Invited Perspective

PSMA PET in Prostate Cancer

Hossein Jadvar, MD, PhD, MPH, MBA

Department of Radiology
Keck School of Medicine
University of Southern California
Los Angeles, CA USA

Keywords: PSMA, PET, Prostate, Cancer

Address for correspondence:
Hossein Jadvar, MD, PhD, MPH, MBA
Associate Professor of Radiology
University of Southern California
2250 Alcazar Street, CSC 102
Los Angeles, CA 91107
Tel: 323-442-1107
Fax: 323-442-3253
jadvar@med.usc.edu
Molecular imaging with positron emission tomography (PET) employing an increasing list of biologically relevant radiotracers is paving the way for precision and personalized medicine in prostate cancer (1). Prostate specific membrane antigen (PSMA) has received a resurgence of attention as a useful biomarker in the imaging evaluation of prostate cancer with PET. PSMA is a type II, 750 amino acid integral membrane glycoprotein (100-120 kDa), with a 19 amino acid intracellular component, a 24 amino acid intramembrane segment and a large 707 amino acid extracellular domain (2). It has several enzymatic functions and is known to be upregulated in castrate-resistant and metastatic prostate cancer (3). Despite what the name suggests, PSMA is not specific to the prostate gland and is expressed in other normal (e.g. salivary glands, duodenal mucosa, subset of proximal renal tubular cells, and subpopulation of neuroendocrine cells in the colonic crypts) and neoplastic (e.g. subtypes of transitional cell carcinoma, renal cell carcinoma, colon carcinoma and peritumoral and endotumoral endothelial cell of neovasculature) tissues (4). There is no known natural ligand for PSMA and the reasons for its upregulation in prostate cancer remains unclear. PSMA undergoes constitutive internalization and as such can serve not only as an imaging biomarker but also for targeted therapy – in other words PSMA may be useful as a target for theranostic agents (5).

The commercially available 111In-capromab pendetide targets the internal epitope of PSMA with radiolabeled mouse monoclonal antibody 7E11. However this agent is only accessible to its target in dying or dead cells, and has been technically demanding to perform with only moderate diagnostic performance in men at high risk for lymph node and/or soft tissue metastases and negative bone scintigraphy. The recently developed PET radiotracers primarily target the extracellular moiety of the PSMA (hence detecting viable cells) and include 11C- (half-life 20.3 min), 18F- (half-life 109.8 min), 68Ga- (half-life 67.7 min), 89Zr- (half-life 78.4 h), 64Cu- (half-life 12.7 h), and 86Y- (half-life 14.7 h) labeled agents that involve antibodies, antibody fragments, aptamers, and PSMA inhibitors (2). In particular, many publications are now appearing in literature on the potential diagnostic utility of Glu-NH-CO-NH-Lys-(Ahx)-[68Ga-HBEDD-CC] conjugate (abbreviated as 68Ga-PSMA, which binds the motif glutamate-urea-lysine with the chelator HBED-CC) in prostate cancer. The normal biodistribution of this tracer shows intense uptake in salivary glands and kidneys and moderate uptake in lacrimal glands, liver, spleen, and intestines (6). False negative results may include prostate tumors with neuroendocrine differentiation, small tumors, and tumors located next to areas with high physiologic tracer uptake (7). False positive results have been reported with physiologic uptake in the celiac ganglia (8).

In the primary tumor setting, a single clinical case report using a hybrid PET/MR imaging system showed high tracer localization, T2 hypointensity and restricted diffusion at the tumor site (9). The small foci of benign prostate hyperplasia demonstrated diffuse diffusion restriction but no abnormal tracer accumulation. Although additional experience will be needed in the primary tumor setting, the
68Ga-PSMA PET/MR imaging may provide sufficient imaging information to guide biopsy and delivery of focal therapy to the dominant aggressive lesion.

In this issue of the Journal of Nuclear Medicine, Eiber and colleagues from Germany reported on a retrospective analysis of 68Ga-PSMA PET/CT in 248 patients with biochemical recurrence (serum PSA range 0.2-59.4 ng/mL; median 1.99 ng/mL) of prostate cancer after radical prostatectomy (10). One board-certified nuclear medicine physician and one board-certified radiologist interpreted PET and CT images, respectively and separately, with a final consensus interpretation. The standard of reference for the PET imaging findings was as usual mostly based on clinical and/or other imaging follow-up. The authors reported lesion detection rates that increased with increasing serum PSA level. The lesion detection rate for the range of key clinical interest in the low serum PSA range (0.2-0.5 ng/mL) was 58%. Higher detection rate was also noted with higher PSA velocity but not with shorter PSA doubling time. The authors also found a higher lesion detection rate in patients with higher primary tumor Gleason score but no statistically significant association was noted with regards to the use of androgen deprivation therapy. One key question that remains unanswered by this report is the unique contribution of the nonstandard 68Ga-PSMA PET/CT over conventional imaging in the setting of biochemical recurrence after radical prostatectomy. Although this was tangentially addressed in this report (33% of lesions were detected only on PET), a prospective study with well-defined inclusion criteria involving only patients with PSA relapse and no conventional imaging evidence of locally recurrent and metastatic disease would clarify the distinctive role of 68Ga-PSMA in this important clinical setting that then can be compared to the reported results for other relevant radiotracers. Such study design will help to elucidate the competitive advantage of 68Ga-PSMA in biochemical recurrence of prostate cancer. In another study from the same group of investigators, it has been noted that 68Ga-PSMA may have an advantage over 18F-fluorocholine (11). However, additional comparative studies will be needed to ratify this early observation and to establish the clinical relevance of potentially detecting more lesions with 68Ga-PSMA PET/CT in comparison to radiolabeled choline PET/CT.

The other finding in this study was that there was no statistically significant association between the lesion detection rate and androgen deprivation treatment. This finding is probably related to statistical power issues since it is contrary to prior reports that have demonstrated higher PSMA expression in tumor cells exposed to antihormonal treatment (12, 13). Future prospective studies will be needed to examine how 68Ga-PSMA behaves in the treatment response assessment setting with various therapy regimens (14). This will likely depend on the extent that PSMA expression may be affected by different therapies aside from cell death (which in turn can also be imaged with those tracers that target the internal epitope of PSMA). In summary, 68Ga-PSMA is a noteworthy radiotracer with high potential for diagnostic utility in prostate cancer. Moreover, appropriate radionuclide substitutions may provide opportunity for
targeted radioisotope therapy (15). Additional prospective clinical studies in well-defined patient cohorts, clinical settings, and expected outcomes will be needed to confidently establish the role of 68Ga-PSMA as a major contender radiotracer in the imaging evaluation of prostate cancer with PET.

Acknowledgment: National Institutes of Health, National Cancer Institute, grants R01-CA111613, R21-142426 and P30-CA014089, and the Whittier Foundation.

References


PSMA PET in Prostate Cancer

Hossein Jadvar

_J Nucl Med._
Published online: May 14, 2015.
Doi: 10.2967/jnumed.115.157339

This article and updated information are available at:
_http://jnm.snmjournals.org/content/early/2015/05/14/jnumed.115.157339.citation_

Information about reproducing figures, tables, or other portions of this article can be found online at:
_http://jnm.snmjournals.org/site/misc/permission.xhtml_

Information about subscriptions to JNM can be found at:
_http://jnm.snmjournals.org/site/subscriptions/online.xhtml_

_JNM_ ahead of print articles have been peer reviewed and accepted for publication in _JNM_. They have not been copyedited, nor have they appeared in a print or online issue of the journal. Once the accepted manuscripts appear in the _JNM_ ahead of print area, they will be prepared for print and online publication, which includes copyediting, typesetting, proofreading, and author review. This process may lead to differences between the accepted version of the manuscript and the final, published version.

The _Journal of Nuclear Medicine_ is published monthly.
SNMMI | Society of Nuclear Medicine and Molecular Imaging
1830 Samuel Morse Drive, Reston, VA 20190.
(Print ISSN: 0161-5505, Online ISSN: 2159-662X)

© Copyright 2015 SNMMI; all rights reserved.