Radiomics in PET/CT: more than meets the eye?

Mathieu Hatt¹, Florent Tixier², Dimitris Visvikis¹ and Catherine Cheze Le Rest²

¹. LaTIM, INSERM, UMR 1101, University of Brest, IBSAM, Brest, France.
². Academic department of Nuclear Medicine, CHU Poitiers, Poitiers, France.

Corresponding author: Mathieu Hatt
LaTIM, INSERM, UMR 1101
CHRU Morvan
2 avenue Foch
29609 Brest Cedex
Email: hatt@univ-brest.fr

Wordcount: ~1630

Radiomics is defined as the high throughput extraction of quantitative metrics from medical images (1). One of its main assumptions is that medical images are considered not merely as pictures for visual assessment, but rather as minable quantitative data (2), that may not necessarily be captured by the human eye (“more than meets the eye”) (3).

In the present issue of the J Nucl Med, Orlhac and colleagues present a study comparing visual assessment of uptake heterogeneity in positron emission tomography (PET) images by experts and a subset of radiomics metrics, namely textural features (TF). They exploited both clinical and simple simulated PET images, going further than previous studies carried out using clinical data only (4–6). Such studies are useful because they provide additional understanding relative to the visual meaning of quantitative metrics that cannot be easily explained to non-specialists. These studies have focused on the PET component and the FDG uptake heterogeneity. Similar analyses have been carried out in computed tomography (CT) (7) or magnetic resonance imaging (MRI) (8).

One important finding is that TF calculated after a “relative” quantization process (i.e. resampling the original image intensities into a variable number of bins of fixed width, for example 0.5 standardized uptake values (SUV) (9)) correlate better with visual assessment than when calculated after the usual quantization process (i.e. uniformly resampling the original intensities into a set number of bins, for example 64 or 128). These different observations can be overall related to different factors, such as the very different correlative relationships between texture parameters and either the maximum intensity (SUV_max) and/or the number of voxels involved (tumour volume), that have been also previously reported (9–12). Other quantization processes (histogram equalization, Max-Loyd clustering, etc.) can lead to yet different distributions and associated clinical value (13).

The consensus amongst experts was also substantially higher than in earlier studies, mostly because only two categories (heterogeneous vs. homogeneous) were considered, compared to three (4), four (6) or even five (7) in previous studies. In (4), the visual assessment into three categories had limited prognostic value compared to TF (4). Since there was no clinical endpoint (survival, outcome) in the study by Orhlac, et al. we cannot conclude about the clinical value of the features that correlated well with visual
assessment, although it is safe to assume that these features will be useful in clinical applications where there is a correlation between patients' outcome and the level of uptake heterogeneity visually assessed (or SUV\textsubscript{max}, given the observed correlations).

The primary goal of radiomics is to build clinical models using machine learning techniques (14) to predict patients' outcome, thereby allowing better patient management. These multiparametric models, which are likely to be unintelligible even to experts since they combine a large number of high-order multimodality image features (12,15), should outperform visual analysis in terms of both accuracy and reproducibility. To associate a "visual" meaning to such models can be even more challenging since they can also incorporate information from other fields (demographics, histopathology, genomics...). The human brain can only take into account a limited number of parameters in making a decision, therefore these multiparametric models will not be easily apprehended by end users. They will clearly demand a high level of precision and robustness in order to be accepted and relied upon to formulate a clinical decision. Within this context a rigorous process of model development (proper training) and validation (independent large cohorts) is needed, which is still far from being a standard, although some encouraging results have been published (16,17).

The current radiomics paradigm consists in adding quantitative information to the visual analysis by radiologists and nuclear medicine physicians, rather than replacing it entirely. For instance, it was recently shown that a set of semantic features obtained from visual assessment by radiologists could beneficially complement quantitative radiomics in determining EGFR mutations in lung cancer (18). However, a recent trend in medical imaging is to exploit techniques from the field of deep learning (19), with examples in image segmentation (20) or radiomics-type studies (21). This will further complicate the issue of association with visual analysis discussed above. Indeed, on the one hand the standard radiomics workflow relies on the extraction of carefully designed features based on domain expertise (e.g. a specific calculation in the intensity histogram or in a predesigned texture matrix), some of which are clearly inspired by the human visual system. On the other hand, deep learning methods automatically discover features from data and the representations useful for the task at hand using a general-purpose learning procedure such as convolutional neural networks (CNN). These require substantial amounts of data not easily available in the field of medical imaging, particularly in PET/CT. Potential solutions include transfer learning, consisting in using CNN trained for an unrelated task using large datasets, and adapt them to a different setting (22,23). If these tools were to replace advantageously the current workflow of radiomics, removing the need for tumor segmentation or the complex task of selecting relevant and reliable features (10,24), as well as an improved ability to handle standardisation issues (25), the relationship with visual analysis by experts would not simply be more difficult but certainly unnecessary to establish.
References

Radiomics in PET/CT: more than meets the eye?
Mathieu Hatt, Florent Tixier, Dimitris Visvikis and Catherine Cheze Le Rest

J Nucl Med.
Published online: November 3, 2016.
Doi: 10.2967/jnumed.116.184655

This article and updated information are available at:
http://jnm.snmjournals.org/content/early/2016/11/02/jnumed.116.184655.citation

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml

JNM ahead of print articles have been peer reviewed and accepted for publication in JNM. They have not been copyedited, nor have they appeared in a print or online issue of the journal. Once the accepted manuscripts appear in the JNM ahead of print area, they will be prepared for print and online publication, which includes copyediting, typesetting, proofreading, and author review. This process may lead to differences between the accepted version of the manuscript and the final, published version.