Cumulated Activity Comparison of ⁶⁴Cu-/¹⁷⁷Lu-labeled Anti-EGFR Antibody in Esophageal Squamous Cell Carcinoma Model.

Eric Laffon*1,2, Matthieu Thumerel¹, Jacques Jougon¹, Roger Marthan^{1,2}

¹ CHU de Bordeaux, Departments of Nuclear Medicine, Thoracic Surgery, Respiratory Medicine,

Bordeaux, France; ² Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux,

INSERM U-1045, Bordeaux, France.

*Corresponding author:

Dr Eric LAFFON, Service de Médecine Nucléaire, Hôpital du Haut-Lévèque, Avenue de

Magellan, 33604 PESSAC, France. Telephone: +33 5 57 65 68 38; Fax: +33 5 57 65 68 39; E-

mail: elaffon@u-bordeaux2.fr

Word count: 2240.

Running title: ⁶⁴Cu-/¹⁷⁷Lu-labeled anti-EGFR antibody.

ABSTRACT

Objective: This work aimed at estimating kinetic parameters, and hence cumulated activity (A_C), of a diagnostic/therapeutic convergence radiopharmaceutical, namely ⁶⁴Cu-/¹⁷⁷Lu-labeled antibody (⁶⁴Cu-/¹⁷⁷Lu-cetuximab), that acts as anti-epidermal growth factor receptor (EGFR).

Methods: In mice bearing esophageal squamous cell carcinoma (ESCC) tumor, to estimate uptake (K), release rate constant (kR), and hence cumulated activity, a kinetic model analysis was applied to recently published biodistribution data of immuno-PET imaging with ⁶⁴Cu-cetuximab and of micro-SPECT/CT imaging with ¹⁷⁷Lu-cetuximab, including blood and TE-8 tumor.

Results: K, k_R and A_C were estimated to be: 0.0566/0.0593 g.h⁻¹.g⁻¹, 0.0150/0.0030 h⁻¹ and 2.3 × $10^{10}/4.1 \times 10^{12}$ disintegrations (per gram of TE-8 tumor), with injected activity of 3.70/12.95 MBq for 64 Cu- $^{/177}$ Lu-cetuximab, respectively.

Conclusions: A model is available for comparing kinetic parameters and cumulated activity of the companion diagnostic/therapeutic ⁶⁴Cu-/¹⁷⁷Lu-cetuximab that may be considered as a step for determining whether one can really use the former to predict dosimetry of the latter.

Keywords: ⁶⁴Cu-labeled PET tracer; ¹⁷⁷Lu-labeled SPECT tracer; EGFR; Kinetic model analysis; Cumulated activity.

INTRODUCTION

Theragnostics strategy relies on non-invasive quantitative immuno-positron emission tomography (immuno-PET) to select patients eligible for radioimmunotherapy. In this framework, Dr Song and colleagues recently investigated a companion diagnostic/therapeutic radiopharmaceutical acting as anti-EGFR antibody that was prepared via identical chelator, 3,6,9,15-tetraazabicyclo[9.3.1]-pentadeca-1(15),11,13-trience-3,6,9,-triacetic acid (PCTA), labeled with ⁶⁴Cu or ¹⁷⁷Lu (⁶⁴Cu-/¹⁷⁷Lu-PCTA-cetuximab) (1). This compound was designed for assessing EGFR expression level in ESCC tumors as well as for subsequent radioimmunotherapy. Any advance in this field is of major interest since innovative therapeutic strategies are actually needed in ESCC patients. In ESCC-tumor-bearing mice, the authors reported biodistribution data from immuno-PET imaging with ⁶⁴Cu-cetuximab and micro single-photon-emission computed tomography (micro-SPECT/CT) imaging with ¹⁷⁷Lu-cetuximab, including blood (i.e, the tracer input function: IF) and TE-8 tumor.

We would like to suggest that further information can be derived from Song *et al.*'s results that may prove of interest to comprehensively characterize this novel companion diagnostic/therapeutic radiopharmaceutical. Thus, the aim of this work was to estimate uptake (K), release rate constant (kR) and, hence, cumulated activity (Ac) that is the number of disintegrations per gram of TE-8 tissue that have occurred from the time of tracer administration (zero) to (theoretically) infinity, after administration of ⁶⁴Cu-cetuximab and ¹⁷⁷Lu-cetuximab for immuno-PET and micro-SPECT/CT imaging, respectively. To this end, a simple model derived from a previously published kinetic model analysis was used (2,3). Furthermore, this study addresses the issue of determining whether ⁶⁴Cu-cetuximab imaging might predict ¹⁷⁷Lu-cetuximab A_C, and hence its dosimetry, in real clinical situation.

MATERIALS AND METHODS

A previously published formula was used for estimating cumulated activity (expressed per gram of TE-8 tissue: g^{-1}), including K and $k_R(3)$:

$$A_{C} = [K / (\lambda + k_{R})] \times AUC_{IF}$$
 (1)

where AUC_{IF} is the area-under-curve of the tracer IF (i.e., total number of disintegrations per gram of blood that have occurred from the time of tracer administration to infinity, in g⁻¹). It can be derived from mean blood data obtained by Song *et al.* in TE-8 tumor model at 2, 24, 48 and 72 h after injection for ⁶⁴Cu-cetuximab: 20.5, 6.4, 4.4 and 2.5 %ID/g (percentage of injected radioactivity dose per gram of tissue; supplemental Table 1 in reference (1)). For ¹⁷⁷Lu-cetuximab, mean blood data obtained in TE-8 tumor model at 2, 24, 72 and 120 h after injection were used: 30.2, 12.1, 6.0 and 3.1 %ID/g (supplemental Table 2 in reference (1)). First, the decay correction of Song *et al.*'s data was removed, that is, the data were multiplied by $\exp(-\lambda \times t)$ where " λ " is the ⁶⁴Cu/¹⁷⁷Lu physical decay constant (i.e., Ln2/12.7 and Ln2/160 h⁻¹, respectively). Then, they were fitted with a mono-exponential decreasing function (time constant α ; in h⁻¹):

$$A_b(t) = A_b(t=0) \times \exp(-\alpha \times t)$$
 (2)

where $A_b(t=0)$ is expressed in %ID/g. In Equation 1 AUC_{IF} is simply $A_b(t=0)/\alpha$.

The constant k_R (h⁻¹) appearing in Equation 1, can be estimated from the following formula that applies to both PET and SPECT tracer (2):

$$t_{\text{max}} = \text{Ln}\left[(\alpha - \lambda)/k_{\text{R}}\right] / \left[\alpha - \lambda - k_{\text{R}}\right]$$
(3)

where t_{max} is the uptake peak of the TE-8 tumor time-activity-curve, as published by Song *et al.* (i.e., involving decay correction): $t_{max} = 48$ and 120 h for ⁶⁴Cu-cetuximab and ⁷⁷Lu-cetuximab, respectively (1). Equation 3 can be solved for k_R by using a solver (Microsoft Excel).

The constant K $(g.h^{-1}.g^{-1})$ appearing in Equation 1, can be estimated from the following formula involving trapped tracer activity in TE-8 tumor, $A_{Trap}(t)$ (2):

$$A_{Trap}(t) = K \times A_b(t=0) \left[\exp(-\alpha \times t) - \exp(-(\lambda + k_R) \times t) \right] / \left[\lambda + k_R - \alpha \right]$$
 (4)

Mean tissue data published by Song *et al.* for $A_{Trap}(t)$ in TE-8 tumor were used: 17.5 and 55.7 %ID/g at t = 48 and 120 h for 64 Cu-cetuximab and 177 Lu-cetuximab, respectively (supplemental Table 1 and 2 in reference (1)). The decay correction of these data was removed, that is, they were multiplied by $\exp(-\lambda \times t)$ where " λ " is the 64 Cu/ 177 Lu physical decay constant. Note that Equation 4 does not involve free tracer in blood and interstitial volume, since the part of free tracer becomes negligible in comparison to trapped tracer at late imaging. Indeed, the value of F $\times A_b(t)$ (with F << 1; no unit) is much lower than that of $A_{Trap}(t)$ at t = 48 and 120 h for 64 Cu-cetuximab and 177 Lu-cetuximab, respectively (Figure 1)(2,3).

Cumulated activity can also be calculated from original data (after removing decay correction) published by Song *et al.* for ⁶⁴Cu-cetuximab and ¹⁷⁷Lu-cetuximab in TE-8 tumor model, respectively (supplemental Table 1 and 2 in reference (1)). A crude estimate of Ac can be obtained by trapezoidal integration and assuming a simple radioactive decay after the last data point.

RESULTS

From Song *et al.*'s data in TE-8 model (supplemental Table 1 and 2 in reference (1)), α (uncorrected for physical decay) was estimated to be 0.0830 h⁻¹ for ⁶⁴Cu-cetuximab and 0.0224 h⁻¹ for ¹⁷⁷Lu-cetuximab (Figure 1, Equation 2: R = 0.99-0.98; P<0.01-0.02)(1). Numerical solvation of Equation 3 provided the following estimate of k_R: 0.0150/0.0030 h⁻¹ for ⁶⁴Cu-/¹⁷⁷Lu-cetuximab, respectively. From Equation 4, K was estimated to be 0.0566/0.0593 g.h⁻¹.g⁻¹ for

 64 Cu- $^{/177}$ Lu-cetuximab, respectively. Then, from Equation 1, A_C was estimated to be 2.3×10^{10} and 4.1×10^{12} disintegrations per gram of TE-8 tumor, with injected activity of 3.70 and 12.95 MBq, and $K/(\lambda + k_R)$ ratio of 0.8 and 8.1, for 64 Cu-cetuximab and 177 Lu-cetuximab, respectively.

For comparison, $A_{\rm C}$ obtained by trapezoidal integration of Song et al.'s TE-8 tumor data and assuming a simple radioactive decay after the last data point, was estimated to be 2.5×10^{10} and 5.3×10^{12} disintegrations per gram of TE-8 tumor, for 64 Cu-cetuximab and 177 Lu-cetuximab, respectively.

DISCUSSION

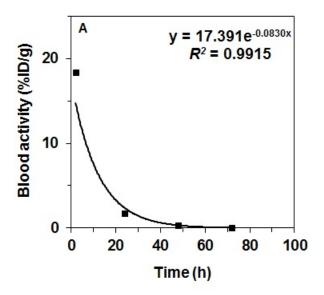
This theoretical work aimed at providing further quantitative information, including cumulated activity, regarding the companion diagnostic/therapeutic ⁶⁴Cu-/¹⁷⁷Lu-cetuximab from recently published biodistribution data in ESCC-tumor-bearing mice. A simple model derived from a published kinetic model analysis was used, allowing us to obtain estimates of K, k_R and, hence, Ac for ⁶⁴Cu-cetuximab and ¹⁷⁷Lu-cetuximab (2,3).

The uptake rate constants of 64 Cu-/ 177 Lu-cetuximab were found to be very close: K = 177 Lu does not influence its trapping in TE-8 tumors. K actually represents the probability that a 64 Cu-/ 177 Lu-cetuximab molecule is trapped in the tissue of interest as the result of an antibody-antigen linking. It does not give any information about its further fate, such as internalization. The release rate constants of 64 Cu-/ 177 Lu-cetuximab were found to be low in comparison to K: k_R = 0.0150/0.0030 h⁻¹, respectively. k_R actually represents the probability that a 64 Cu- 177 Lu-cetuximab molecule trapped in the tissue of interest is released from its target and returns back to blood. This probability should, additionally, take into account a possible internalization of the

antibody-antigen complex that lowers it. Furthermore, we suggest that the 5-fold difference in k_R reported for ⁶⁴Cu-cetuximab versus ¹⁷⁷Lu-cetuximab may be related to the fact that k_R was estimated by using peak-time values assessed with a 24/48-hour time of resolution for ⁶⁴Cu-/¹⁷⁷Lu-cetuximab, respectively (Equation 3). This large time of resolution very likely introduces some uncertainty measurement for k_R, especially since it is derived from a logarithmic equation (Equation 3).

Cumulated activity for ¹⁷⁷Lu-cetuximab was found to be much greater than that for ⁶⁴Cucetuximab: $A_C = 4.1 \times 10^{12}$ versus 2.3×10^{10} disintegrations per gram of TE-8 tumor. This result is strengthened by the crude estimates for Ac provided by trapezoidal integration of Song et al.'s original data and assuming a simple radioactive decay after the last data point: $A_C = 5.3 \times 10^{12}$ versus 2.5 × 10¹⁰ disintegrations per gram of TE-8 tumor, for ¹⁷⁷Lu-cetuximab versus ⁶⁴Cucetuximab, respectively. Note that the injected activity was greater for ¹⁷⁷Lu-cetuximab than for ⁶⁴Cu-cetuximab: 12.95 versus 3.70 MBq. However, the difference in A_C may also be explained from Equation 1 showing that, for close values of K and k_R , the lower the value of α and λ the greater that of A_C. It does emphasize the efficiency of radioimmunotherapy with ¹⁷⁷Lu-cetuximab investigated in ESCC-tumor-bearing mice, and we suggest that the reliable IF fitting as a monoexponential decreasing function (Figure 1b; R = 0.98; P < 0.02) is particularly relevant for assessing its dosimetry (Equation 1). Furthermore, one may argue that Equation 1 does not take into account the part of free tracer in blood and interstitial volume (F) in the Ac calculation (3). However, we suggest that this part, and hence the related A_C underestimation, is negligible: F is indeed mandatorily much lower than 1, which has to be compared to the ratio $K/(\lambda + k_R)$ whose value is 8.1 for ¹⁷⁷Lu-cetuximab.

Regarding the issue of determining whether ⁶⁴Cu-cetuximab imaging might predict¹⁷⁷Lucetuximab A_C, and hence its dosimetry, in real clinical situation, the current study showed that A_C for ⁶⁴Cu-cetuximab may be obtained from the computed value of k_R at uptake peak and the corresponding uptake value (Equations 1, 3, 4). Thus, theoretically, if an average A_C ratio between ⁶⁴Cu-cetuximab and ¹⁷⁷Lu-cetuximab has been obtained from previous experiments (with arbitrary injected activities), an estimate for ¹⁷⁷Lu-cetuximab A_C may be obtained from a single quantitative imaging session with ⁶⁴Cu-cetuximab. However, a main concern about this line of argument must be underlined, which is related to performing PET imaging at uptake peak of ⁶⁴Cu-cetuximab (Equation 3). Indeed, even if the ⁶⁴Cu-cetuximab IF is known in each individual (i.e., the value of α in Equation 3), the relevant time delay between ⁶⁴Cu-cetuximab injection and PET acquisition cannot be predicted in each individual, because, precisely, k_R is unknown. Therefore, we suggest that additional experiments, involving lower times of resolution than those reported by Song et al. are required for knowledge of the k_R range in a large series of individuals that can also provide the range of the Ac ratio between ⁶⁴Cu-cetuximab and ¹⁷⁷Lucetuximab (for arbitrary injected activities). If k_R is found to vary within narrow limits for ⁶⁴Cucetuximab, the uptake-peak timing might be approximately predicted in each individual and, even, an average k_R value might be used for ⁶⁴Cu-cetuximab A_C calculation. Furthermore, the A_C ratio between ⁶⁴Cu-cetuximab and ¹⁷⁷Lu-cetuximab should also vary within narrow limits for deriving ¹⁷⁷Lu-cetuximab A_C. In other words, additional experiments are required to determine whether the measurement uncertainty of the ¹⁷⁷Lu-cetuximab A_C is acceptable or not. Finally, let us note that, whatever results obtained in a preclinical model, some adjustment is required in humans.


CONCLUSION

The study of Song *et al.* showed that the companion diagnostic/therapeutic radiopharmaceutical, namely ⁶⁴Cu-/¹⁷⁷Lu-cetuximab, may be useful as a diagnostic tool for patient selection as well as a potent radioimmunotherapy agent (1). As further evidence, although complexation and catabolism of copper and lutetium may be quite different, the current study showed that the uptake rate constants of ⁶⁴Cu-cetuximab and ¹⁷⁷Lu-cetuximab are very close, and their release rate constants are low in comparison with the formers. Moreover, owing to (i) a longer physical half-life of ¹⁷⁷Lu compared to that of ⁶⁴Cu, (ii) a longer IF life time of ¹⁷⁷Lu-cetuximab compared to that of ⁶⁴Cu-cetuximab, and (iii) a greater injected activity of ¹⁷⁷Lu-cetuximab compared to that of ⁶⁴Cu-cetuximab was found to be much greater (2 orders of magnitude in the current framework) than that of ⁶⁴Cu-cetuximab. However, the current study may be considered as a step for determining whether ⁶⁴Cu-cetuximab imaging might reliably predict dosimetry with ¹⁷⁷Lu-cetuximab in real clinical situation. This major issue requires additional experiments in preclinical models, of which results should be then tested in humans.

REFERENCES

- 1. Song IH, Lee TS, Park YS et al. Immuno-PET imaging and radioimmunotherapy of 64Cu-/177Lu-labeled anti-EGFR antibody in esophageal squamous cell carcinoma model. *J Nucl Med*. 2016;57:1105–1111.
- 2. Laffon E, Allard M, Marthan R, Ducassou D. A method to quantify at late imaging a release rate of 18F-FDG in tissues. *CR Biol.* 2005;328:767–772.
- 3. Laffon E, Bardies M, Barbet J, Marthan R. Kinetic model analysis for absorbed dose calculation applied to brain in 18FDG PET imaging". *Cancer Biother Radiopharm.* 2010;25:665–669.

FIGURE LEGENDS

Figure 1. Decreasing mono-exponential fitting of the input function: **A)** 64 Cu-cetuximab (P < 0.01); **B)** 177 Lu-cetuximab (P < 0.02).