Editorial: Hybrid MR/PET Imaging in Neurology: Present Applications and Prospects for the Future
Wolf-Dieter Heiss

Since the first prototypes (1, 2) and the first commercial scanner (3) positron emission tomography (PET) has developed to multiring systems permitting high resolution and three-dimensional imaging of various physiological, functional and molecular targets. The first applications of PET were in brain research, and despite the many other diagnostic indications, particularly in oncology and cardiology, brain imaging remains a stronghold of PET. Despite the development of multi-ring systems covering the whole brain PET images still suffered from limited spatial resolution (2.3 mm and 2.5 mm in the transaxial and axial directions, respectively, with the High Resolution Research Tomograph, HRRT, (4), low sensitivity and insufficient attenuation and scatter correction. Multimodal imaging of physiologic and metabolic variables by PET requires coregistration to CT or MRI for accurate correspondence to the anatomic structures and to pathologic changes. MRI is the best method to image the morphology of the brain in health and disease, and various MR modalities can additionally be used to assess physiologic and metabolic parameters such as vascular supply (contrast-enhanced MRI), perfusion (PWI), edema (DWI), functional activation (fMRI), and concentration of defined substrates (MR spectroscopy). Pooling information obtained with MRI and PET has long been performed through a parallel analysis of the sequentially acquired data and, more commonly today, by using software coregistration techniques. However, underlying such studies is the assumption that no significant changes in physiologic or cognitive conditions have occurred between the 2 examinations. Although a good assumption for some studies, this may not be the case more generally. For example, a subject’s mental state may change on time frames from minutes to even seconds, while physiologic and metabolic changes can occur on the order of minutes in some disease conditions such as acute ischemic stroke or migraine. Likewise, rapid changes in baseline physiology can occur with some therapeutic interventions.

One means to address such potential pitfalls is through the simultaneous collection of MRI and PET data. The feasibility of simultaneous PET and MRI data acquisition for human studies was first demonstrated in 2007, and proof-of-principle brain data were collected using a prototype MRI-compatible PET insert - called BrainPET - positioned inside a commercially available 3-T MRI Trio system (5). In 2010, a fully integrated MR/PET scanner also became
available for human whole-body imaging (Biograph mMR) (6). Simultaneous MR/PET allows for both modalities spatial and temporal correlation of the signals, creating opportunities impossible to realize using sequentially acquired data. The features of this new technology may be particularly appealing to applications for translational research in neuroscience, considering that MRI represents the first-line diagnostic imaging modality for numerous indications and that a great number of specific PET tracers are available today to assess functional and molecular processes in the brain.

Simultaneous imaging certainly yields benefits with regard to patient management and time saving. Avoiding repositioning of the patient improves coregistration and localization of anatomical structures and lesions: This is of great advantage in the presurgical diagnosis of patients with focal epilepsy, where small lesions, hypoplasias or heterotopies can be delineated (7, 8). Improved differentiation of different tissue types by combined metabolic and morphological imaging is of great importance in differential diagnosis of brain tumors, for grading of gliomas, for the assessment of progression and the distinction between necrosis and recurrence; it also helps in the selection of the most promising place for biopsies and in the evaluation of treatment effects (7, 9-14). Further information on effects of tumors on morphology, function and metabolism of the surrounding brain may be obtained by adding diffusion tensor imaging/fiber tracking, fMRI, PWI, MRS and activation-PET to the multimodal imaging (15-17), by which anaerobic changes in energy metabolism in tumor and peritumor tissue, alterations in efferent and connecting fiber tracts and in task related activation patterns within functional networks can be visualized.

Coregistration of structure and metabolism together with simultaneous assessment of synaptic function is important for early recognition and differential diagnosis of cognitive impairment and for understanding the pathophysiology - e.g. deposition of amyloid, tau or other abnormal proteins - of degenerative disorders. Early diagnosis of Alzheimer Dementia and even detection of prestates of this devastating disorder can be achieved by MRI (hippocampal atrophy) combined to PET for measurement of glucose consumption and accumulation of amyloid and tau, which should be used for the selection of patients in treatment trials; the multimodal imaging permits also the differential diagnosis to other degenerative diseases (18-22). Further insights into the development of cognitive disturbances will be obtained by adding PET studies of synaptic function, e.g. cholinergic and serotoninergic transmission (18, 23).

Synergistic measurement of different physiologic parameters can explain functional impairment and predicts the development of irreversible neuronal
damage in ischemic stroke and therefore is crucial for therapeutic decisions. Since PET studies of regional cerebral flow and oxygen consumption are time consuming and not feasible for patients with acute ischemic stroke, non-invasive non-quantitative determinations of flow and tissue condition by PW- and DW-MRI are often used for classification of patients, but for a reliable definition of the "mismatch" as a measure of the "penumbra" - a state of critically perfused tissue with maintained morphological integrity - validation of parameters is necessary, which can only be obtained by comparative studies of PET and MRI (24). Using advanced techniques for analysis of MR data, determinations of perfusion by both methods are comparable and may be applied successfully for description of ischemic compromise (25, 26). Simultaneous PET/MR studies will be able to detect anaerobic glycolysis in ischemic tissue and will play a role in recognizing the impact of neuroinflammation on progress of tissue damage as well as on repair mechanisms after ischemia (27, 28).

Utilizing the unique capacities of hybrid MR/PET for simultaneous real-time recording of functional, metabolic, physiologic and morphologic data opens new fields in clinical research: Activation studies by PET and fMRI combined to diffusion tensor imaging permit the plotting of functional networks in health and disease and to demonstrate the effect of non-invasive (rTMS, DCS) and deep brain stimulation (implanted electrodes) (15, 29). Tracers for transmitters, receptors and enzymes further elucidate the involvement of synaptic function in special tasks and uncovers changes by diseases and drugs (30, 31). Tracers were also developed to identify residual tumor tissue for image-guided vector application and for identification of enzyme expression in glioma cells as target for selective treatment (32, 33).

In the future translational stem cell research will benefit from innovative applications of MR/PET: Experiments demonstrating the differentiation of stem cells to dopaminergic neurons and their function might be replicated in humans by C11-CFT-PET and PW-MRI (34); accumulation of implanted Fe-labeled stem cells in border zones of brain tumors (35) and migration of such stem cells to ischemic lesions can be demonstrated (36); experiments even detected mobilization of endogeneous neural stem cells, their migration to and proliferation around ischemic lesions (FLT-PET and MRI of iron oxide labeled cells) (37). The viability of stem cells can be documented by MRI combined to PET-imaging of reporter genes (33). Another interesting field is angiogenesis, which can be investigated by PET of F18-galacto-RGD and dynamic contrast-enhanced MRI, and might be a new target for selective tumor therapy (38, 39).

Predominantly clinical applications of hybrid MR/PET benefit from the
isocentric and simultaneous measurements warranting perfect anatomical matching. Thereby attenuation correction is facilitated and prospective and retrospective motion correction is possible. MRI combines good soft tissue contrast with no additional ionizing radiation and adds further functional data by spectroscopy, fMRI and dynamics of contrast media. For clinical and translational research hybrid MR/PET opens innovative strategies to improve our insight into the complex function of the brain and to deepen our understanding of the pathophysiology of CNS disorders. MR/PET will play a crucial role in the transfer of developing therapeutic concepts from animal experiments to human application.
References


Hybrid MR/PET Imaging in Neurology: Present Applications and Prospects for the Future

Wolf-Dieter Heiss

J Nucl Med.
Published online: April 7, 2016.
Doi: 10.2967/jnumed.116.175208

This article and updated information are available at:
http://jnm.snmjournals.org/content/early/2016/04/06/jnumed.116.175208.citation

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml

JNM ahead of print articles have been peer reviewed and accepted for publication in JNM. They have not been copyedited, nor have they appeared in a print or online issue of the journal. Once the accepted manuscripts appear in the JNM ahead of print area, they will be prepared for print and online publication, which includes copyediting, typesetting, proofreading, and author review. This process may lead to differences between the accepted version of the manuscript and the final, published version.