins of these genes are suitable as molecular imaging targets. We used the following search combinations: 'HUGO gene symbol'; '*pancreatic* AND OR *cancer*', and '*imaging*'.

155

156 **RESULTS**

157 FGmRNA-profiling: Identification of Upregulated Genes in PDA

Supplemental Table 1 shows the datasets that were obtained from the Gene Expression Omnibus. In total, 180 pancreatic samples were identified, which are derived from 16 individual experiments; these samples consisted of 103 PDA and 77 normal pancreatic samples. Class comparison analysis, with multivariate permutation testing (false discovery rate 1%, confidence level 99%, 1 000 permutations), resulted in a set of 213 unique genes with significant FGmRNA-overexpression in PDA. Supplemental Table 2 contains the class comparison for all genes.

165

Literature Based Protein Expression Data for the Identified Top 50 targets
 identified with FGmRNA-profiling

168 Based on published immunohistochemistry results of the top 50 upregulated PDA 169 genes as described in Supplemental Table 3, 17/50 genes have a known downstream 170 human PDA protein overexpression in samples. The downstream protein 171 overexpression of 5/50 genes is described in other solid cancer types and therefore 172 these genes could be of interest for PDA. For 27/50 upregulated genes in PDA, no data 173 is available on protein expression in human cancers and therefore might be interesting 174 for preclinical validation in the near future.

175

176 **Prioritization of Potential Theranostic Targets in PDA**

177 Figure 1 shows the complete prioritization process. 94/213 upregulated genes in PDA 178 have a known drug-gene interaction according to DGIdb. Downstream proteins of 41/94 179 genes are currently investigated as a drug target for cancer treatment in clinical trials or 180 in preclinical studies (Fig. 2). 11/41 genes are investigated as antineoplastic drug targets 181 in clinical pancreatic cancer trials; 3/41 genes are investigated as antineoplastic drug 182 targets in clinical trials involving other solid cancer types, 12/41 genes are evaluated as 183 antineoplastic drug targets in preclinical in vitro and in vivo cancer-models and for 15/41 184 genes no antineoplastic drugs are currently available that target the downstream 185 proteins, but literature indicated involvement cancer development. Besides, downstream 186 proteins of 7/41 genes are currently described in the context of molecular imaging. We 187 are highlighting the studies evaluating the prioritized targets for molecular imaging 188 purposes in pancreatic cancer or in advanced clinical translation (Supplemental Table 189 4); a summary of the therapeutic studies can be found in Supplemental Table 5.

Thymocyte differentiation antigen 1 (Thy1) – rank 1. Molecular ultrasound imaging
 using microbubbles targeting the membrane protein Thy1 detected tumors in transgenic

PDA mouse model with a diameter of only several millimeters in size could be visualized
with a 3-fold higher signal compared to normal pancreas tissue (8).

194 *CTSE – rank 8.* Ritonavir tetramethyl-BODIPY (RIT-TMB) is an optical imaging agent 195 based on a FDA-approved protease inhibitor. RIT-TMB showed CTSE specific imaging 196 in a PDA cell line (*9*). Another CTSE-activatable fluorescence imaging probe 197 demonstrated specific detection of CTSE activity in a PDA mouse model, in which the 198 fluorescence signal in the tumor was 3-fold higher than in background tissue (*10*).

GGT5 - rank 10. The cell membrane bound enzyme GGT5 can be targeted by optical imaging probe γ Glu-HMRG, which is only fluorescent after cleavage by GGT5 (11). γ Glu-HMRG was topical applied on surgical breast cancer specimen to assess the surgical margin. Tumors even smaller than 1 mm could be discriminated from normal mammary gland tissue (12). In mouse models for colon cancer and disseminated peritoneal ovarian cancer, tumors could be clearly visualized 1 min after topical administration (11,13).

206 *MUC1 – rank 41*. The downstream cell membrane protein of *MUC1* is reported to be 207 overexpressed in 96% of the PDA cases. The ¹¹¹Indium labelled monoclonal antibody 208 PAM4 targeting MUC1 is suitable for single-photon emission tomography. In a clinical 209 phase I trial ¹¹¹In-PAM4 showed specific uptake of pancreatic cancer lesions (14). More 210 recently, the MUC1-specific optical imaging tracer Ab-FL-Cy5.5, which is a dual labelled 211 MUC1-targeting antibody conjugated to both a far-red dye and a green dye, 212 demonstrated specific uptake and *in vivo* visualization of ovarian cancer xenografts (15). 213 The MUC1 aptamer-based tracer APT-PEG-MPA showed that tracer uptake in the tumor 214 correlated well with MUC1 expression levels in MUC1-overexpressing hepatocellular 215 carcinoma and lung carcinoma cells in a xenograft mouse model (16).

216 MSLN – rank 110. The overexpression of the cell membrane protein MSLN has been 217 described in up to 86-100% of PDA cases (17,18). In a clinical phase I imaging trial, the 218 ⁸⁹zirconium labelled MSLN-antibody ⁸⁹Zr-MMOT0530A was administered in 11 219 metastatic cancer patients, seven with PDA and four with ovarian cancer. In all patients 220 at least one tumor lesion could be visualized (19). Beside this PET-tracer, a MSLN 221 specific tracer have been developed for single-photon emission tomography. ¹¹¹Indium 222 labelled amatuximab was investigated in six patients, of which two with PDA. In all 223 patients, at least one tumor lesion could be discriminated from its reference background 224 (20). Furthermore, the anti-MUC1 optical imaging tracer CT2, demonstrated selective targeting of pancreatic cancer in vitro and in a pancreatic cancer orthotopic xenograft 225 226 model, tumors smaller than 5mm could be detected (21).

227

228 **DISCUSSION**

In this study, we were able to use FGmRNA-profiling on a substantial set of normal pancreatic tissue and PDA tissue to predict protein overexpression for a large set of targets and identified 213 upregulated targets in PDA, containing 41 currently druggable targets with the potential for a theranostic approach in PDA patients.

233 Selection of suitable targets for imaging and/or therapy is complex. The ideal 234 target is highly overexpressed at the cell membrane of tumor cells and has a very limited 235 expression at the cell membrane of normal cells. Immunohistochemistry is a widely-used 236 method for the determination of protein expression at a cellular level. However, it is time 237 consuming and it demands many resources including access to formalin-fixed and 238 paraffin-embedded tissue samples of interest. Moreover, differences in execution of the 239 staining protocol and scoring methods makes it difficult to compare

240 immunohistochemistry results from different studies. In contrary, FGmRNA profiling 241 enabled us to efficiently analyze and directly compare many genes as the predicted 242 overexpression is determined for each gene with the same methodology including a 243 large set of normal pancreatic tissue samples as a reference to determine the threshold 244 for 'overexpression'. Therefore, it has the advantage over immunohistochemistry for the 245 first selection of new therapeutical and imaging targets. FGmRNA-profiling previously 246 demonstrated it can guide clinicians and researches to select targets that needs further 247 preclinical validation, enabling a more efficient use of limited resources (18,22).

248 Theranostic drugs might be used for clinical decision making by enabling 249 visualization of molecular characteristics of the tumor to stratify patients for the most 250 optimal targeted therapy. Besides, theranostics can aid in monitoring treatment effects 251 helping clinicians to adjust therapy dose or to switch to another targeted drug. Based on 252 the current status of (pre)clinical evaluation of therapeutical drugs and imaging tracers 253 directed at downstream proteins of genes identified with FGmRNA-profiling, we 254 prioritized MUC1, MLSN, GGT5 and CTSE as current most potential theranostic targets. 255 These targets have already shown great potential to serve as a target for both therapy 256 and imaging in literature, indicating that these drugs have already made progress in the 257 clinical translation process and are potential for clinical translation in pancreatic cancer 258 patients on the short term. Other targets (e.g. THY1) first need to be validated as 259 suitable target, either therapeutical drugs and/or imaging tracers needs to be designed 260 and subsequently being investigated in preclinical studies before theranostic agents 261 targeting these proteins can be investigated in clinical trials.

262 Beside theranostic targets, FGmRNA-profiling can guide researchers and 263 clinicians in selecting targets for molecular imaging probes. After prioritization, only

264 seven out of the 41 currently druggable targets are described in the context of molecular 265 imaging, indicating the great potential of our results for development of favorable 266 molecular imaging probes. In PDA, molecular imaging might enhance disease staging 267 by enabling visualization of small PDA lesions, possibly leading to optimized selection of 268 patients that will benefit from curative surgery. Clinical trials already demonstrated the 269 feasibility of molecular fluorescence imaging in identifying micro metastases in 270 peritoneal metastasized ovarian- and colon cancer patients by targeting the folate alpha 271 receptor and vascular endothelial growth factor A (23-25). Besides, molecular imaging 272 can be used to better assess the extent of the primary tumor during PDA surgery and 273 evaluate essential resection planes. In PDA patients, two clinical trials are currently 274 registered that evaluate intraoperative molecular fluorescence imaging: targeting 275 vascular endothelial growth factor A (NCT02743975) and the epidermal growth factor 276 receptor (NCT02736578). FGmRNA-profiling predicted no overexpression of these 277 proteins which might negatively influence the likelihood of success compared to targets 278 highly rated by FGmRNA-profiling. However, beside alteration in gene expression levels, 279 mutation occurring in genes can result in different activation or functionality of the gene. 280 This phenomenon is not captured by FGmRNA-profiling, but could be relevant for certain 281 tumor phenotypes observed in PDA. For newly identified targets that are not highly rated 282 in the FGmRNA profiling we advise solid validation in ex vivo models and preclinical 283 models to confirm the validity of the target.

Furthermore, by fluorescently or radioactively labelling of therapeutic drugs, molecular imaging can provide insight in pharmacokinetics, tumor uptake and biodistribution which harbors the potential for drug development to select probes with great therapeutic potential and to support optimal dosing and determine uptake in critical

organs to anticipate toxicity. This is especially relevant in PDA since a desmoplastic reaction surrounding the tumor increases interstitial fluid pressure impairing drug delivery. Therefore, molecular imaging might help to determine which probes might be successfully translated into theranostic agents.

In conclusion, this study provides a data driven prioritization and overview of imaging and therapeutic targets. The presented data can facilitate clinicians, researchers and drug developers in deciding which therapeutical or imaging targets should be taken for further clinical evaluation in PDA. This might help to improve disease outcome of PDA patients in the short term.

Financial disclosure

This work was financially supported by grants from the Dutch Cancer Society / Alpe d'HuZes (RUG 2013-5960 to R.S.N.F and RUG 2012-5416 to W.B.N.), the Dutch Organization for Scientific Research (NWO-VENI grant 916-16025), a Mandema Stipendium to R.S.N.F and W.B.N, MK and GMvD reports grants from the FP-7 Framework Programme BetaCure grant no. 602812, during the study

303 REFERENCES

- 304 1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67:7–30.
- 305 Oettle H, Neuhaus P, Hochhaus A, et al. Adjuvant chemotherapy with gemcitabine and 2. 306 long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 307 randomized trial. JAMA; 2013;310:1473-1481.
- 308 3. Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic 309 pancreatic cancer. N Engl J Med. 2011;364:1817-1825.
- 310 4. Fehrmann RSN, Karjalainen JM, Krajewska M, et al. Gene expression analysis identifies 311

global gene dosage sensitivity in cancer. Nat Genet. 2015;47:115-25.

- 312 5. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data 313 sets--update. Nucleic Acids Res. 2013;41:991-995.
- 314 6. Crijns APG, Fehrmann RSN, de Jong S, et al. Survival-related profile, pathways, and 315 transcription factors in ovarian cancer. PLoS Med. 3;6:e24.
- 316 7. Griffith M, Griffith OL, Coffman AC, et al. DGldb: mining the druggable genome. Nature 317 Methods. 2013;10(12):1209–1210.
- 318 8. Foygel K, Wang H, Machtaler S, et al. Detection of pancreatic ductal adenocarcinoma in 319 mice by ultrasound imaging of thymocyte differentiation antigen 1. Gastroenterology. 320 2013;14:885-894
- 321 9. Keliher EJ, Reiner T, Earley S, et al. Targeting cathepsin E in pancreatic cancer by a 322 small molecule allows in vivo detection. Neoplasia. 2013;15:684-693.
- 323 10. Abd-Elgaliel WR, Cruz-Monserrate Z, Logsdon CD, Tung C-H. Molecular imaging of

- 324 Cathepsin E-positive tumors in mice using a novel protease-activatable fluorescent probe.
 325 *Molecular BioSystems*. 2011;7:3207–3213.
- 326 11. Urano Y, Sakabe M, Kosaka N, et al. Rapid cancer detection by topically spraying a γ 327 glutamyltranspeptidase-activated fluorescent probe. *Sci Transl Med.* 2011;3:110ra119.
- Ueo H, Shinden Y, Tobo T, et al. Rapid intraoperative visualization of breast lesions with
 γ-glutamyl hydroxymethyl rhodamine green. *Sci Rep.* 2015;5:12080.
- Mitsunaga M, Kosaka N, Choyke PL, et al. Fluorescence endoscopic detection of murine
 colitis-associated colon cancer by topically applied enzymatically rapid-activatable probe.
 Gut. 2013;62:1179–1186.
- Gold DV, Cardillo T, Goldenberg DM, Sharkey RM. Localization of pancreatic cancer with
 radiolabeled monoclonal antibody PAM4. *Crit Rev Oncol Hematol.* 2001;39:147–154.
- 335 15. Zhang Q, Wang F, Wu Y-S, et al. Dual-color labeled anti-mucin 1 antibody for imaging of
 336 ovarian cancer: A preliminary animal study. *Oncol Lett.* 2015;9:1231–1235.
- 337 16. Chen H, Zhao J, Zhang M, Yang H, Ma Y, Gu Y. MUC1 aptamer-based near-infrared
 338 fluorescence probes for tumor imaging. *Mol Imaging Biol.* 2015;17:38–48.
- Hassan R, Laszik ZG, Lerner M, Raffeld M, Postier R, Brackett D. Mesothelin is
 overexpressed in pancreaticobiliary adenocarcinomas but not in normal pancreas and
 chronic pancreatitis. *Am J Clin Pathol.* 2005;124:838–845.
- Lamberts LE, de Groot DJA, Bense RD, de Vries EGE, Fehrmann RSN. Functional
 genomic mRNA Profiling of a large cancer data base demonstrates mesothelin
 overexpression in a broad range of tumor types. *Oncotarget*. 2015;6:28164-28172.

- Lamberts L, Menke-van der Houven van Oordt CW, ter Weele EJ, et al.ImmunoPET with
 Anti-Mesothelin Antibody in Patients with Pancreatic and Ovarian Cancer before AntiMesothelin Antibody-Drug Conjugate Treatment. *Clin Cancer Res.* 2016;22:1642-1652
- Lindenberg L, Thomas A, Adler S, et al. Safety and biodistribution of 111In-amatuximab in
 patients with mesothelin expressing cancers using single photon emission computed
 tomography-computed tomography (SPECT-CT) imaging. *Oncotarget.* 2015;6:4496–
 4504.
- 22. Park JY, Hiroshima Y, Lee JY, Maawy AA, Hoffman RM, Bouvet M. MUC1 selectively
 targets human pancreatic cancer in orthotopic nude mouse models. PLoS ONE.
 2015;10:e0122100.
- 355 23. Hartmans E, Orian-Rousseau V, Matzke-Ogi A, et al. Functional genomic mrna profiling of
 356 colorectal adenomas: identification and in vivovalidation of cd44 and splice variant cd44v6
 357 as molecular imaging targets. *Theranostics*. 2017;7:482–492.
- van Dam GM, Themelis G, Crane LMA, et al. Intraoperative tumor-specific fluorescence
 imaging in ovarian cancer by folate receptor-α targeting: first in-human results. *Nat Med.*2011;17:1315–1319.
- 361 25. Hoogstins CES, Tummers QRJG, Gaarenstroom KN, et al. A novel tumor-specific agent
 362 for intraoperative near-infrared fluorescence imaging: a translational study in healthy
 363 volunteers and patients with ovarian cancer. *Clinical Cancer Research*. 2016;22:2929–
 364 2938.
- 365 26. Harlaar NJ, Koller M, de Jongh SJ, et al. Molecular fluorescence-guided surgery of
- 366 peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study. *The Lancet* 367 *Gastroenterology & Hepatology*. 2016;1:283–290.

368 LEGENDS TO FIGURES

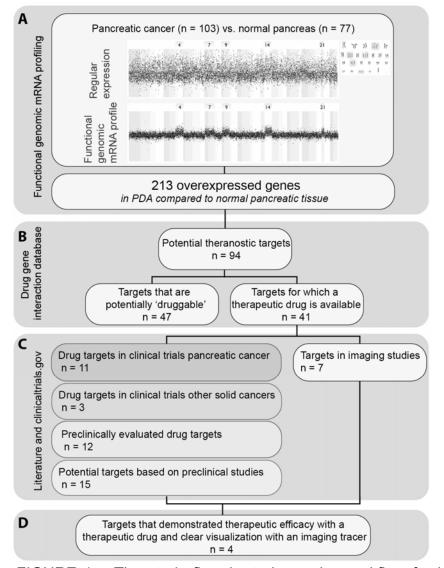
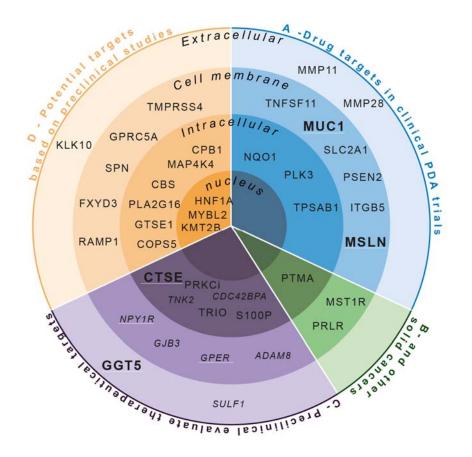



FIGURE 1 – The study flowchart shows the workflow for identification of current most potential targets for theranostic approaches in future PDA management. (A) We performed Functional genomic mRNA profiling to predict protein overexpression in PDA compared to normal pancreatic tissue. (B) Known interaction with antineoplastic drugs was explored at the Drug-Gene Interaction Database (DGIdB), and (C) we explored the current status of (pre)clinical evaluation of therapeutic and imaging strategies directed at the antigen. (D) we determined the most potential theranostic targets based on the

progress in clinical translation in both imaging and therapy to enable theranostic
approaches in PDA on short term. Abbreviations: PDA = pancreatic ductal
adenocarcinoma. FGmRNA = functional genomic mRNA.

FIGURE 2 – The potential theranostic targets genes based on the Drug-Gene interaction
database divided per cellular localization, per evaluation status. (A) Drug targets
investigated in clinical trials in PDA patients. (B) Drug targets investigated in clinical
trials in other cancer types. (C) Drug targets evaluated in preclinical studies. (D)
Potential clinical targets that are currently not evaluated. In italic targets investigated *in vitro*. White underlined: targets evaluated in imaging studies. In bold: most potential
theranostic targets.

Table 1. GEO omnibus datasets included in the study							
profiling performed, year	GSE Accession number	normal pancreatic tissue	pancreatic cancer tissue				
Walker et al (2004)	GSE1133	2	0				
Buturovic et al (2008)	GSE12630	0	9				
Badea et al (2009)	GSE15471	39	39				
Sadanandam et al (2009)	GSE17891	0	1				
Miya et al (2009)	GSE18674	1	0				
Chelala et al (2009)	GSE19279	3	9				
Hiraoka et al (2009)	GSE19650	7	0				
Curley et al (2004)	GSE2109	0	16				
Chen et al (2010)	GSE22780	8	0				
Ge et al (2005)	GSE2361	1	0				
Tran et al (2011)	GSE32676	7	25				
Miya et al (2011)	GSE33846	1	0				
Chelala et al (2013)	GSE43288	3	4				
Kaneda et al (2013)	GSE43346	1	0				
Blais et al (2013)	GSE46385	3	0				
Roth et al (2007)	GSE7307	1	0				

Abbreviation: GSE, gene expression omnibus series; PDA, pancreatic ductal adenocarcinoma

Note: GSE accession numbers can be used to query the data set in GEO (http://www.ncbi.nlm.nih.gov/geo/).

Supplemental Table 2 could not be added to PDF

Table 2.	Literature overv	iew protein overe	xpression human sam	nples			
				Protein over	expression in hu	man samples	Reference
Rank	Gene symbol	Protein location	Protein function	PDA	other cancers	unkown	
1	THY1	cell membrane	Glycolipid	•			Foygel <i>et al</i> , 2013)
2	SEL1L	intracellular	unkown	٠			Cattaneo <i>et al</i> , 2003
3	NPR3	Cell membrane	GPCR			•	
4	JUP /// KRT17	intracellular	cytokeratin		•		Escobar-Hoyos et al, 2014
5	NOX4	cell membrane	NADPH oxidase	•			Edderkaoui <i>et al</i> , 2005; Ogrunc <i>et al</i> , 2014
6	TM4SF1	cell membrane	Antigen	•			Lin <i>et al</i> , 2014
7	CLDN18	cell membrane	Tight junction protein	•			Tanaka <i>et al</i> , 2011; Wöll <i>et</i> <i>al</i> , 2014; Soini <i>et al</i> , 2012
8	CTSE	intracellular	Protease	•			Keliher <i>et al</i> , 2013
9	TMPRSS4	cell membrane	Protease	•			Wallrapp <i>et al</i> , 2000
10	GGT5	extracellular	Protease	•			Ramsay <i>et al</i> , 2014
11	DKK3	extracellular	unknown	•			Fong <i>et al</i> , 2009; Uchida <i>et al</i> , 2014
12	TINAGL1	extracellular	Glycoprotein			•	
13	LAMA3	extracellular	Laminin			•	
14	HSD17B7	cell membrane	SDR			•	
15	AHNAK2	intracellular	Unkown			•	
16	FXYD3	cell membrane	lon channel regulator	•			Kayed <i>et al</i> , 2006
17	C7orf10	intracellular	Transferase			•	
18	GJB3	cell membrane	Gap junction protein			•	
19	GPRC5D	cell membrane	GPCR			٠	
20	LAMC2	extracellular	Laminin	٠			Garg <i>et al</i> , 2014; Katayama <i>et al</i> , 2005
21	MTMR11	intracellular	Phosphatase			•	
22	LRRC32	cell membrane	unknown			•	
23	HIST2H2AA3 /// HIS	intracellular	Nucleosome			•	
24	LIF	cell membrane	Growth factor	•			Peng <i>et al</i> , 2014
25	CST2	extracellular	Protease inhibitor			•	
26	CPB1	intracellular	Protease			•	
27	DCLRE1A	Intracellular	DNA repair gene			•	
28	ADAP1	intracellular	unkown			•	
29	PLA2G16	intracellular	Phospholipase		•		Nazarenko <i>et al</i> , 2006; Liang <i>et al</i> , 2015
30	MAP4K4	Intracellular	Kinase	•			Liang <i>et al</i> , 2008
31	HOPX *	nucleus	unknown				Waraya <i>et al</i> , 2012
32	ARL14	intracellular	Ribosylation Factor			•	
33	TP73-AS1	intracellular	Transcription factor			•	
34	СҮРЗА5	intacellular	Cytochrome p450			•	
35	TRIM29	intracellular	Transcription factor	•			Sun <i>et al</i> , 2014
36	DNAJB9	intracellular	J protein			•	
37	CAPRIN2	intracellular	unknown			•	
38	TRAK1	intracellular	Transporter		•		An <i>et al</i> , 2011
39	MRC1	cell membrane	Receptor			•	
40	LOC100653217 ///	cell membrane	Cell adhesion molecule			•	
41	MUC1	cell membrane	Glycoprotein	•			Wang <i>et al</i> , 2014

42	CBS	intracellular	Lysase			•	
43	UGT1A1 /// UGT1A	intracellular	Transferase			•	
44	GRB7	cell membrane	Adaptor protein	•			Tanaka <i>et al</i> , 2006
45	TREM2	cell membrane	Receptor		•		Yang <i>et al</i> , 2014
46	IGFBP5	extracellular	growth factor binding protein	٠			Johnson <i>et al</i> , 2006; Sarah K Johnson, 2009
47	H2BFS	intracellular	unknown			•	
48	GSTM3	intracellular	Transferase		•		Meding et al, 2012
49	RTP4	intracellular	Transporter			٠	
50	RUNX1T1	intracellular	Transcription factor			٠	

Abbreviation: GPRC, G-protein coupled receptor. SDR, Short Chain Dehydrogenase/Reductase

* Reduced protein expression level in cancer

	for pancreatic of Study type		Conclusion	Deference
	Study type	Cancer type	Conclusion	Reference
THY1, rank 1			1	-
, 0	in vivo - <i>mouse</i>	pancreatic cancer	Thy1 targeted ultrasound molecular imaging is	Foygel et al, 2013
Microbubbles	<u>ultrasound</u>	xenofgrafts	feasible	
(MBThy1)	<u>molecular</u>			
	imaging			
CTSE, rank 8				
CTSE-activatable	in vivo - <i>mouse</i>	pancreatic cancer	CTSE-activatable probe can be detected by	Li et al, 2014
optical molecular		xenofgrafts	confocal laser endomicroscopy (CLE)	21 01 01, 2014
probe	optical imaging	Acholyralts		
probe				
			DIT TAD in a nine is for all to far the second	
ritonavir	in vivo - <i>mouse</i>	pancreatic cancer	RIT-TMB imaging is feasible <i>in vitro</i> and	Keliher <i>et al</i> , 2013
tetramethyl-	optical imaging	orthotopic tumors	demonstrated good co- localization with CTSE in	
BODIPY (RIT-			both humand and mouse PDA samples	
TMB)				
CTSE-activatable	in vivo - <i>mouse</i>	pancreatic cancer	The Cath E-activatable probe was able to highlight	Abd-Elgaliel et al,
optical molecular	optical imaging	xenofgrafts	the Cath E-positive tumors; control imaging probe	2011
probe		5	confirmed the superior selectivity and sensitivity	
p. 68 6				
CCTE ronk 10				
GGT5, rank 10 gGlu-HMRG	ex vivo	Human pancreatic	gGlu-HMRG did not clearly differentiate pancreatic	
yolu-niviRG				
	optical imaging	samples	tumor tissues from normal pancreatic ones because	
	<u>EUS-FNA</u>		GGT activity was not different between tumor cells	
			and normal cells.	
gGlu-HMRG	ex vivo breast	Breast cancer	fluorescence derived from cleavage of gGlu-HMRG	Ueo <i>et al</i> , 2015
-	cancer samples		allowed easy discrimination of breast tumors from	
			normal mammary gland tissues, with 92%	
			sensitivity and 94% specificity.	
BODIPY-GSH	In vitro	Ovarian cancer	FIST probes enable monitoring the GGT activity in	Wang <i>et al</i> , 2015
		cells	living cells, which showed differentiation between	
			ovarian cancer cells and normal cells.	
gGlu-HMRG	Ex vivo	colon carcinoma	Topically spraying gGlu-HMRG enabled rapid and	Sato <i>et al</i> , 2015
0		samples	selective fluorescent imaging of colorectal tumors	,
		oupico	owing to the upregulated GGT activity in cancer	
			cells.	
gGlu-HMRG	In vivo movoo	Colon cancer	Fluorescence endoscopic detection of colon cancer	Mitouroge of al 201
golu-niviro	In vivo - mouse		-	Milisullaga <i>el al</i> , 201
		mouse model	was feasible. All fluorescent lesions contained	
			cancer or high-grade dysplasia, all non-fluorescent	
			lesions contained low-grade dysplasia or benign	
			tissue.	
gGlu-HMRG	In vivo - mouse	disseminated	Activation of gGlu-HMRG occurred within 1 min of	Urano <i>et al</i> , 2011
		peritoneal ovarian	topically spraying the tumor, creating high signal	
		cancer model	contrast between the tumor and the background.	
			Ĭ	
MUC1, rank 41		1	1	1
aptamer-PEG-	in vivo - mouse	breast cancer non	MUC1 aptamer-based NIR fluorescence probe has	Chen <i>et al</i> , 2015
near- infrared	optical imaging	small cell lung	a high tumor-targetinga ability and low	2
fluorescence	<u>option inaging</u>	carcinoma,	accumulation in normal tissue	
		,		
probe (APT-PEG-		hepatocellular		
MPA)		carcinoma		
		xenografts		
MN-EPPT (iron	in vivo - <i>mouse</i>	breast cancer	changes in uMUC-1 expression during tumor	Ghosh <i>et al</i> , 2013
oxide	optical	transgenic mouse	development and therapeutic intervention could be	
nanoparticles	imaging/MRI	model	monitored non-invasively using molecular imaging	
(MN), labeled			approach with the uMUC-1-specific contrast agent	
with Cy5.5 dye			(MN-EPPT) detectable by magnetic resonance and	
conjugated to			fluorescence optical imaging	
peptides (EPPT)				

(111)In-labeled PAM4	phase I clinical trial <u>PET-</u> <u>scan</u>	pancreatic cancer	radiolabeled PAM4 selectively targets pancreatic cancer in both the experimental animal model and clinical studies.	Gold <i>et al</i> , 2001
[64Cu]-DOTA- PR81	in vivo - mouse <u>PET-scan</u>	breast cancer xenografts	The biodistribution and scintigraphy studies showed the accumulation of 64Cu-DOTA-PR81 at the site of tumors with high sensitivity and specificity for MUC1 compared to control probes.	Alirezapour <i>et al</i> , 2016
Ab-FL-Cy5.5	in vivo - mouse <u>dual labelled</u> optical imaging	ovarian cancer xenografts	Ab-FL-Cy5.5 probe can be used for <i>in vivo</i> imaging of MUC1 expressing tumors	Zhang <i>et al</i> , 2015
NPY1R, rank 92				
[Lys(M/DOTA)4] BVD15	in vitro	Breast cancer cells	[Lys(DOTA)4]BVD15 is a potent and specific ligand for NPY1R	Zhang <i>et al</i> , 2016
MSLN, rank 110			•	
89Zr- MMOT0530A+E3 6:I4089Zr- MMOT0530A	phase I clinical trial <u>PET-</u> <u>scan</u>	pancreatic cancer and ovarian cancer	89Zr-MMOT0530A-PET pancreatic and ovarian cancer lesions as well as antibody biodistribution could be visualized.	Lamberts <i>et al</i> , 2015b
64Cu-NOTA- amatuximab	in vivo - <i>mouse</i> <u>PET-scan</u>	epithelial carcinoma cells	64Cu-NOTA-amatuximab enables quantification of tumor and major organ uptake values using PET scanning	Lee <i>et al</i> , 2015
Indium-CHX-A amatuximab	phase I clinical trial SPECT-scan	mesothelin overexpressing tumors	111In-amatuximab localizes to mesothelin expressing cancers with a higher uptake in mesothelioma than pancreatic cancer.	NCT01521325
Me-F127COOH- QD nanomicelles	in vivo - mouse	pancreatic cancer xenofgrafts	anti-mesothein antibody conjugated carboxylated F127 nanomicelles accumulated specifically at the pancreatic tumor site 15 min after intravenous injection with low toxicity	Ding <i>et al</i> , 2011
anti-mesothelin antibody- conjugated PEGIyated liposomal ultrasmall superparamagne tic iron oxides	in vivo - mouse <u>MRI</u>	pancreatic cancer xenofgrafts	M-PLDUs specically targets MSLN and could well improve the therapeutic efficacy of DOX chemotherapy in vivo and could be visualized by MRI in vivo.	Deng <i>et al</i> , 2012
GPER, rank 118				
99mTc(I)-labeled nonsteroidal GPER-specific ligands	in vivo - <i>mouse</i> SPECT-scan	human endometrial and breast cancer cell xenografts	99mTc-labeled-GPER-specific radioligands are tumor specific and could be cleary visualized using SPECT-scan	Nayak <i>et al</i> , 2014

Supplementary table 3.	Therapeutical tar	gets for pancreatic c	ancer tr	reatment	
Antineoplastic drug	Therapy type	Study population	Phase	Conclusion / status study	Reference / clinicaltrial.gov identifier
Subcategory 1. Targets	in pancreatic can	cer clinical trials	-		
MUC1, rank 41					
MUC1 100mer peptide with SB-AS2 adjuvant	cancer vaccine	unresectable PDA	I	feasible	Ramanathan <i>et al</i> , 2005; NCT00008099
MUC1 100mer peptide	cancer vaccine	unresectable PDA	I	1/6 SD	Yamamoto <i>et al</i> , 2005
MUC1-DC and MUC1- CTL	adoptive immunotherapy	unresectable PDA	I	1/20 CR 5/20 SD	Kondo <i>et al</i> , 2008
MUC1-DC	adoptive immunotherapy	Advanced PDA	Ι	7/7 PD	Rong <i>et al</i> , 2012
90Y-hPAM4	radio- immunotherapy	Advanced PDA	1/11	6/38 PR 16/38 SD	Ocean <i>et al</i> , 2012; NCT00603863
Falimarev (fowlpox-CEA- MUC-1-TRICOM vaccine) Inalimarev (vaccinia-CEA-MUC1- TRICOM vaccine)	cancer vaccine	unresectable PDA	I	recruiting	NCT00669734
anti-MUC1 CAR T Cells	immunotherapy	advanced, refractory solid tumors	1/11	recruiting	NCT02587689
anti-MUC1 CAR- pNK cells	immunotherapy	Relapsed or Refractory Solid Tumor	1/11	rectruiting	NCT02839954
NQO1, rank 53				•	
Apaziquone	bioreductive prodrug activated by NQO1	Pancreatic cancer first line	II	Antitumour activity was not observed.	Dirix <i>et al</i> , 1996
PSEN2, rank 54				L	
MK-0752	NOTCH inhibitor	unresectable PDA	I	completed no results yet	NCT01098344
TNFSF11, rank 57				,	1
Lenalidomide	immunotherapy	metastatic PDA	II	PR: 8/72 SD: 26/72 PD: 22/72 MOS 4.7 months	Infante <i>et al</i> , 2013
ITGB5, rank 65	•	•		•	
Cilengitide	anti-angiogenic therapy	unresectable PDA	II	C+G MOS: 6.7 months gemcitabine MOS: 7.7 months	Friess <i>et al</i> , 2006
MSLN, rank 110					
BAY94-9343	antibody drug conjugate	advanced, refractory solid tumors	I	recruiting	NCT02485119
BMS-986148	antibody drug conjugate	mesothelin positive pancreatic cancer	I	recruiting	NCT02341625
CART-meso	immunotoxin	metastatic mesothelin expressing cancers	1/11	recruiting	NCT01583686

CART-meso	immunotoxin	Mesothelin	I	recruiting	NCT02159716
CART-meso	immunotoxin	expressing cancers metastatic PDA	-	recruiting	NCT02465983
CART-meso	immunotoxin	metastatic PDA	-	safe and	Beatty <i>et al</i> , 2014
				feasible	
CART-meso	immunotoxin	Metastatic	1/11	recruiting	NCT02959151
CART-meso	immunotoxin	PDA			
CART-meso	immunotoxin	PDA	I	recruiting	NCT02706782
SS1P(dsFv)-PE38	immunotoxin	unresectable or metastatic PDA	1/11	recruiting	NCT01362790
SS1P(dsFv)-PE39	immunotoxin	Mesothelin expressing cancers	Ι	SS1p is well tolerated	Hassan <i>et al</i> , 2007
SS1P(dsFv)-PE40	immunotoxin	mesothelin experessing cancers	Ι	SS1p is well tolerated	Kreitman <i>et al</i> , 2009
Morab-009 (amatuximab)	antibody	mesothelin expressing cancers	Ι	safe and feasible	Hassan <i>et al</i> , 2010
Morab-009 (amatuximab)	antibody	unresectable PDA	II	completed, no article published yet	NCT00570713
GVAX (GM-CSF)	immunotherapy	Advanced PDA	Ι	safe and feasible	Laheru <i>et al</i> , 2008
GVAX (GM-CSF)	immunotherapy	PDA, adjuvant;	II	PD: 17/60 MOS: 24.8 months	Lutz <i>et al</i> , 2011
ANZ-100 and CRS-207	cancer vaccine	metastatic PDA	Ι	Safe and feasible OS: 3/7 > 15months	Le et al, 2012
GVAX and CRS-207	cancer vaccine	metastatic PDA	Π	cy/GVAX and CRS-207: OS 9.7 months cy/GVAX: OS 4.6 months	Le et al, 2015
LMB-100 + Nab- Paclitaxel	Immunotoxin combined with chemotherapy	Pancreatic Neoplasms	1/11	recruiting	NCT02810418
Anetumab ravtansine	Antibody drug conjugate	Pretreated Advanced Pancreatic Cancer	II	not yet recruiting	NCT03023722
SLC2A1, rank 154					
Glufosfamide vs F-5U	chemotherapy	metastatic PDA		recruiting	NCT01954992
Glufosfamide	chemotherapy	Advanced PDA	II	PR: 2/34 SD: 11/35 MOS: 5.3 months	Briasoulis <i>et al</i> , 2003
Glufosfamide + gemcitabine	chemotherapy	metastatic PDA	Π	PR: 5/28 SD: 11/28 MOS: 6 months	Chiorean <i>et al</i> , 2010
Glufosfamide vs best supportive care	chemotherapy	metastatic PDA	111	MOS glufosfamide: 105 days MOS best supportive care: 84 days	Ciuleanu <i>et al</i> , 2009

PLK3, rank 148					
BI 2536	Polo-like kinase inhibitor	unresectable advanced PDA	II	PR: 2/79 SD: 19/79 MOS: 149 days	Mross <i>et al</i> , 2012
TPSAB1, rank 184	-			-	
nafamostat + gemcitabine	protease inhibitor + chemotherapy	advanced or metastatic PDA	Ι	PR: 3/12 SD: 7/12 PD: 2/7	Uwagawa <i>et al</i> , 2009
nafamostat + gemcitabine	protease inhibitor + chemotherapy	unresectable advanced or metastatic PDA	II	PR: 6/35 SD: 25/34 PD: 4/35 MOS: 10 months	Uwagawa <i>et al</i> , 2013
MMP11, rank 166	•			•	•
marimastat vs gemcitabine	MMP inhibitor + chemotherapy	unresectable advanced or metastatic PDA	III	MOS gemcitabine: 167 days MOS 25mg: 125 days MOS 10mg: 105 days MOS 5 mg: 110 days	Bramhall <i>et al</i> , 2001
MMP28, rank 199					
marimastat	MMP inhibitor	Advanced PDA	II	SD: 41/83 in 28 day study period PD: 42/83 in 28 day study period MOS: 113 days	Bramhall <i>et al</i> , 2002
Subcategory 2. Targets	in clinical trials in	n other cancer types			
MST1R, rank 95					
Foretinib	small-molecule multikinase inhibitor	advanced or metastatic gastric adenocarcinoma	II	PR: 0/69 SD: 15/65 lack of efficacy	Shah <i>et al</i> , 2013
Foretinib	small-molecule multikinase inhibitor	papillary renal cell carcinoma	II	ORR: 13.5% MPFS: 9.3 month	Choueiri <i>et al</i> , 2013
MGCD265	Tyrosine kinase inhibitor	Advanced metastatic or unresectable malignancy	Ι	recruiting	NCT00697632
MGCD266	Tyrosine kinase inhibitor	advanced or metastatic non-small cell lung cancer	II	recruiting	NCT02544633
PTMA, rank 106	-			•	•
Thymalfasin / Thymosin 1 / (T-alfa-1)	Immunomodulato ry polypeptide	esophageal cancer	II	not yet recruiting	NCT02545751
Thymalfasin / Thymosin 1 / (T-alfa-1)	Immunomodulato ry polypeptide	metastatic small cell lung cancer	II	not yet recruiting	NCT02542137

Thymalfasin / Thymosin 1 / (T-alfa-1)	Immunomodulato ry polypeptide	metastatic non small cell lung cancer	II not yet recruiting		NCT02542930
Thymalfasin / Thymosin 1 / (T-alfa-1)	Immunomodulato ry polypeptide	metastatic colon cancer	II not yet recruiting		NCT02535988
Thymalfasin / Thymosin 1 / (T-alfa-1)	Immunomodulato ry polypeptide	hepatocellular carcinoma	IV	not yet recruiting	NCT02281266
Thymalfasin / Thymosin 1 / (T-alfa-1)	Immunomodulato ry polypeptide	metastatic melanoma patients	Ι	MOS: 9.4 months vs. 6.6 months	Maio <i>et al</i> , 2010
PRLR, rank 213	•				
prolanta	prolactine receptor antagonist	Epithelial ovarian cancer	I	recruiting	NCT02534922
LFA102	monoclonal antibody	breast and prostate cancer	Ι	completed, no results published	NCT01338831
Subcategory 3. Targets	in preclinical in v	<i>itr</i> o and <i>in viv</i> o stud	ies		
CTSE, rank 8					
Cathepsin E-activatable 5-ALA prodrug	photo dynamic therapy	in vivo - mouse PDA cells		Effectively targeting and killing cancer cells that express CTSE	Abd-Elgaliel <i>et al</i> , 2013
GGT5, rank 10					
GSAO (glutathione-S- conjugate activated by γGT cleavage)	prodrug	in vivo - PDA mouse model		Tumor γGT activity positively correlated with GSAO- mediated inhibition of pancreatic tumor angiogenesis and tumor growth in mice.	Ramsay <i>et al</i> , 2014
GJB3, rank 18					
Carbenoxolone	gap junction blocker	in vitro - Pancreatic stellate cells		Carbenoxolone inhibited platelet- derived growth factor-BB- induced proliferation and migration	Masamune <i>et al</i> , 2013
TNK2, rank 73					
b					

AIM-100 pyrazolopyrimidine derivative 2b ALK inhibitor 5	TNK2 inhibitors	in vitro - prostate cancer cells	AIM-100 treatment is leading to cell cycle arrest in the G1 phase causing significant decrease in the proliferation of pancreatic cancer cells and induction of apoptosis.	Mahajan <i>et al</i> , 2012
(<i>R</i>)-9bMS	small-molecule inhibitor	triple negative breast cancer (TNBC)	In vitro inhibition significantly compromised TNBC proliferation	Wu et al, 2017
NPY1R, rank 92	T	· · · · · ·		
BIBP3226	peptide-drug conjugate	in vitro - neuroblastoma cells	The active compund BIBP3226 is able to release the drug intracellular	Langer <i>et al</i> , 2001
TRIO, rank 107				
TRIP-E32G	peptide aptamer	In vivo - NIH 3T3 cells	TRIPE32G reduces the formation of TRIO-induced tumors.	Bouquier <i>et al</i> , 2009
GPER, rank 118				
Gefitinib	Tyrosine Kinase inhibitor	In vitro – Triple- negative breast cancers cells	Reduction of GPER expression is a promising therapeutic approach for TNBC	Girgert <i>et al</i> , 2017

agonist G-1	GPER-receptor- agonist	In vitro – nonsmall cell lung cancer cells	rapidly decrea phosp n, nuc translo and pr activiti kB, wh help to unders roles a	ased the horylatio lear ocation, romoter ies of NF- nich will o better stand the and anisms of as a	Zhu <i>et al</i> , 2016
				y target	
ADAM18, rank 141					
BK-1361	ADAM8 inhibitor	in vitro - PDA cells	and m of imp pancre	ased Ir burden Ietastasis Ianted	Schlomann <i>et al</i> , 2015
CDC42BPA, rank 142	1				
DJ4	small molecule inhibitor	in vitro - (PDA) cells	signific blocke fiber fo and in migrat invasio	ed stress ormation hibited tion and on of le cancer	Kale <i>et al</i> , 2014
PRKCi, rank 161			I		
aPKC-PSP	pseudosubstrate peptide	In vivo -glioblastoma Stem-like cells (GSC)	in the of Not signali be an way of attack GSC	ing could effective	Phillips <i>et al</i> , 2016
SULF1, rank 180					

IQ2-S	radioactive prodrug	in vitro - PDA cells	Quinazolinone- based radiopharmace uticals can lead to the development of a novel noninvasive approach for imaging and treating pancreatic cancer.	Pospisil <i>et al</i> , 2012
S100P, rank 188			cancer.	
5100F, 1411K 100				
cromolyn	cromolyn analog, C5OH	in vivo - PDA mouse	C5OH blocked the S100P- mediated growth and antiapoptotic effect in PDA and improved the animal survival.	Arumugam <i>et al</i> , 2013
2H8	S100P antibody	in vivo - mouse - PxPC3 cells	2H8 antibody decreased tumor growth and liver metastasis formation in a subcutaneous and orthotopic BxPC3 tumor model.	Dakhel <i>et al</i> , 2014
Subcategory 4. Sugges	ted as potential ta	Ingets		
	Cancer type	Study type	Conclusion stu	Reference
TMPRSS4, rank 9			ooneidsion st	
·	breast cancer tissue	IHC	Prognostic marker	Liang <i>et al</i> , 2013
	Non-small cell lung cancer (NSCLC)	In vitro treatment with demethylating agent significantly increased TMPRSS4 levels	Potential therapeutic target	Villalba <i>et al</i> , 2016
	Gastric cancer	Upregulation of TMPRSS4 enhances the invasiveness of gastric cancer cells	Potential therapeutic target	Jin <i>et al</i> , 2016
FXYD3, rank 16				

	Breast cancer	Suppression of FXYD3 by transfection with siRNA	Overexpressio n of FXYD3 may be a marker of resistance to cancer treatments and a potentially important therapeutic target.	Liu <i>et al</i> , 2016a
CPB1, rank 26				
	Metastasis in Low Grade Breast Cancer samples	IHC	Biomarker	Bouchal <i>et al</i> , 2015
PLA2G16, rank 29				
	Osteosarcoma	In vitro and in vivo functional analyses	Potential therapeutic target	Li <i>et al</i> , 2016
MAP4K4, rank 30				
	Gastric cancer	In vitro siilencing of MAP4K4 by shRNA	Potential therapeutic strategy	Liu <i>et al</i> , 2016b
CBS, rank 42				
	in vitro - mouse	CBS silencing	CBS silencing resulted in reduced tumor cells proliferation, blood vessels formation and lipid content.	Chakraborty <i>et al</i> , 2015
	Colon cancer	In vivo - xenograft	Benserazide inhibits CBS activity and suppresses colon cancer cell proliferation and bioenergetics in vitro, and tumor growth in vivo	Druzhyna <i>et al</i> , 2016
GPRC5A, rank 70	1	· · · · · · · · · · · · · · · · · · ·		·
	colon cancer samples	IHC	Prognostic biomarker	Zougman <i>et al</i> , 2013
	oral squamus cell carcinoma	IHC	Prognostic biomarker	Liu <i>et al</i> , 2013
	gastric cancer samples	mRNA expression levels	Prognostic biomarker	Liu <i>et al</i> , 2015

	PDAC cells	siRNA	Suppression of Jahny <i>et al</i> , 2017 GPRC5a results in decreased cell growth, proliferation and migration
	breast cancer cell line	siRNA	Transfection of Nagahata <i>et al</i> , 2005 siRNA suppressed RAI3 mRNA and growth of the cancer cells.
KLK10, rank 79			
	Breast cancer	RNA-Sequencing analysis	Predictive Wang <i>et al</i> , 2016 biomarker for trastuzumab resistance and potential therapeutic target for reversing trastuzumab resistance
COPS5, rank 93			
GTSE1, rank 97	Breast cancer	Integrated genomic and functional studies	COPS5 Lu <i>et al</i> , 2016 overexpression causes tamoxifen- resistance in preclinical breast cancer models in vitro and in vivo > potential therapeutic approach for endocrine- resistant breast cancer
GISET, rank 9/	Castria		Biomarker. Deeb et al, 2014
	Gastric cancer cells	shRNA GTSE1 knockout	Biomarker. Deeb <i>et al</i> , 2014 Potential therapeutical target.

	hepatocellular	shRNA GTSE1	GTSE1 is	Guo <i>et al</i> , 2016
	carcinoma cells	silencing	aberrantly	
			overexpressed	
			in HCC cell	
			lines and	
			cancerous	
			tissues >	
			Potential	
			therapeutic	
			target	
KMTOD reak 404			0	
KMT2B, rank 104				0 / / 00/0
	Breast cancer cell	siRNA knockdown	Inhibition of IL-	Su et al, 2016
			20 and KMT2B	
			may have	
			therapeutic	
			benefits in	
			ERα-positive	
			breast cancer	
			preast cancer	
SPN, rank 160				
	HPB-ALL lymphol	UN1 monoclonal	UN1 mAb is	Tuccillo et al, 2014
		antibody	leading to	· · · · · · · · · · · · · · · · · · ·
		antibody	natural	
			killer-mediated	
			cytotoxicity	
			causing growth	
			inhibition	
	mouse model - br	siRNA SPN	Reduction in	Fu <i>et al</i> , 2014
		knockdown	primary tumour	
			growth in vivo	
			growarin mo	
RAMP1, rank 166	<u> </u>	<u> </u>		
·	prostate cancer		Potential	Logan <i>et al</i> , 2013
			molecular	J , _ , _ , _ , _ , ,
			target	
HNF1A, rank 167	I			
-	PDA tissue and	siRNA HNF1A	siRNA HNF1A	Luo et al, 2015
	cells	knockdown	knockdown	
			reduced	
			apoptosis in	
			pancreatic	
			cancer cell	
			lines. HNF1A	
			is a possible	
			tumor	
			suppressor	
MYBL2, rank 181	<u> </u>			

In vivo - mouse	Si-RNA	B-myb plays a Tao <i>et al</i> , 2014
Breast cancer		role in cell
xenografts		cycle
-		progression
		and
		tumorigenesis.
		Potential
		diagnostic /
		therapeutical
		target