Imaging Hypoxia with 18F-Fluoromisonidazole: Challenges in moving to a more complicated analysis.

Mark Muzi1 and Kenneth A. Krohn1

1Department of Radiology, University of Washington, Seattle, Washington, USA

Running Title: Imaging Hypoxia with 18F-FMISO

Keywords: 18F-FMISO, hypoxia, imaging protocol
Cancer imaging using 18F-FMISO has been developed over the past 30 years and is the most established agent for noninvasively assessing hypoxia. Research into hypoxia imaging agents began, as many imaging agents arise, through laboratory investigations using cultured cancer cells in controlled oxygen environments (1). Development of 18F-FMISO was validated through studies of cell spheroids, animal imaging and tissue validation (2-4), and eventually human imaging in cancer patients (5). The process of development of a PET imaging agent for hypoxia in human imaging necessarily proceeded from a complex dynamic imaging protocol with concomitant arterial sampling to a simple clinically feasible static imaging session without blood sampling, maintaining quantitative accuracy required to make the imaging study clinically useful.

Current static imaging methods for 18F-FMISO quantification of hypoxia distribution have been shown to be useful in prediction of outcome and time to progression in a wide range of cancers (6-9). We have proposed using FMISO hypoxic volume (HV) distribution, where HV are the pixels greater than a tissue-to-blood ratio of 1.2, for planning hypoxia-targeted regions for escalated RT dose (10). This approach has been tested in patients with head and neck cancer and found to be not only feasible, but superior to uniform dose prescription (11-13).

In this issue a proposal is provided using a dynamic imaging sequence with kinetic analysis of 18F-FMISO, potentially to generate an equivalent image of hypoxia for dose planning (14). A similar distribution from dynamic 18F-FMISO imaging would require a much longer dynamic imaging session and possibly blood sampling for input function determination, in addition to specialized software for the creation of parametric images.
from the dynamic sequence. Dynamic imaging protocols aren't considered clinically feasible for routine imaging performed at most medical centers unless they have been demonstrated to provide substantial added benefit over simple static images, in a positive cost/benefit ratio.

Dynamic imaging is time consuming and blood sampling, counting and cross calibration with the scanner is complex and not readily extensible to a non-research clinical imaging center. Additionally, some clinical scanners cannot perform dynamic acquisition and many centers do not have the technical expertise to process dynamic image data. Moreover, we are not aware of any study has shown with convincing evidence that dynamic imaging of \(^{18}\text{F}-\text{FMISO}\) has added value in the discrimination of tumor hypoxia or has shown an advantage in predicting outcome variables commonly used to manage patients in the clinic, such as time-to-progression or overall survival.

Some reports hypothesize that the combination of severe chronic tissue hypoxia along with abnormal vasculature may lead to low total uptake of \(^{18}\text{F}-\text{FMISO}\) late after injection, but this has never been shown in human \(^{18}\text{F}-\text{FMISO}\) imaging. If chronic hypoxia occurs in tumors, even with restricted delivery over 2 hours of tracer uptake, \(^{18}\text{F}-\text{FMISO}\) will be reduced and fixed in the tissue by bioreduction from ubiquitous nitroreductase enzymes in cells that are alive. With acute hypoxia, transient oxygen peaks can release FMISO from tissue, lowering the bound tracer signal. \(^{18}\text{F}-\text{FMISO}\) was never designed to assess acute transient hypoxia, and dynamic imaging may play a role in assessing that situation if and when it is clinically relevant.
For many cancers, including those of the head and neck, the ^{18}F-FMISO static imaging protocol has become as facile as ^{18}F-FDG imaging, allowing quantitation by normalizing uptake to a blood pool in the field of view. From the patient's perspective, it is as easy as a bone scan and it does not require fasting, as does ^{18}F-FDG PET. The essential parameters are easily obtained for hypoxia assessment, patient stratification for hypoxia-selective drugs, or delineating severely hypoxic regions for a radiation boost.

Adding complexity and imaging time without added value to the clinical assessment of hypoxia is unnecessary. However, there may be some areas of imaging research that benefits from dynamic acquisition of ^{18}F-FMISO to validate the biochemistry of nitroreductase enzymes or genetic signatures associated with chronic hypoxia. For example, there is some suggestion that transient hypoxia occurs as a late response in patients treated with bevacizumab and this could be a clinical situation where dynamic FMISO imaging would have an advantage in assessing transient hypoxia.

To summarize, ^{18}F-FMISO PET started with 2 hr dynamic protocols with kinetic analysis but clinical studies have affirmed that static images at a time after injection when this freely diffusible radiopharmaceutical has distributed uniformly to normoxic tissue is useful. At this time after tracer injection only hypoxic tissues show increased uptake well above the equilibrium ratio of one. The nuclear medicine community is best served by keeping protocols as simple as possible and it is the requirement of investigators
proposing more complicated studies to show prospectively that there is added value in
the new procedure using a Cox model of proportional hazards or something similar.

1. Rasey JS, Koh WJ, Grierson JR, Grunbaum Z, Krohn KA. Radiolabelled
fluoromisonidazole as an imaging agent for tumor hypoxia. International journal
fluoromisonidazole as a probe for hypoxic cells. Radiation research.
1987;111:292-304.
3. Hoffman JM, Rasey JS, Spence AM, Shaw DW, Krohn KA. Binding of the
hypoxia tracer [3H]misonidazole in cerebral ischemia. Stroke; a journal of
4. Casciari JJ, Chin LK, Livesey JC, Boyles D, Steen RG, Rasey JS. Growth rate,
labeling index, and radiation survival of cells grown in the Matrigel thread in vitro
[F-18]fluoromisonidazole. International journal of radiation oncology, biology,
imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF
expression. European journal of nuclear medicine and molecular imaging.
7. Rajendran JG, Schwartz DL, O'Sullivan J, et al. Tumor hypoxia imaging with [F-
18] fluoromisonidazole positron emission tomography in head and neck cancer.
multiforme quantified with [18F]fluoromisonidazole positron emission tomography
before radiotherapy: correlation with time to progression and survival. Clin
Cancer Res. 2008;14:2623-2630.
Quantification of Hypoxia in Human Cancer Patients Using Image-Derived Blood
Surrogate Tissue Reference Regions. Journal of nuclear medicine : official
publication, Society of Nuclear Medicine. 2015;56:1223-1228.
imaging with [F-18] FMISO-PET in head and neck cancer: potential for guiding
intensity modulated radiation therapy in overcoming hypoxia-induced treatment
planning based on FMISO-PET hypoxia. Acta oncologica (Stockholm, Sweden).
2012;51:222-230.
painting for head and neck cancer using (18)F-FMISO PET: a biological

Imaging Hypoxia with 18F-Fluoromisonidazole: Challenges in moving to a more complicated analysis

Mark Muzi and Kenneth A Krohn

J Nucl Med.
Published online: February 18, 2016.
Doi: 10.2967/jnumed.115.171694

This article and updated information are available at:
http://jnm.snmjournals.org/content/early/2016/02/18/jnumed.115.171694.citation

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml

JNM ahead of print articles have been peer reviewed and accepted for publication in *JNM*. They have not been copyedited, nor have they appeared in a print or online issue of the journal. Once the accepted manuscripts appear in the *JNM* ahead of print area, they will be prepared for print and online publication, which includes copyediting, typesetting, proofreading, and author review. This process may lead to differences between the accepted version of the manuscript and the final, published version.

The *Journal of Nuclear Medicine* is published monthly.
SNMMI | Society of Nuclear Medicine and Molecular Imaging
1850 Samuel Morse Drive, Reston, VA 20190.
(Print ISSN: 0161-5505, Online ISSN: 2159-662X)

© Copyright 2016 SNMMI; all rights reserved.