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Abstract: 

Attenuation correction in hybrid PET/MR scanners is still a challenging task. This paper 

describes a methodology for synthesizing a pseudo-CT volume from a single T1 

weighted volume, thus allowing us to create correct AC maps. 

 

Methods. 

We propose a fast pseudo-CT generation from a patient-specific MRI T1-weighted 

image using a group-wise patch-based approach and a MRI-CT atlas dictionary. For 

every voxel in the input MR image, we compute the similarity of the patch containing 

that voxel with the patches of all MR images in the database, that lie in a certain 

anatomical neighborhood. The pseudo-CT is obtained as a local weighted linear 

combination of the CT values of the corresponding patches. The algorithm was 

implemented in a Graphical Processing Unit (GPU). 

 

Results. 

We evaluated our method both qualitatively and quantitatively for PET/MR correction. 

The approach performed successfully in all cases considered. We compared the SUVs 

of the PET image obtained after attenuation correction using the patient specific CT 

volume, and using the corresponding computed pseudo-CT volume. The voxel by 

voxel correlation between SUV obtained with both methods was very high (R2=0.9980, 

p<0.0001), while the Bland-Altman test showed that the average of the differences was 

very low (0.0006±0.0594). A region of interest analysis was also performed. The 
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correlation between mean SUV value and maximum SUV value of every region was 

very high (R2=0.9989, p<0.0001 and R2=0.9904, p<0.0001, respectively). 

Conclusions. 

Results indicate how our method can accurately approximate the patient-specific CT 

and may serve as a potential solution for accurate attenuation correction in hybrid 

PET/MR systems. The quality of the corrected PET using our pseudo-CT is 

comparable to having acquired a patient-specific CT, thus, improving the results 

obtained with the UTE-based attenuation correction maps currently used in the mMR 

scanner. The GPU implementation led to a substantial decrease in computational time 

making the approach suitable for real applications. 

 

Keywords: Pseudo-CT, image synthesis, PET/MR, attenuation correction, GPU. 
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INTRODUCTION 

Positron Emission Tomography (PET) performs functional imaging by detecting pairs 

of annihilation gamma rays emitted indirectly by a positron-emitting radionuclide 

(radiotracer), allowing the measurement of the radiotracer biodistribution. Magnetic 

Resonance Imaging (MRI) provides, among others, detailed morphological imaging of 

organs or soft tissue, with excellent spatial resolution. The evolution of both modalities 

into complementary in vivo molecular imaging techniques has produced increased 

interest in the development of hybrid MR/PET systems (1). 

The construction of accurate attenuation correction maps (AC maps) is essential for 

the clinical application of hybrid PET/MR systems. Constructing PET AC maps for use 

in those hybrid systems is challenging because no direct relation exists between PET 

attenuation coefficients (µ) and MR signal intensity (2), contrary to what happens with 

AC maps and the intensity of CT images (3). Additionally, treating bone as soft tissue 

in MR-derived AC maps for PET/MR attenuation correction leads to a substantial 

underestimation in the analysis of PET tracer distribution (4). Creating a pseudo-CT 

(pCT) from MRI data could help to produce an accurate AC map, with a quality 

comparable to having acquired a real CT of the patient. 

Previous approaches for MRI-based AC have been presented in the literature (5). 

They mainly differ on the type of semantic representation that is used to describe the 

image data, based on mathematical morphology (6), deformable models (7), MRI 

Dixon (8) or Ultrashort TE (UTE) sequences (9,10), and multi-atlas segmentation using 

label-fusion (11). However, most of these methods showed limited accuracy when 

used to create AC maps (12). Hofmann et al. combined local pattern recognition with 
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image registration to generate pCT images (13). Recently, Izquierdo-Garcia et al. 

proposed an approach to pCT synthesis based on non-rigid registration to an atlas 

using the standard SPM8 software with a CT template (14). Burgos et al. described an 

improved method that used non-rigid registration to an atlas, followed by label-fusion 

based on patch-similarity measurements (15). Furthermore, clinical scanners currently 

rely on multiple MR sequence acquisition, but the results are not fully reliable, as 

shown in (16). 

Recently, patch-based methods have shown to be a versatile segmentation technique 

(17). Patch-based segmentation was introduced as an alternative approach for label 

propagation which eliminates the requirement of non-rigid registration. This technique 

was developed as an adaptation of the non-local framework developments for non-

local denoising (18). Several approaches have been introduced depending on the 

patch fusion methods or rules (19,20). Ye et al. proposed a patch-based method for 

generating a T2 volume from a T1-weighted volume (21). 

In this work, we propose a simple and fast approach for pCT synthesis from a single 

patient-specific MRI T1-weighted image using a group-wise patch-based approach and 

a limited MRI and CT atlas dictionary. Our method is purely patch-based, eliminating 

the need of a registration step. This allows a considerable reduction of time. Also, the 

algorithm becomes parallelizable, so that a fast implementation using a Graphical 

Processing Unit (GPU) card is presented. 

In the next section we describe the data set used in this work and the overall process 

of the pCT synthesis and AC maps. Then, we present different experiments 

quantitatively comparing the use of patient-specific CT and our pCT for AC correction. 
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Finally we discuss the findings from the experimental results and the possible 

implications for managing PET AC in hybrid PET-MR systems, and extract some 

conclusions.  
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MATERIALS AND METHODS 

Patient Population 

The institutional review board-approved retrospective study included a data set 

containing 19 healthy volunteers (19 females, mean age (34.96 ± 5.23) y, range: 27 y – 

46 y). All of them underwent both MRI and CT imaging. For this type of study, the need 

for written informed consent was waived. 

 

Image Acquisition 

MRI images of the head were acquired on a General Electric Signa HDxt 3.0T MR 

scanner using the body coil for excitation and an 8-channel quadrature brain coil for 

reception. Imaging was performed using an isotropic 3DT1w SPGR sequence with a 

TR=10.024ms, TE=4.56ms, TI=600ms, NEX=1, acquisition matrix=288x288, 

resolution=1x1x1mm, and flip angle=12º. 

Low-dose CT images were acquired on a Siemens Somatom Sensation 16 CT scanner 

with matrix=512x512, resolution=0.48x0.48mm, slice thickness=0.75mm, 

PITCH=0.7mm, acquisition angle=0º, voltage=120kV, radiation intensity=200mA. 

 

Data Pre-Processing 

Image pre-processing was carried out using 3D Slicer built-in modules (22). This pre-

processing included: MRI bias correction (N4 ITK MRI bias correction), rigid 
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registration (general registration BRAINS) to align each patient-specific MRI-CT pair, 

rigid registration to pre-align all the images in the same spatial origin – all the images 

are set in the same orientation –, and normalization of the greyscale values (ITK-based 

histogram matching). 

 

Pseudo-CT Synthesis 

     Weights Estimation. Let ܫ be an input image to be processed, and ܣ an anatomy 

atlas containing a set of MRI T1-weighted volumes ܫெோ and their corresponding ܫ் 

volumes: ܣ = ൛൫ܫெோ , ்ܫ ൯	݅ = 1,… , ݊ൟ. 
Let us consider ݓ as a weight reflecting non-local similarities between voxels ࢇ =൫ܽ௫, ܽ௬, ܽ௭൯ in the input image ܫ and voxels ࢈ = ൫ܾ௫, ܾ௬, ܾ௭൯ in the image ܫெோ  of the atlas ܣ over the image domain ષ, and computed using the following equation: 

 
(1) 

where ூܲሺࢇሻ is a 3D patch of the image ܫ centered at voxel ࢇ, ܵ is the number of voxels 

in the 3D patch, ߚ is a smoothing parameter, and ߪො is the standard deviation of the 

noise. The original denoising approach assumes that similarities of a patch can be 

found over the entire image domain ષ. However, in our context of modality 

propagation, the variations of the anatomical structures in a population are bounded, 

so we can find good matches in a specific neighbourhood ܰ௫௫ሺࢇሻ of a certain voxel ࢇ. The weights are then estimated in this local area as ݓ	 = 	 ሼݓሺࢇ, ,ሻ࢈ 	ࢇ	∀ ∈ 	ષ, 	࢈ ∈	ܰ௫௫ሺࢇሻሽ, reflecting the local similarities between ܫ and ൛ܫெோ ൟୀଵ,…,. 

,ࢇሺݓ ሻ࢈ = ݂൮∑ ቀܫሺࢇ′ሻ − ெோܫ ሺ࢈′ሻቁଶࢇᇲ∈ሺࢇሻ,࢈ᇱ∈ಾೃ ሺ࢈ሻ2ܵߪߚොଶ ൲ 
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The size of the patch has been set to 3x3x3 for all experiments. The size of the 

considered neighborhood has been set to 11x11x11, which is directly related to the 

head anatomical variability (21). 

     Group-Wise Label Propagation. Once the weights have been computed using 

equation 1. By using those weights, the corresponding voxel ࢇ of image ܫ௦௨ௗ் can 

be estimated as a weighted linear group-wise combination of the patches in ܫ்  as 

follows: 

 
 (2) 

Which takes all the images ܫெோ  in the atlas ܣ to produce a group-wise combination of ܫ் , thus, obtaining an estimation of ܫ௦௨ௗ். 

     Regularization. Contrary to registration-based approaches, if there is no 

correspondence between the patch of the input image ܫ and the patches of the images ܫெோ  in the atlas ܣ, no value (NaN due to division by 0) is assigned to the voxel ࢇ of ܫ௦௨ௗ். 

This situation makes it necessary to include a regularization step that deals with non-

labeled voxels. Usually these cases are isolated, so in this work we have assigned to 

this voxel the value of the median in its neighbourhood. The size of this new 

neighbourhood has been set to 3 in this paper, so that ଷܰ௫ଷ௫ଷሺࢇሻ. 
 

(3) 

ࢇ	∀  = ࡺࢇࡺ ∈ ષ, ሻࢇ௦௨ௗ்ሺܫ = ݉݁݀݅ܽ݊ேయೣయೣయሺ࢞ሻ ቀܫ௦௨ௗ்ሺࢇሻቁ 

ࢇ	∀ ∈ ષ, ሻࢇ௦௨ௗ்ሺܫ = ∑ ∑ ,ࢇሺݓ ்ܫሻ࢈ ሺ࢈ሻ࢈ ∈ ேೣೣሺࢇሻୀଵ∑ ∑ ,ࢇሺݓ ࢈ሻ࢈ ∈ ேೣೣሺࢇሻୀଵ  
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GPU Implementation 

The Patch-Based algorithm is highly parallelizable. The calculation of the resulting ܫ௦௨ௗ் for each voxel ܫ in the 3D input volume is completely independent from the 

other voxels. Configuring a 3D grid in a CUDA model allows eliminating loops to iterate 

over the different voxels in the volume. Our CUDA kernel contains the selection of 

atlas A, and the search in the neighborhood ܰ; this way, each label calculation is 

performed in a separate thread. 

 

PET Simulation 

We obtained detailed tissue segmented models from the T1-weighted volumes by 

using the pipeline described by Torrado-Carvajal et al. (23). These models contained 

cerebellum WM and GM, brain WM and GM, CSF, skull, eyes, muscle, fat, and skin. 

We assigned a standard FDG-PET activity to each tissue according to these relative 

values (GM: 4.0, WM and rest of soft tissue: 1.0, CSF and bone: 0.0) (24,25) obtaining 

the ground truth PET maps. Then, these ground truth maps were projected with the 

3D-OSEM software (26) assuming the geometry, parameters and sinogram format of 

the Biograph mMR scanner (27). The system response matrix used in this case 

assumed a uniform gaussian point-spread function (PSF) with 4 mm FWHM in the 

whole FOV. As in Hofmann et al., we neglected scatter and random coincidences to 

isolate the effect of the attenuation maps in the final reconstructed PET images (13). 

The projection data generated were our attenuation-free reference data. 
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The 511-keV AC maps derived from the CT (gold standard) and from the MR (pCT) 

images and originated using the conversion described in Nakamoto et al. (28) were 

forward projected generating the attenuation data. The forward projection is based on 

the same code used for projecting the PET distribution with the 4-mm PSF, as the 

blurring effects involved in the PET emission, like positron range and non-co-linearity, 

affect also the attenuation of the gamma-rays. We then used these two projection data 

sets (ProjμMR and ProjμCT) to generate our attenuation-corrected data (PETMR-AC) from 

the attenuation-free one (PET) following equation: 

 
(4) 

 

Image Reconstruction 

The attenuated projection data and the attenuation-free data were both reconstructed 

with the 3D-OSEM software (26) adapted to the geometry and sinogram size of the 

mMR scanner. We used 30 iterations and 3 subsets and the reconstructed images 

consisted of 201x201x129 voxels of 2x2x2 mm each. As indicated in Burger et al., the 

differences between these two reconstructed images depends on the reconstruction 

method used, but it is outside of the scope of this work to analyse this effect (3). 

Experimental Setup 

The available data were separated into an atlas ܣ containing 10 MRI-CT pairs ܣ =൛൫ܫெோ , ்ܫ ൯	݅ = 1,… ,10ൟ, and a test set ܶ containing the 9 remaining MRI-CT pairs ܶ =൛൫ܫெோ , ்ܫ ൯	݆ = 1,… ,9ൟ. 

ܧܲ  ெܶோି = ܶܧܲ ݁൫ഋಾೃିഋ൯ 
ܧܲ  ெܶோି = ܶܧܲ ݁൫ഋಾೃିഋ൯ 
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RESULTS 

Image Quality 

Figure 1 shows a complete head MRI volume, the ground truth and the synthesized 

pCT for two healthy subjects. Visual inspection evaluation was performed by an expert 

radiologist to confirm the accuracy of our method; our pipeline works equally well in all 

cases considered. 

The proposed method estimates the shape of the skull generally well, despite patient-

specific anatomical variations. The comparison between the patient-specific CT and 

the pCT shows that our method is able to accurately estimate the ground truth, 

delimiting the skull contours and differentiating air from bone. Visual inspection of the 

results shows the high quality of the pCT estimation and the robustness of the method, 

which is able to capture the details of the bone spikes in non-smooth areas such as the 

sinuses or the cervical vertebrae. 

We also tested the effect of changing the size of the atlas on the quality of the 

synthesized images in subjects without skull deformations, using atlas of 5, 7, and 10 

datasets (Figure 2). We used the normalized cross correlation (NCC) to quantitatively 

measure the quality of the synthesized pseudo-CTs (I2) compared to the ground truth 

CT (I1) following equation 5. 

 

(5) 

 

ܥܥܰ  = 1ܰሺܫଵሺݔ, ሻݕ − ,ݔଶሺܫଵሻሺߤ ሻݕ − ଶ௫,௬ߪଵߪଶሻߤ  
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The experimental NCC was 0.9281±0.0066 for the atlas with 5 datasets, 

0.9294±0.0051 for the atlas with 7 datasets, and 0.9324±0.0048 for the atlas with 10 

datasets. 

Artifacts caused by dental restorations are a common problem in MRI and CT scans of 

the head and neck. Those implants impair CT image quality due to beam hardening 

artifacts; likewise, they impair MRI image quality resulting in signal loss. The presence 

of an implant in the jaw of a subject results in signal loss in the MRI, beam hardening 

in the CT and blurring in the synthesized pCT (Figure 3).  

 

PET Correction Quality 

     Voxel by Voxel Analysis. Voxel by voxel analysis was performed to determine 

differences in reconstructed Standardize Uptake Values (SUVs) for all test subjects. 

Comparison of the attenuation-free SUV images (Gold Standard) –attenuated and 

corrected with the patient-specific CT– and the pCT-based corrected SUV images –

attenuated with the patient-specific CT and corrected with the synthesized pCT– 

showed excellent correlation. Errors are lower than 10% of the SUVs in most voxels. 

Some deviations can be appreciated in subjects A and B, but the error is lower than 

5% on average (Figure 4). 

We also computed the voxel by voxel correlation between pCT-based SUV versus CT-

based SUV and the Bland-Altman of SUV measurements for all 9 test subjects over 

the whole head (Figure 5). Voxels dominated by noise (SUV<0.01) were not included 

in the analysis. The correlation plot shows an excellent correlation between SUV 
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obtained with both methods (R2=0.9980, p<0.0001). The Bland-Altman plot shows that 

the average of the differences is very low (0.0006±0.0594); the difference between 

methods tend to get smaller as the average increases, accumulating the error in voxels 

with low SUV values. 

     Region of Interest (ROI) Analysis. ROI analysis was performed to determine 

differences in assigned attenuation coefficients and reconstructed SUVs. ROIs were 

defined as the original segmented tissues used to assign PET activity in the simulation. 

Table 1 provides a summary of pCT-based and CT-based attenuation coefficient 

values for each ROI analysed. Paired-samples Wilcoxon signed rank tests were 

performed to assess if pCT-based and CT-based attenuation coefficient values mean 

ranks differed. No significant differences were found in the mean CT-based 

attenuation coefficients, as compared to assigned pCT-based attenuation coefficients, 

in all ROIs except for the skin. 

We computed the correlation between pCT-based SUV versus CT-based SUV and the 

Bland-Altman of the mean and maximum SUV measurements for each region of 

interest (Figure 6). The correlation plot for mean SUV shows an excellent correlation 

between mean SUV obtained with both methods (R2=0.9989, p<0.0001). The Bland-

Altman plot for mean SUV shows that the average of the differences is very low 

(0.0009±0.0338); the difference between methods does not show an increasing or 

decreasing trend as the average changes.The correlation plot for max SUV shows a 

very slight overestimation in the max SUV obtained with our method (R2=0.9904, 

p<0.0001). The Bland-Altman plot for max SUV shows that the average of the 
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differences is low (0.0312±0.2345); the difference between methods confirms a slight 

overestimation of our method in regions with low SUV values. 

 

Experiments on Clinical Data 

To perform a validation on real data, we acquired MR, PET and CT volumes of a 

subject. The institutional review board (Fundación HM Hospitales) approved this study 

and the subject signed a written informed consent. 

MR and PET images of the head were acquired on a Siemens Biograph mMR scanner 

using the body coil for excitation and an 8-channel quadrature brain coil for reception. 

We acquired a 3DT1w MP-RAGE volume with TR=1800ms, TE=2.65ms, TI=900 ms, 

NEX=1, acquisition matrix=250x250x250, resolution=1x1x1mm, flip angle=9º. 

Furthermore, a double UTE sequence with TR=11.94ms, TE1=0.07ms, TE2=2.46ms, 

NEX=1, acquisition matrix=192x192x192, resolution=1.56x1.56x1.56mm,  flip 

angle=10º, as well as a Dixon sequence with TR=3.6ms, TE1=1.23ms, TE2=2.46ms, 

acquisition matrix=192x126x128, resolution=2.08x2.08x2.34mm,  flip angle=10º were 

acquired to obtain the AC map. 

Low-dose CT images were acquired on a Toshiba Aquilion PRIME CT scanner with 

matrix=512x512, resolution=0.43x0.43mm, slice thickness=1mm, PITCH=0.62mm, 

acquisition angle=0º, voltage=120kV, radiation intensity=200mA. 

The subject was administered 129.1 MBq of fluorodeoxyglucose (18F-FDG). PET data 

were acquired 20 minutes after the injection over a single bed position for 15 minutes. 

The images without attenuation correction were reconstructed using the iterative 
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algorithm OP-OSEM provided by the manufacturer with 6 iterations and 21 subsets, 

reconstruction matrix=344×344×127, resolution=2.09×2.09×2.03mm. The 

reconstruction includes a point spread function (PSF) model. 

We synthesized the pCT volume using the atlas with 10 volume pairs and the same 

processing pipeline as in previous experiments. The reconstructed image without 

attenuation correction was projected with the same code used in the previous section. 

The resulting sinograms were then corrected by attenuation using the three different 

maps (CT-based, UTE-μMAP and pCT-based). The corrected sinograms were 

reconstructed with the 3D-OSEM algorithm with 30 iterations and 1 subset, 

reconstruction matrix=127×127×127, resolution=2×2×2mm. 

Figure 7 shows the MR, the CT, the UTE-μMAP and the pCT images and the result of 

correcting the PET data with the different volumes. The NCC was 0.5808 between the 

CT and the UTE-μMAP, and 0.8919 between the CT and the pCT.  

 

Computational Time 

For a 271x271x221 volume, the complete time to synthesise the pCT volume for 

different number of images in the multi-atlas case is shown in Table 2. In the worst-

case scenario (atlas of 10 volumes), computation of the pCT volume in GPU takes less 

than 9 minutes, x4374 less time than with a Matlab implementation, x27 less than 

using a C implementation and x11 less than with an OpenMP multithreaded C version 

using 32 threads. 
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All the experiments were performed on a 3.1GHz Intel Xeon-E5 2687W, with 128 GB 

RAM and Windows Server 2008 R2 powered with an NVIDIA Tesla k20x GPU. 

 

DISCUSSION 

The generation of accurate AC maps is a basic step for PET/MRI quantification. 

However, ignoring bone is known to cause a distorted and biased distribution of the 

reconstructed SUV. Several approaches have been proposed, based mainly in a 

combination of MR sequences or using image registration to take advantage of a priori 

acquired CT data. Methods requiring the acquisition of additional MR data show a 

significant underestimation of activity concentration. Approaches based on non-rigid 

image registration are computationally intensive and are normally unable to deal with 

local changes in anatomy, due to pathology or implants. 

We propose the use of a patch-based method for synthesizing a pCT volume from a 

single T1 MR volume. Compared to non-rigid registration methods, the patch-based 

approach uses only information from those volumes in the atlas that actually match the 

patch, preventing errors due to misregistration, making it able to deal with local 

morphological changes in the images. 

Our results are in line with those recently described in Burgos et al. (15). However, our 

method eliminates the need of image registration, providing results with the same 

accuracy, while allowing to implement a much faster algorithm. 
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We have evaluated our method both qualitatively and quantitatively for PET/MR 

correction. The visual (Figure 1) and quantitative (Figure 4) image quality analysis 

performed show that CT and pCT are very similar. The high NCC values indicate how 

our method can accurately approximate the patient-specific CT. We have also shown 

an example on a subject with a dental restoration, providing better results than CT-

based AC maps (Figure 3). No significant differences were found in all ROIs except  

the skin, where the deviation was -0.006126 ± 0.004088, p-value=0.0039 (Table 1); 

this can be due to the fact that the skin is the thinnest ROI, so small errors in the 

estimation of the region can have a large effect on the result. As the CT is not going to 

be used for diagnostic purposes, the level of detail of the pCT does not need to be 

equivalent to a real acquired CT. 

It can be noticed that the attenuation coefficients that we derived in both cases from 

the Hounsfield values using the transformation proposed by Nakamoto et al. (28) differ 

slightly from the values assigned to these tissues in other publications. However, our 

results are independent of the transformation used, as we are comparing the pCT 

generated by our method to a gold standard CT, and the same transformation is used 

in both volumes to obtain the attenuation values. 

Analysis of the absolute error maps (Error = pCT-based – CT-based) confirmed there 

are small differences between both approaches, which are mainly localized in the air 

interface zones where the PET activity is low and usually non-relevant for clinical 

applications (Figure 4). The ROI analysis shows a strong correlation between 

attenuation-free SUV images and pCT-based corrected SUV images (Figure 6). In this 

work, we only considered a standard 18F-FDG biodistribution to evaluate the final 



18 
 

impact of the method in a normal PET brain scan, but we expect similar small 

deviations with other radiotracers.  

We have also tested our method on real clinical data. Using the real CT volume of the 

subject as a gold standard, we have compared the pCT image obtained with our 

method and the UTE-μMAP currently used for attenuation correction in the mMR 

scanner. The UTE-μMAP is not able to differentiate air from bone in certain regions, 

leading to errors in the final PET image (Figure 7). The NCC for the clinical data is 

lower than that from the test data, possibly due to the different scanners and 

sequences used to acquired the clinical data and the atlas volumes. As future 

research, we will design similarity measures that are robust to such changes. 

There are some other effects that we have neglected. One is the impact of the possible 

deviations in the MR-derived attenuation map when the scatter correction is 

considered. The distribution of scatter in the sinogram is usually very smooth. The 

effects of deviations in the μ-map on the scatter correction are averaged over many 

sinogram bins. Therefore, small deviations in the attenuation map will have a very 

modest impact on the scatter correction, especially as the scaling factor used to fit the 

estimated scatter distribution to the experimental data would remove any overall bias 

that may be introduced. We also did not include the effect of possible errors in the 

modelling of the attenuation of the MR-Coils (12). However, this effect can be 

controlled in clinical practice with the appropriate scanner modelling, calibrations and 

acquisition protocols. 

The method is highly parallelizable, as each voxel is computed independently. This 

has allowed implementing a GPU version that provides a complete pCT in times similar 
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to those that would be needed for acquiring an actual CT scan. There is still room for 

improvement in the GPU implementation, so some speedup of the algorithm is still 

possible. 

We have validated our approach using a set of 10 whole head volume pairs in healthy 

subjects, in contrast to typical brain studies that do not include the neck, which is very 

difficult to synthesize due to its anatomical complexity and variability. 

Our technique could, in theory, be applied in other regions of the body. Registration-

based approaches are not so straightforward as our approach in other regions, due to 

stronger inter-subject anatomical differences. In a real clinical application, the atlas 

should be designed to include the necessary anatomical heterogeneity. The design of 

specific databases that take into account skull lesions will be a future line of research. 

However, our study suggests that SUVs measured on PET/MR and those measured 

on PET/CT are close enough; this finding makes our approach feasible for qualitatively 

interpretation of PET scans for diagnostic purposes. The method should be further 

validated on images with distinct regions, such as tumours.  
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CONCLUSION 

In this work we showed how the use of patch-based techniques to estimate a pseudo-

CT from MR T1-weighted images allows determining accurate AC maps for use in 

hybrid PET/MR systems. The proposed method provides an accurate estimation of a 

pseudo-CT with similar accuracy to the patient-specific CT, without the need of a 

registration step. Atlas-based approaches avoid the over-simplification of most 

previous proposed methods based on segmented MR images that assume that all 

voxels in the same tissue type should have the same attenuation coefficients. The 

GPU implementation led to a substantial decrease in computational time making the 

approach suitable for real applications. 
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Figure 1. Sagittal, coronal and axial slices of the patient-specific MRI (first column), 

patient specific CT (second column), and synthesized pseudo-CT (third column) of two 

subjects. 
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Figure 2. Axial slice of the patient specific CT and pseudo-CTs synthesized using 

atlases of different sizes. 
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Figure 3. Artifacts caused by dental restorations. MRI (left) is impaired by signal loss; 

CT (centre) is impaired by beam hardening; pseudo-CT (right) is synthesized 

presenting some blurring in those zones. 
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Figure 4. Sagittal, coronal and axial slices of the attenuation-free SUV volumes (first 

column), pCT-based corrected SUV images (second column), and error between both 

corrections (third column) for two subjects. Blue values in the error maps denote decreased 

PET SUVs in the pCT-based correction, while red values denote increased PET SUVs. 

.  
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Figure 5. Voxel by voxel comparison of pCT-based attenuation correction against CT-

based attenuation correction methods. The left plot shows the correlation between 

pCT-based SUV versus CT-based SUV from all subjects.  The right plot shows the 

Bland-Altman of SUV measurements. Color bar shows density of voxels on histogram 

grid. 
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Figure 6. ROI comparison of pCT-based attenuation correction against CT-based 

attenuation correction. The left plots show the correlation between mean pCT-based 

SUV versus mean CT-based SUV (top) and max pCT SUV versus max CT-based SUV 

in the different tissues from all subjects. The right plots show the Bland-Altman of 

mean SUV and max SUV measurements. 
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Figure 7. Axial slice of the MR, the CT, the UTE-μMAP and the pseudo-CT volumes 

from clinical data (row A). Corrected SUV images using the different AC maps (row B). 
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ROI 

pCT-based 

attenuation 

coefficient 

CT-based 

attenuation 

coefficient 

Absolute difference p-value 

Cerebellum WM 0.094554 ± 0.000324 0.094557 ± 0.000556 0.000004 ± 0.000570 0.7969 

Cerebellum GM 0.094910 ± 0.002787 0.094919 ± 0.003018 0.000009 ± 0.002358 0.6289 

Brain WM 0.094501 ± 0.000244 0.094468 ± 0.000512 0.000033 ± 0.000530 0.0938 

Brain GM 0.094982 ± 0.004226 0.094942 ± 0.004577 0.000040 ± 0.003724 0.1211 

CSF 0.094201 ± 0.006186 0.093993 ± 0.002647 0.000208 ± 0.005549 0.1406 

Bone 0.171169 ± 0.039059 0.174073 ± 0.034212 0.002904 ± 0.028846 0.2383 

Fat 0.096634 ± 0.013912 0.096558 ± 0.004161 0.000076 ± 0.012901 0.7969 

Muscle 0.087851 ± 0.016329 0.087132 ± 0.004444 0.000719 ± 0.015747 0.1563 

Skin 0.081767 ± 0.022670 0.087893 ± 0.009935 0.006126 ± 0.021313 0.0039 

Table 1. Summary of mean pCT-based and CT-based attenuation coefficient values 

for each ROI analyzed. Within each ROI, mean pCT-based attenuation coefficient and 

standard deviation, mean CT-based attenuation coefficient and standard deviation, 

absolute difference and p-value obtained from the Wilcoxon signed rank test. 
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 Computational Time 

Volumes in Atlas 
Matlab 

(days) 

C 

(minutes) 

C OpenMP 

(minutes) 

GPU 

(minutes) 

5 11.44 119.91 ± 0.02 61.76 ± 0.09 4.43 ± 0.00 

7 16.18 168.08 ± 0.04 74.34 ± 0.29 6.20 ± 0.00 

10 26.89 240.11 ± 0.14 99.84 ± 0.13 8.86 ± 0.00 

Table 2. Comparison of the average ± standard deviation of the computational time 

spent to obtain a complete pCT volume using different implementations and atlas 

sizes. Matlab code was tested only once due to the computational cost. 


