Gallium-68 or Fluorine-18 for prostate cancer imaging?

Claudia Kesch¹, Clemens Kratochwil³, Walter Mier³, Kopka Klaus², Frederik L. Giesel³§

(1) Department of Urology, University Hospital Heidelberg, Germany
(2) Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ) Heidelberg, Germany.
(3) Department of Nuclear Medicine, University Hospital Heidelberg, Germany

§ Corresponding author:
Frederik L. Giesel
Department of Nuclear Medicine
University Hospital Heidelberg
Im Neuenheimer Feld 110
69120 Heidelberg
Tel: +49-6221-56-39461
Fax: +49-6221-56-8672
Email: frederiek@egeisel.com

CONFLICTS OF INTEREST: Patent application for PSMA-1007 for FLG and KK, the other authors have no conflict of interest to declare.

WORD COUNT: 1592
ABSTRACT:
The introduction of prostate specific membrane antigen (PSMA)-positron emission tomography (PET) using \(^{68}\text{Ga}\) revolutionized prostate cancer imaging. Outperforming standard imaging, it allows complete staging of the local tumor and possible lymph nodes, visceral or bone metastases with high accuracy in only one examination \((1,2)\). Sensitivities of 66% and specificities of 99% were observed for primary lymph node staging \((2)\). Moreover, it has become an excellent staging tool for recurrent prostate cancer even at early stage and low PSA levels \((1,3)\). PSMA-positive detection rates of 50%-58% were reported for serum PSA values less than <0.5 ng/mL, 58%-73% for PSA values of 0.5-<1ng/mL and up to >90% at higher PSA values \((1,3)\). Considering the high incidence of prostate cancer worldwide, the possibility of large scale batch production capacity of the novel \(^{18}\text{F}\)-labelled PSMA-tracers \(^{18}\text{F}\)-PSMA-1007 and \(^{18}\text{F}\)-DCFPyL offers a promising advantage. Furthermore, the nuclear decay characteristics of \(^{18}\text{F}\), such as optimal positron energy and a half-life enabling delayed PET-acquisition, may also translate into refined imaging quality.
PSMA is a type II transmembrane glycoprotein with enzymatic carboxypeptidase activity. Expression is seen at low levels i.a. in the brain, kidneys, salivary glands, small intestines and normal prostatic tissue (4,5). However, until today the function of this enzyme, also called glutamate carboxypeptidase II (GCP II), in prostate cancer is still unclear (4). Compared to its normal expression, PSMA is highly overexpressed in prostate cancer cells and the level of PSMA expression rises with increasing tumor dedifferentiation as well as in metastatic and hormone refractory cancer (5–7). This makes PSMA an ideal imaging and therapeutic target for the treatment of prostate cancer.

By now several radiolabelled small-molecule inhibitors of PSMA have been designed (8). Currently, the low-molecular weight PSMA inhibitor 68Ga-PSMA-11 is the most widely used PET tracer (9), but might have some disadvantages with respect to production capacity and nuclear decay properties. Anyhow, its main advantage is the commercial availability of gallium-68 (68Ga) via germanium-68 (68Ge) generators which allows the convenient batch production of approximately 2-4 patient doses per generator elution. For centers without access to a cyclotron and moderate examination numbers these generators present a reasonable priced upfront investment. PSMA-11 contains the chelator HBED-CC which allows labeling with kit-formulations at ambient temperature without critical demands regarding radiochemistry (10,11). At the same time, 68Ga has a physical half-life of only 68 min. Therefore, 68Ga-PSMA-PET scans are preferably performed in house but delivery of sufficient tracer activities to remote centers is challenging. Consequently, in large centers with high patient numbers several productions per day are required (12) or operating multiple generators simultaneously multiplies costs. To meet the quantitative demand of those centers, the use of 18F-labelled PSMA tracers could overcome these limitations. PET radiopharmacies with an on-site cyclotron can produce high activities of 18F at moderate costs. The physical half-life (110 min) of 18F-labelled PSMA tracers such as PSMA-1007 and DCFPyL could also enable centralized production and delivery to more distant center by a satellite concept. At the same time 18F has a lower positron energy than 68Ga (0.65 MeV vs. 1.90 MeV),
which theoretically results in an increased maximum spatial resolution (13). Figure 1 shows a schematic comparison of PET tracers labeled with 18F and 68Ga.

But does 18F really live up to its promises?

At the moment two promising 18F-labelled PSMA-tracers are under clinical investigation: 18F-DCFPyL and 18F-PSMA-1007. Few studies evaluated 18F-DCFPyL in the setting of recurrent prostate cancer or biochemical relapse (14–16) but until now there are no data published on primary prostate cancer and only in a subgroup of patients the imaging results were confirmed by histopathological evaluation. For 18F-PSMA-1007 one proof of concept study examined the tracer in 10 patients with primary high-risk prostate cancer and in majority with LN metastases, which were systematically evaluated histopatologically (17). Only, nevertheless interesting, case reports have been published in the setting of biochemical relapse (17) and for tailoring an advanced stage patient to PSMA-RLT (18). 18F-PSMA-1007 was reported favorable for primary tumors and local relapse due to low clearance via the urinary tract (1.2% ID over 2 h). In contrast urinary excretion of 18F-DCFPyL, 68Ga-PSMA-11 and 68Ga-PSMA-617 is remarkable higher (>10% ID over 2h) (1,16,19). However, this improvement is less related to the radiolabelling moiety but rather to the optimized structure of the overall molecule. Thus, today the published overall experience with 18F-PSMA-ligands is still limited to about 100 patients which also diversify into different clinical settings. In contrast, confirmative publications from different centers, in sum now reporting several thousand patients examined with 68Ga-PSMA-11, present a robust basis about the value and limitation of these radionuclide/ligand-combination (3,20).

Experience regarding intra-individual comparisons between 68Ga- and 18F-PSMA ligands is limited to 25 patients (21). A separate cohort of 62 patients with biochemical relapse examined with 18F-DCFPyL performed comparable to literature values of 68Ga-PSMA-11 and even slightly better than the intra-institutional 68Ga-PSMA controls (21). As promising as these preliminary results are, they also demonstrate that larger, prospective clinical trials evaluating 18F-labelled PSMA tracers in different clinical settings are mandatory.
Therefore, for now it is too early to answer the question “Gallium-68 or Fluorine-18 for prostate cancer imaging?”. Both should be considered widely exchangeable for the majority of clinical indications (Figure-1). Today it is rather the perspective of “decentralized” or “centralized” production to achieve adequate coverage for the clinical demand of examination capacity.
REFERENCES:

13. Sanchez-Crespo A Comparison of gallium-68 and fluorine-18 imaging

<table>
<thead>
<tr>
<th>Physical Difference or Practical demand</th>
<th>Gallium-68</th>
<th>Fluorine-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-Life</td>
<td>68 min</td>
<td>110 min</td>
</tr>
<tr>
<td>• less radiation burden to relatives (complete decay within few hours after examination)</td>
<td></td>
<td>• satellite shipping possible</td>
</tr>
<tr>
<td>• only shippable to close satellite enters.</td>
<td></td>
<td>• delayed imaging after longer incubation time</td>
</tr>
<tr>
<td>Positron energy</td>
<td>1.90 MeV</td>
<td>0.65 MeV</td>
</tr>
<tr>
<td>• the theoretical higher penetration depth of the positron (most pronounced in lungs) is widely negligible in solid tissues using standard reconstruction algorithms and adjusted filtering</td>
<td></td>
<td>• lower radiation burden despite longer half-life</td>
</tr>
<tr>
<td>• theoretically higher resolution</td>
<td></td>
<td>• theoretically higher resolution</td>
</tr>
<tr>
<td>Labelling</td>
<td>Chelator molecules</td>
<td>Prosthetic group molecules</td>
</tr>
<tr>
<td>• Dedicated environment required, but Kit-formulation (One vial, room temperature) also possible</td>
<td></td>
<td>• requires dedicated environment (hot cells, remotely controlled radiosynthesizers)</td>
</tr>
<tr>
<td>Theranostic approach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• One molecule approach: radiolabelling with diagnostic (e.g., 68Ga) and therapeutic radionuclides (e.g., 177Lu, 201Ac, 32Pb) possible (please note: PSMA-11 can only be radiolabelled with diagnostic radionuclide)</td>
<td></td>
<td>• Tandem approach: different chemical structure of diagnostic and (more or less structurally related) therapeutic tracer (e.g., PSMA-1007 / PSMA-617, DCFPyL / MiP-1095)</td>
</tr>
<tr>
<td>Upfront investment/Running costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• generators (~50k USD/EUR, ~2 generators per year)</td>
<td></td>
<td>• cyclotron (~1000k to 3000k USD/EUR)</td>
</tr>
<tr>
<td>• Radiosynthesizer or Kit-production</td>
<td></td>
<td>• Radiosynthesizers connected to a cyclotron; 180-water as target material per production run</td>
</tr>
<tr>
<td>Scalability</td>
<td>Defined generator capacity</td>
<td>Production demand well scalable to adapt requested examination numbers</td>
</tr>
</tbody>
</table>
Gallium-68 or Fluorine-18 for prostate cancer imaging?

Claudia Kesch, Clemens Kratochwil, Walter Mier, Klaus Kopka and Frederik L. Giesel

J Nucl Med.
Published online: April 13, 2017.
Doi: 10.2967/jnumed.117.190157

This article and updated information are available at:
http://jnm.snmjournals.org/content/early/2017/04/12/jnumed.117.190157

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml

JNM ahead of print articles have been peer reviewed and accepted for publication in JNM. They have not been copyedited, nor have they appeared in a print or online issue of the journal. Once the accepted manuscripts appear in the JNM ahead of print area, they will be prepared for print and online publication, which includes copyediting, typesetting, proofreading, and author review. This process may lead to differences between the accepted version of the manuscript and the final, published version.