Safety and Efficacy of 68Ga-DOTATATE PET/CT for Diagnosis, Staging and Treatment Management of Neuroendocrine Tumors

Stephen A. Deppen, MS, PhD,1,2 Eric Liu, MD,3 Jeffrey D. Blume, PhD,4 Jeffrey Clanton, DPh,5 Chanjuan Shi, MD,6 Laurie B Jones-Jackson, MD,5 Vipul Lakhani, MD,7 Richard P. Baum, MD, PhD,8 Jordan Berlin, MD,9 Gary T. Smith, MD,1,5 Michael Graham, MD, PhD,9 Martin P. Sandler, MD,5 Dominique Delbeke, MD, PhD,5 and *Ronald C Walker, MD1,5,10

1Veterans Affairs Hospital, VA Tennessee Valley Healthcare System, Nashville TN
2Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville TN
3Rocky Mountain Cancer Centers, Denver, CO
4Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
5Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN
6Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
7Oregon Medical Group, 1007 Harlow Road, Suite 210, Springfield, OR
8THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging (PET/CT), ENETS Center of Excellence, Zentralklinik Bad Berka, Germany
9Department of Radiology, University of Iowa, Iowa City, IA
10Vanderbilt-Ingram Cancer Center, Nashville, TN

Running title: Toxicity/Efficacy - 68Ga-DOTATATE

Disclaimers: 68Ga-DOTATATE is not US FDA approved for human use outside a properly conducted clinical trial.
US Clinical Trial: NCT01396382

Support: US Department of Veterans Affairs Merit Review: I01BX007080, Society of Nuclear Medicine and Molecular Imaging Clinical Trials Network, and local institutional and philanthropic support.

Key words: 68Ga-DOTATATE, 111In-Pentetreotide, neuroendocrine, carcinoid, toxicity

*Correspondence and reprint requests to:

Ronald C Walker, M.D.
Professor of Clinical Radiology & Radiological Sciences
Department of Radiology and Radiological Sciences
1121 21st Avenue South CCC-1121 MCN
Nashville, TN 37232-2675
Phone: 615.343.8516
Fax: 615.343.6531
Email: ronald.walker@vanderbilt.edu
ABSTRACT

Rationale
Our purpose was to evaluate safety and efficacy of 68Ga-DOTATATE PET/CT compared to 111In-Pentetreotide imaging for diagnosis, staging and re-staging of pulmonary and gastroenteropancreatic (GEP) neuroendocrine tumors (NETs).

Methods
68Ga-DOTATATE PET/CT and 111In-Pentetreotide scans were performed in 78 of 97 consecutively enrolled patients with known or suspected pulmonary or GEP NETs. Safety and toxicity were measured by comparing vital signs, serum chemistry values or acquisition related medical complications before and after 68Ga-DOTATATE injection. Added value was determined by changes in treatment plan when 68Ga-DOTATATE PET/CT results were added to all prior imaging, including 111In-Pentetreotide. Inter-observer reproducibility of 68Ga-DOTATATE PET/CT scan interpretation was measured between blinded and non-blinded readers.

Results
68Ga-DOTATATE PET/CT and 111In-Pentetreotide scans were significantly different in impact on treatment ($p<0.001$). 68Ga-DOTATATE PET/CT combined with CT and/or liver MRI changed care in 28 of 78 (36%) patients. Inter-observer agreement between blinded and non-blinded readers was very high. No participant had a trial-related event requiring treatment. Mild, transient events were tachycardia in one, alanine transaminase elevation in one and hyperglycemia in two participants. No clinically significant arrhythmias occurred. 68Ga-DOTATATE PET/CT correctly identified 3 patients for peptide receptor radiotherapy incorrectly classified by 111In-Pentetreotide.

Conclusions
68Ga-DOTATATE PET/CT was equivalent or superior to 111In-Pentetreotide imaging in all 78 patients. No adverse events requiring treatment were observed. 68Ga-DOTATATE PET/CT changed treatment in 36% of participants. Given the lack of significant toxicity, lower radiation
exposure, and improved accuracy compared to 111In-Pentetreotide. 68Ga-DOTATATE imaging should be used instead of 111In-Pentetreotide imaging where available.
INTRODUCTION

Neuroendocrine tumors (NETs) are usually slow-growing malignancies, mostly of the respiratory and digestive tracts, that cause significant morbidity and mortality (1). While generally considered rare due to low incidence of 2.5-5/100,000 in the United States, NETs have a higher prevalence (112,000 cases) than more aggressive and common malignancies, such as pancreatic or gastric adenocarcinoma (2). NET can be difficult to diagnose because of protean clinical presentations. Common chronic symptoms include cough or diarrhea, while others are clinically silent. The average time from symptom onset to diagnosis can be up to 9 years (3). Despite its reputation as a relatively “benign” disease, NETs are highly metastatic with most broncho-pulmonary and small intestinal cases presenting with metastatic disease (4). NETs have many treatment options which differ significantly from adenocarcinomas. Surgery is the primary treatment with the best opportunity for cure and can also mitigate tumor/hormone load from metastatic burden (5). Other treatments include systemic therapy with somatostatin analogues, biologics, molecularly target therapies, peptide-receptor radionuclide therapy (PRRT), liver-directed therapy, and platinum-doublet chemotherapy (6-11).

Given the range of treatments, it is critical to accurately delineate the extent of disease for proper management. Imaging plays an essential role in staging by showing local extent and distant disease. Conventional imaging, such as computed tomography (CT) and magnetic resonance imaging (MRI), provide critical information, but are limited in their fields of view and are highly dependent on protocol choice (12-15). Functional imaging with radiopharmaceuticals is an important diagnostic tool because most NETs have high cell surface somatostatin receptor expression levels (16). Using somatostatin analogues conjugated to 111In allows whole body imaging with planar and/or single photon emission tomography (SPECT), or SPECT/CT (17) the gold-standard for NET imaging for over two decades (18, 19). However, positron emission tomography with CT (PET/CT), developed in this interim, has higher resolution than SPECT. In
oncology, FDG PET/CT is the imaging reference for most malignancies. Outside the United States, PET/CT with somatostatin analogues conjugated to the positron-emitting radioisotope 68Ga is rapidly replacing 111In-Pentetreotide imaging (20-23).

The purpose of this study was to evaluate toxicity related to administration of 68Ga-labeled 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-D-Phe1,Tyr3-octreotate (68Ga-DOTATATE), a somatostatin analog with near exclusive and high affinity binding to somatostatin receptor subtype 2A (24) and to compare the incremental value of 68Ga-DOTATATE compared to 111In-Pentetreotide imaging.

PATIENTS AND METHODS

Patient Population

This study is investigator-initiated with extramural (VA Merit Review I01BX007080 and Society of Nuclear Medicine and Molecular Imaging Clinical Trials Network) and local philanthropic and institutional support, and is a registered US clinical trial (NCT01396382). Neuroendocrine cancer is a designated orphan disease, and 68Ga-DOTATATE is a designated orphan drug, by the US FDA. In this study of 98 68Ga-DOTATATE PET/CT scans performed on 97 consecutively enrolled patients between March 2011 and November 2013, 90 having a proven diagnosis of NET, prospective analysis of safety and toxicity data and 68Ga-DOTATATE scan findings was performed. Informed consent was obtained in all subjects, with local IRB approval and oversight (Vanderbilt University Medical Center IRB#110588), and US FDA investigational new drug approval (IND 111972). The initial two patients were scanned with individual compassionate use INDs using identical compounding. Standard of care imaging included 111In-Pentetreotide imaging (n=87), diagnostic CT (n=91) and MRI of the liver (n=60). Participants were excluded from comparison of 68Ga-DOTATATE to 111In-Pentetreotide scan if no prior 111In-Pentetreotide scan was available, no 111In-Pentetreotide scan was available after a
major surgical intervention occurring between 111In-Pentetreotide and 68Ga-DOTATATE scans, or if the time between 111In-Pentetreotide and 68Ga-DOTATATE scans exceeded 3 years. Safety and toxicity were assessed with pre-injection and post-imaging vital signs, pulse oximetry on room air, 12 lead electrocardiographs, and blood laboratory tests, including tumor markers, liver and renal functions and blood counts, and direct patient questioning.

Imaging Protocol

Local synthesis of individual doses of 68Ga-DOTATATE was performed as previously described. Radiation dosimetry is less than comparable 111In-Pentetreotide or 18F-FDG PET/CT scans(25).

No special dietary or activity restrictions were needed since 68Ga-DOTATATE binds almost exclusively to somatostatin receptor 2A, which is not influenced by diet or activity(26). The mass of injected 68Ga-DOTATATE peptide was 50 micrograms or less. Long-acting somatostatin analog medications are useful for symptomatic control and for anti-proliferative therapy of NETs. Thus, patients on long-acting somatostatin analog medications ($N=51$) did not stop these medications prior to undergoing 68Ga-DOTATATE PET/CT.

Imaging was performed with an 8-slice Discovery STE PET/CT full-ring integrated scanner (GE Healthcare, Waukesha, WI), beginning 65 min (range 55 – 93) after injection. Immediately after emptying their urinary bladders, a low-dose CT was performed from skull vertex to mid-thighs for attenuation correction and anatomic localization. Emission imaging (3D mode, 4 minutes per bed) was then performed from mid-thighs to skull vertex, with attenuation correction performed with the manufacturer’s workstations and software. Total time from injection to scan completion was less than 2 hours. CT reconstruction was with filtered back-projection, with emission image reconstruction via OSEM iterative reconstruction, 2 iterations, with correction for scatter and randoms as previously reported(25).

Image Analysis
Many of our patients were not from our local area, and brought conventional (CT, MRI) and 111In-Pentetreotide imaging from outside facilities with them in digital format. All outside images and original reports were loaded onto the Vanderbilt University Medical Center’s Picture Archive and Cataloging System linked to the Vanderbilt electronic healthcare records of each patient.

Because it was neither feasible nor ethical to obtain histological confirmation of all sites of apparent metastatic tumor, diagnosis and impact on care for 68Ga-DOTATATE vs. 111In-Pentetreotide imaging was analyzed on a “per-patient,” not a per-lesion, basis. Diagnosis and scoring for the extent of disease was determined using a combination of the preponderance of evidence from conventional imaging and pathological specimens prior to 68Ga-DOTATATE imaging, and then adding 68Ga-DOTATATE scan results to the full clinical assessment of the patient using all available prior imaging and clinical information, to determine if the addition of the 68Ga-DOTATATE scan changed the treatment plan. Evidence for tumor was scored based on original reports from conventional imaging, as well as abnormal, especially focal, areas of uptake on 111In-Pentetreotide or 68Ga-DOTATATE imaging. Scan results from the three independent 68Ga-DOTATATE readers were entered into an spreadsheet, along with the original reports on conventional and 111In-Pentetreotide imaging, and then analyzed for presence/absence of tumor, tumor improved, stable or progressive compared to earlier scans, and whether, and how, the results of the 68Ga-DOTATATE PET/CT scan changed patient management compared to either 111In-Pentetreotide alone and/or in combination with CT and/or MRI. Changes in management decision were determined and recorded via consensus of a weekly multidisciplinary neuroendocrine tumor board reviewing relevant imaging and clinical information. Contingency tables were generated with sensitivity and specificity, with confidence intervals estimated by exact binomial method. Differences in diagnostic test results were
measured by McNemar’s chi-square test and by comparison of receiver operator curves for differences of diagnostic test accuracy.

Original clinical reports of 111In-Pentetreotide, CT and MRI exams were used for analysis of these exams even if, in retrospect, additional sites of tumor were seen after comparison to 68Ga-DOTATATE images. 68Ga-DOTATATE imaging was interpreted via two methods. First, a physician board-certified in diagnostic radiology and nuclear medicine interpreted the 68Ga-DOTATATE PET/CT with full access to all prior imaging and clinical information. To avoid bias and to access inter-observer reproducibility, two board-certified nuclear medicine physicians independently interpreted the 68Ga-DOTATATE scans, blinded to all information, including other imaging, beyond knowing the patient met enrollment criteria. The two blinded interpretations were recorded on a regional basis (solid organ, regional nodal, regional extranodal abdominal and pelvic involvement, extra-abdominal/pelvic nodal or soft tissue, and skeletal disease) sufficient to stage the patient’s extent of disease relative to presence of tumor, resectability/extent of tumor, and intensity/presence of somatostatin receptor expression. Reviewer agreement was assessed by Fleiss kappa and confidence interval estimated using bootstrap method. The three physicians involved with 68Ga-DOTATATE scan interpretation each have 30+ years’ experience in medical imaging and 10+ years’ experience in PET/CT interpretation.

Separately, a board-certified oncological surgeon assessed the impact on care by comparing the intended treatment prior to and after the 68Ga-DOTATATE scan, on a per-patient basis. Initial treatment plan was formulated using all available clinical, pathologic and imaging information, including 111In-Pentetreotide scans. This treatment plan was then reviewed after adding the information from the 68Ga-DOTATATE scan. Minor impact in treatment was characterized by a change within a treatment modality (“intermodality”), such as change in plan for already planned surgery or dosage adjustment of current medications. Major impact on
treatment was characterized by a change of treatment modality (“intramodality”). Controversial cases, especially for major changes in management, were referred to the previously mentioned multidisciplinary NET tumor board. The addition of PRRT where previously not indicated, adding or discontinuing medications, or cancellation of surgery due to evidence of greater extent of disease on 68Ga-DOTATATE scan, are examples of major, intramodality treatment changes.

Data Analysis

Toxicity data were compiled and individual patient test results pre- and post-scan were compared. Blood laboratory test values include some fasting and non-fasting results as fasting status was not recorded. The cohorts’ pre- and post-scan test mean, median, standard errors and inter-quartile ranges are reported in Supplemental File Appendix 1. Statistically significant differences in test values were assessed by paired t-test and the non-parametric Wilcoxon rank-sum test. All tests are two-sided and performed using Stata, College Station, TX. Harm was measured by National Cancer Institute, Common Toxicity Criteria Version 1 (http://www.accessdata.fda.gov/scripts/cder/onctools/toxcrit1.cfm) with blood laboratory test values within the normal range having harm level 0. All participants were included for toxicity measurement.

RESULTS

Toxicity/Safety

No serious adverse events occurred among the 97 participants. Additional co-morbidities influencing abnormal baseline, pre-injection ECGs included: various conduction defects, one patient with ECG evidence of a prior anteroseptal infarction with a left anterior fascicular block, two patients with T-wave inversions, two with nonspecific ST-T wave changes, two with first degree AV block, two with p-wave abnormalities, one with a ventricular paced rhythm and one
with a prior cardiac transplant. No serious arrhythmias, changes in Q-T interval, or other significant changes from baseline, were observed.

Minor adverse events occurred in three patients. One had minor itching the day after the 68Ga-DOTATATE injection at the injection site, spontaneously resolving. One patient had an unexplained drop in post-scan oxygen saturation on room air (pre-injection 98%, post scan 90%), spontaneously resolving. One patient with a baseline heart rate of 87 had post-scan tachycardia of 112, asymptomatic, spontaneously returning to <100 beats per minute within an hour. Other patients had minor and transient changes in laboratory tests, all asymptomatic. Elevated glucose was observed in two patients (both on long-acting somatostatin analog medication, known to cause glucose intolerance in up to 25% of patients; one of these two patients is a diabetic). Post-scan fasting glucose plasma levels could not be consistently obtained after the participants returned home, so these two elevated values may not have been fasting. Changes in plasma levels of some blood markers were not available in 28 individuals who did not present to the laboratory. The patient with elevation in liver function tests had known extensive liver metastases, with improvement after PRRT.

Evaluation of 68Ga-DOTATATE Imaging and Safety

The majority of participants, 56 (58%), were female. Mid-gut NET was the most common tumor type (44, 56%) (Table 1). Ten of the 97 patients did not have a comparative 111In-Pentetreotide scan and were excluded from scan comparison. Another 5 were excluded when 111In-Pentetreotide imaging was performed before resection of some or all known tumor with 68Ga-DOTATATE imaging performed after surgery. Another 4 were excluded because the time interval between 68Ga-DOTATATE and 111In-Pentetreotide imaging exceeded 3 years. Thus, 78 participants were included for comparison of 68Ga-DOTATATE and 111In-Pentetreotide imaging. Mean 68Ga-DOTATATE activity was 196 MBq (5.3mCi) (95%CI: 178, 215 MBq; 4.8, 5.8 mCi). Median time between scans was 176 days with an inter-quartile range of 105 to 354 days. Of
the 78 participants with comparable scans, 50 had evidence of primary or metastatic disease and 28 had no disease or stable disease.

Assessment of Test Accuracy:

68Ga-DOTATATE and 111In-Pentetreotide scans had equivalent results in 61/78 (78%) patients (Fig. 1). One individual was false positive by both scans, confirmed by biopsy, and one was false negative by both methods with tumor confirmed by other imaging. Among the 17 participants with scan disagreement, 111In-Pentetreotide was false positive in two and 68Ga-DOTATATE was false positive in one. The sensitivity of 68Ga-DOTATATE imaging (96%; 95%CI: 86%, 100%) was higher than 111In-Pentetreotide imaging by all methods, (72%CI: 58%, 84%) and was also higher (97%; 95%CI: 82%, 100%) in the subgroup of patients with 111In-Pentetreotide SPECT/CT scans (83%; 95%CI: 64%, 94%). 111In-Pentetreotide SPECT/CT was more sensitive than planar only or planar plus SPECT imaging of 111In-Pentetreotide. Specificity was the same for 68Ga-DOTATATE and 111In-Pentetreotide (93%; 95%CI: 77%, 99%) among all 111In-Pentetreotide scan types and also for the SPECT/CT subgroup. Overall accuracy for 68Ga-DOTATATE (0.94; 95%CI: 0.89, 1.00) was significantly higher (p=0.02) than for 111In-Pentetreotide (0.82; 95%CI: 0.74, 0.90) (Table 2). 68Ga-DOTATATE and 111In-Pentetreotide imaging did not convey the same diagnostic result (McNemar’s chi-square p=0.01) in this population of mixed NET.

Assessment of 68Ga-DOTATATE Inter-observer Variability

Bias corrected Fleiss Kappa was 0.82 (95%CI: 0.74, 0.89) between the three reviewers in their reading of the 97 68Ga-DOTATATE scans. This high level of agreement was similar between various combinations of blinded vs. non-blinded clinical readers (Supplemental Table 1) demonstrating a high level of reproducibility in 68Ga-DOTATATE scan interpretations.

Assessment of Impact on Patient Care:

12
The addition of the 68Ga-DOTATATE imaging resulted in no impact on treatment plans in 50/78 (64%), a minor (within modality) change in 9/78 (12%), and a major change in treatment modality in 19/78 (24%) of patients. Of the 19 patients with a major change due to 68Ga-DOTATATE imaging, eight had surgery cancelled or a radical change in type of surgery, and 12 patients were referred for PRRT (Fig. 2). Among 48 patients with treatment changes with 111In-Pentetreotide SPECT/CT scans, 68Ga-DOTATATE imaging led to major changes in 11/78 (14%). Furthermore, time between 68Ga-DOTATATE and 111In-Pentetreotide imaging was broken into three categories, 0 to 90 days, 91 to 180 days and more than 180 days (Table 3). Changes in treatment plans were similar between the three time categories with the highest proportion of scans having an impact on treatment in the 0 to 90 days category (44%) and least in the 91 to 180 days (30%), though the differences were not significant.

68Ga-DOTATATE and 111In-Pentetreotide scans were concurrently false negative in one patient with tumor found on CT and MRI, but the two scans yielded useful information by demonstrating that the patient was not likely to benefit from PRRT. 68Ga-DOTATATE imaging demonstrated that 12/78 (15%) patients were nonsurgical candidates, with strong uptake to support PRRT, of which 3/12 (25%) were misclassified by 111In-Pentetreotide as not candidates for PRRT (Fig. 3).
DISCUSSION

68Ga-DOTATATE PET/CT imaging has been in widespread clinical use outside the US for nearly a decade, largely replacing 111In-Pentetreotide imaging where available. Space constraints in this report preclude full discussion, but an excellent systematic review and meta-analysis of 68Ga-DOTATATE and similar somatostatin PET imaging analogs by Geijer and Breimer(27) demonstrated pooled sensitivity and specificity (with 95% confidence intervals) for these imaging agents of 0.93 (0.91 to 0.94) and 0.96 (0.95 to 0.98), respectively, with the area under the summary receiver operating characteristic curve of 0.976. 68Ga-DOTATATE PET/CT specific information can be found in their citations, and also in Hofman, et al,(23) and Srirajaskanthan, et al.(28), who provide direct comparison to 111In-Pentetreotide imaging. Recently Has Simsek, et al,(29) and Lococo, et al,(30) reported the complementary roles of 68Ga-DOTATATE and 18F-FDG PET/CT.

68Ga-DOTATATE PET/CT is a more sensitive functional test than 111In-Pentetreotide imaging in our 78 patients with NETs and comparative scans, with one false positive scan resulting in a biopsy. 68Ga-DOTATATE PET/CT was superior to 111In-Pentetreotide imaging in a 48 patient subset with 111In-Pentetreotide SPECT/CT scans.

In 12 patients found by 68Ga-DOTATATE to have sufficient SSTR expression to support PRRT, 3 were misclassified by 111In-Pentetreotide, and would have been denied PRRT, a treatment currently under study for benefit. We found that correct clinical management could be made in all patients with imaging limited to 68Ga-DOTATATE plus diagnostic CT and/or contrast-enhanced liver MRI, excluding the one false positive exam from splenosis. No patient management decisions would have been adversely impacted by excluding the 111In-Pentetreotide scan, whereas 28/78 (36%) patients would have been adversely impacted if the 68Ga-DOTATATE scan had not been performed.
The 111In-Pentetreotide scans were not of uniform quality, reflecting the range of protocols and equipment in the US healthcare system. Some were performed with planar imaging only, some with planar and SPECT imaging, and some with planar and SPECT/CT. The planar with SPECT/CT imaging group provided the best comparison to 68Ga-DOTATATE PET/CT. Accordingly, we performed a sub-analysis comparing these two imaging modalities (Table 3). The results of this sub-analysis showed that the accuracy of 111In-Pentetreotide scan SPECT/CT was higher than that of planar or planar with SPECT, but was not as accurate as 68Ga-DOTATATE PET/CT, with much of this difference driven by the number of malignant lesions missed by 111In-Pentetreotide, seen by 68Ga-DOTATATE, especially in lymph nodes, intramedullary skeletal metastases and distant (extra-abdominal) metastases. This difference in test accuracy is also reflected in the 19 patients who had major changes in their treatment plans due to additional metastatic disease detected with 68Ga-DOTATATE PET/CT.

One intense focus of 68Ga-DOTATATE was in the head of the pancreas, a known area of frequent intense, focal uptake of 68Ga-DOTATATE that can also be seen with 111In-Pentetreotide(23). Because we knew of this frequent finding, no adverse impact on care resulted, with absence of tumor confirmed by CT. The single known false positive result was due to splenosis and inflammation, confirmed at surgery, though surgery was already planned.

Inter-observer reliability between the non-blinded, fully informed 68Ga-DOTATATE reader and the two, independent, blinded readers, demonstrated the high degree of reproducibility of interpretation in this trial by experienced readers on a per-patient basis. The kappa statistic of 0.82 represents superior to near perfect agreement between the three interpreters.

Limitations
As it is neither feasible nor ethical to obtain histological confirmation of all sites of apparent tumor, the impact on care for 68Ga-DOTATATE vs. 111In-Pentetreotide imaging was analyzed on a “per-patient,” not a per-lesion, basis. The 68Ga-DOTATATE scan was added to the full clinical assessment of the patient performed prior to the 68Ga-DOTATATE scan, using all prior imaging and clinical information, to determine if the addition of the 68Ga-DOTATATE scan changed the treatment plan, similar to other reports (23, 28, 31). The sensitivity and specificity of both 111In-Pentetreotide and 68Ga-DOTATATE in our trial may not reflect the true accuracy of either test due to an imperfect gold standard bias arising from using per-patient rather than per-lesion analysis. To minimize the bias from this imperfect gold standard we focused on comparing clinical management impact rather than the possibly imperfect final diagnosis (32).

Importantly, this is the first report with quantitative toxicity data for 68Ga-DOTATATE, with prior reporting typically limited to general observation due to differences in regulatory requirements for investigators outside the United States for drug mass “micro-dose” quantities (33). Although acute toxicity data was available in all 97 patients, our study is limited by some random post-scan organ function or hematologic toxicity data missing in 28 patients. Many patients traveled great distances to us, limiting our access to follow-up laboratory tests, especially in a timely manner. However, in the data we have in all 97 patients, we observed no toxicity that was symptomatic or otherwise requiring treatment.

Another limitation of our study is that not all patients had identical imaging protocols for CT, MRI or 111In-Pentetreotide scanning. Not all had both CT and MRI examinations, and the quality of the outside studies reflected the range in image quality throughout the United States. Also, because not all of our patients had healthcare insurance, not all could afford the requested follow-up laboratory tests.

CONCLUSION
68Ga-DOTATATE PET/CT changed management in 37% of patients. 111In-Pentetreotide did not add value compared to 68Ga-DOTATATE in any patient. When diagnostic imaging is limited to whole body 68Ga-DOTATATE plus diagnostic CT and/or liver MRI, correct staging and treatment decisions would have been reached in all patients. Our results clearly demonstrate that 68Ga-DOTATATE PET/CT is equivalent or superior to 111In-Pentetreotide imaging for the diagnosis and staging of lung and gastroenteropancreatic NETs. Given the superior performance for tumor detection (McNemar’s chi-square, p=0.01), lower radiation dosimetry,(25) and 2 hour completion time compared to 2 days for 111In-Pentetreotide imaging, our results conclusively demonstrate that 68Ga-DOTATATE PET/CT imaging is safe and should replace 111In-Pentetreotide imaging, where available.

Supplemental Appendix 1 - Toxicity

Supplemental Table 1 - Inter-observer variability
REFERENCES

Figure 1: STARD flow diagram of 68Ga-DOTATATE and 111In-Pentetreotide results

Note: STARD = standards for reporting diagnostic accuracy; 68Ga-DOTATATE = 68Ga-DOTATATE PET/CT scan; 111In-Pentetreotide = 111In-Pentetreotide scans of all types (planar, SPECT or SPECT/CT)

* Bowel = small or large bowel; Gastric = gastric, duodenal or pancreatic primary tumors

 CUP = metastatic carcinoma with unknown primary
Fig. 2. Axial gadoxetate disodium (Eovist™) MRI (A) and IV contrast enhanced CT (B) images reveal some of the widespread metastatic disease in the liver. Anterior planar 111In-Pentetrotide scan (C) and SPECT/CT (not shown) demonstrate uptake only in the primary ileal tumor in the abdominal right lower quadrant. Based on these findings, the patient would not be a candidate for PRRT treatment. 68Ga-DOTATATE PET/CT (only 3D anterior maximum intensity projection shown, (D)) demonstrates intense uptake in the primary tumor, a locoregional node and the liver metastases, demonstrating that the patient has sufficient somatostatin receptor expression to qualify for PRRT, among other treatments. The arrow indicates normal pituitary uptake (P).
Fig. 3. True positive 68Ga-DOTATATE PET/CT with false-negative 111In-Pentetreotide SPECT/CT. Anterior planar (A) image from an 111In-Pentetreotide SPECT/CT scan was negative for residual tumor. Anterior 3D maximum intensity projection view (B) and fused PET/CT (D) with skeletal metastatic foci prospectively missed on contrast enhanced CT (C), verified with MRI (selected short-tau inversion recovery image, (E). The patient was referred for PRRT, which would have been denied based on the false negative 111In-Pentetreotide scan. The arrow indicates normal pituitary uptake (P).
Table 1 Participant Demographics of Patients with Comparable Scans

<table>
<thead>
<tr>
<th></th>
<th>All Patients Enrolled</th>
<th>¹¹¹In-Pentetreotide and ⁶⁸Ga-DOTATATE scans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 97</td>
<td>N = 78</td>
</tr>
<tr>
<td>Gender Female (%)</td>
<td>56 (58)</td>
<td>49 (63)</td>
</tr>
<tr>
<td>Mean Age (SD)</td>
<td>53.7 (11)</td>
<td>53.4 (11)</td>
</tr>
<tr>
<td>Neuroendocrine tumor type (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-gut carcinoid</td>
<td>44 (45)</td>
<td>37 (47)</td>
</tr>
<tr>
<td>Gastro-entero-pancreatic</td>
<td>22 (23)</td>
<td>18 (23)</td>
</tr>
<tr>
<td>Unknown Primary</td>
<td>12 (12)</td>
<td>7 (9)</td>
</tr>
<tr>
<td>Symptoms Only</td>
<td>7 (7)</td>
<td>7 (9)</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>7 (7)</td>
<td>5 (6)</td>
</tr>
<tr>
<td>Hindgut or rectal</td>
<td>3 (3)</td>
<td>3 (4)</td>
</tr>
<tr>
<td>Other</td>
<td>2 (2)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>¹¹¹In-Pentetreotide scan type:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planar</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Planar + SPECT</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>Planar + SPECT/CT</td>
<td>50</td>
<td>48</td>
</tr>
<tr>
<td>Outside scan, type not specified</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Days between ¹¹¹In-Pentetreotide and ⁶⁸DOTATATE scans:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 – 90 days:</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>91 – 180 days:</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>> 180 days:</td>
<td>56</td>
<td>39</td>
</tr>
<tr>
<td>Ki-67 Category:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>Intermediate</td>
<td>37</td>
<td>29</td>
</tr>
<tr>
<td>High</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Missing</td>
<td>30</td>
<td>26</td>
</tr>
</tbody>
</table>
Table 2. Contingency tables comparing 68Ga-DOTATATE PET/CT and 111In-Pentetreotide imaging for all patients $N = 78$):

| Scan Type: | 111In-Pentetreotide | | | |
|---|---|---|---|
| | Cancer or progression | Cancer or progression | Benign | Benign |
| 68Ga-DOTATATE PET/CT | All Types SPECT/CT | All Types SPECT/CT | | |
| Cancer | 48 | 28 | 2 | 1 |
| Benign | 2 | 1 | 26 | 18 |
| | Cancer or progression | Cancer or progression | Benign | Benign |
| 111In-Pentetreotide | All Types SPECT/CT | All Types SPECT/CT | | |
| Cancer | 36 | 24 | 2 | 1 |
| Benign | 14 | 5 | 26 | 18 |
| | SENS 95% CI | SPEC 95% CI | PPV 95% CI | NPV 95% CI |
| 68Ga-DOTATATE PET/CT | 96% 86, 100 | 93% 77, 99 | 96% 86, 100 | 93% 77, 99 |
| 111In-Pentetreotide, all types | 72% 58, 75 | 93% 77, 99 | 95% 82, 99 | 65% 48, 94 |

Diagnosis based on single or multiple CT and/or MRI scans, surgical tissue confirmation, or a combination thereof.

95%CI = 95% confidence interval

Prevalence = 64%, 95%CI 52, 75
Table 3 Impact of 68Ga-DOTATATE scan on clinical care compared to days between comparison scans.

<table>
<thead>
<tr>
<th>Days:</th>
<th>Interval between 111In-Pentetretotide and 68Ga-DOTATATE scans</th>
<th>0 – 30 days</th>
<th>0 – 90 days</th>
<th>91 – 180 days</th>
<th>> 180 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>111In-Pentetretotide scan type</td>
<td>All Types</td>
<td>Planar + SPECT/CT</td>
<td>All Types</td>
<td>Planar + SPECT/CT</td>
<td>All Types</td>
</tr>
<tr>
<td>Treatment Impact</td>
<td>None</td>
<td>Minor</td>
<td>Major</td>
<td>None</td>
<td>Minor</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Interval between CT and/or MRI and 68Ga-DOTATATE scans

<table>
<thead>
<tr>
<th>Days:</th>
<th>Interval between CT and/or MRI and 68Ga-DOTATATE scans</th>
<th>0 – 30 days</th>
<th>0 – 90 days</th>
<th>91 – 180 days</th>
<th>> 180 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Impact</td>
<td>None</td>
<td>Minor</td>
<td>Major</td>
<td>None</td>
<td>Minor</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>33</td>
<td>7</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>9</td>
<td>4</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

All 111In-Pentetretotide scan types, $N = 78$; and 111In-Pentetretotide with SPECT/CT, $N = 48$

There was no significant impact on care by time interval between scans.
Safety and Efficacy of 68Ga-DOTATATE PET/CT for Diagnosis, Staging and Treatment Management of Neuroendocrine Tumors

Stephen A. Deppen, Eric Liu, Jeffrey D. Blume, Jeff Clanton, Chanjuan Shi, Laurie B Jones-Jackson, Vipul Lakhani, Richard Baum, Jordan Berlin, Gary Smith, Michael Graham, Martin Sandler, Dominique Delbeke and Ronald C. Walker

J Nucl Med.
Published online: January 14, 2016.
Doi: 10.2967/jnumed.115.163865

This article and updated information are available at:
http://jnm.snmjournals.org/content/early/2016/01/12/jnumed.115.163865

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml

JNM ahead of print articles have been peer reviewed and accepted for publication in _JNM_. They have not been copyedited, nor have they appeared in a print or online issue of the journal. Once the accepted manuscripts appear in the _JNM_ ahead of print area, they will be prepared for print and online publication, which includes copyediting, typesetting, proofreading, and author review. This process may lead to differences between the accepted version of the manuscript and the final, published version.