Quantitative evaluation of segmentation- and atlas-based attenuation correction for PET/MR on pediatric patients

Ilja Bezrukov¹,², Holger Schmidt³, Sergios Gatidis³, Frédéric Mantlik¹,², Jürgen F. Schäfer³, Nina Schwenzer³, Bernd J. Pichler¹

¹Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard-Karls University Tübingen, Germany
²Department of Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
³Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany

Corresponding author:
Ilja Bezrukov, Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard-Karls University Tübingen, Germany
Phone: +497071/2983843
Fax: +497071/294451
Email: ilja.bezrukov@med.uni-tuebingen.de

Running head: MRAC for pediatric PET/MR patients
Word count: 6,794
Abstract
Pediatric imaging is regarded as a key application for combined PET/MRI systems. As existing MR-based attenuation correction (MRAC) methods were not designed specifically for pediatric patients, we assessed the impact of 2 potentially influential factors: inter- and intra-patient variability of attenuation coefficients and anatomical variability. Furthermore, we evaluated the quantification accuracy of 3 methods for MRAC without (SEGbase) and with bone prediction using an adult/pediatric atlas (SEGwBONEad/pe) on PET data of pediatric patients.

Materials
Variability of attenuation coefficients between and within pediatric (5-17y, n=17) and adult (27-66y, n=16) patient collectives was assessed on volumes of interest (VOIs) in CT datasets for different tissue types.

Anatomical variability was assessed on SEGwBONEad/pe attenuation maps by computing mean differences to CT-based attenuation maps for regions of bone tissue, lungs and soft tissue.

PET quantification was evaluated on VOIs with physiological uptake and on 80%-isocontour VOIs with elevated uptake in thorax and abdomen/pelvis. Inter- and intra-patient variability of the bias was assessed for each VOI group and method.

Results
Statistically significant differences in mean VOI Hounsfield unit values between adult and pediatric collectives were found in lungs and femur.

Prediction of attenuation maps using the pediatric atlas showed a reduced error in bone tissue and better delineation of bone structure.

Evaluation of PET quantification accuracy showed statistically significant mean errors in mean
standardized uptake values of -14%±5%/-23%±6% in bone marrow/femur-adjacent VOIs with physiological uptake for SEGbase, which could be reduced to 0%±4%/-1%±5% using SEGwBONEpe attenuation maps. Bias in soft tissue VOIs was <5% for all methods. Lung VOIs showed high standard deviation in the range of 15% for all methods. For VOIs with elevated uptake, mean and SD were <5% except in thorax.

Conclusion

Use of a dedicated atlas for the pediatric patient collective resulted in improved attenuation map prediction in osseous regions and reduced inter-patient bias variation in femur-adjacent VOIs. For the lungs, where intra-patient variation was higher for the pediatric collective, a patient- or group-specific attenuation coefficient could improve attenuation map accuracy. Mean errors of -14%/-23% in bone marrow/femur-adjacent VOIs can affect PET quantification in these regions when bone tissue is ignored.

Keywords: Attenuation Correction, PET/MR, Segmentation, Atlas
INTRODUCTION
Pediatric imaging is regarded as one of the key applications for combined PET/MRI systems (1,2), as the reduction of radiation dose compared to PET/CT examinations is of particular importance for pediatric patients. The detection accuracy of malignant tumor lesions was shown to be improved for combined PET/MRI in comparison to PET or MRI alone, with increased specificity in follow-up examinations (3).

Due to the growing skeleton anatomical variabilities are higher in the pediatric collective compared to adults, which might affect the validity of MR-based attenuation maps, as these are usually not specifically adapted for pediatric anatomy. For example it was shown that bone density increases with increasing age (4), while lung density decreases (5). At present, MR-based attenuation correction maps in clinical routine applications of PET/MR are created by segmentation of MR images into 3-5 tissue classes and assignment of dedicated linear attenuation coefficients (LACs) to the different classes (6,7). Thus, the question arises whether the attenuation maps for pediatric patients that were created with these methods designed for adult patients are of sufficient accuracy for clinical routine and whether adaptations are necessary.

The goal of this work was threefold: First, we wanted to address the question whether a significant age-related variability of attenuation coefficients exists between the adult and pediatric patient collectives, as such differences might produce a bias in segmentation-based attenuation maps that use predefined LACs.

Second, we wanted to find out whether the age-related anatomical variability affects the prediction accuracy of atlas-based methods. Third, we evaluated PET quantification accuracy using standard segmentation-based and atlas-based methods.

In this work, we thus systematically compared age-related variations in CT Hounsfield units (HUs) and
LACs in selected volumes of interest (VOIs) between adult and pediatric CT datasets to assess the age-related variability of attenuation coefficients. Intra- and inter-patient variability of LACs for both groups was also assessed. Furthermore, we compared the prediction quality of a hybrid segmentation, atlas- and pattern recognition-based method published previously (8) on the pediatric patient collective using an atlas database with adult patients versus using a newly created atlas database consisting of pediatric patients. The resulting attenuation maps were compared using a region-based approach. Finally, a VOI-based evaluation of the deviation of mean standardized uptake values (SUVmean) from PET data corrected with the standard segmentation-based method without prediction of bone tissue (SEGbase) or the hybrid segmentation and pattern recognition-based method with bone prediction (SEGwBONE) to PET images reconstructed using CT-based attenuation maps was performed. Intra- and inter-patient variability of the bias was assessed for each VOI group and each method. PET images were reconstructed using SEGwBONE attenuation maps created with the adult atlas (SEGwBONEad) as well as the pediatric atlas (SEGwBONEpe).

MATERIALS & METHODS

Data Acquisition

PET/CT. CT images of 17 pediatric patients (age 13.3±3.6 years, range 5-17 years, with post transplant lymphoproliferative disorder, bronchial carcinoid, colorectal cancer, germ cell tumor, hepatocellular carcinoma (n=2), lymphoma (n=6), neuroendocrine tumor, pancreatic cancer, primitive neuroectodermal tumor, sarcoma, thyroid cancer) were acquired during a PET/CT examination on a Biograph mCT (Siemens Healthcare, Knoxville, TN, USA; peak voltage 120 kVp, tube current 250 mAs, rotation time 0.3 seconds, collimation 0.6 mm, table feed 30.7 mm) with an in-plane resolution of 0.6 x 0.6 mm².

Additional CT images of 16 adult patients (age 44.6±13.0 years, range 27-66 years, with breast cancer,
colorectal cancer, fever of unknown origin, lymphoma (n=3), melanoma, neuroendocrine tumor (n=4), neurofibromatosis, ovarian cancer (n=2), prostate cancer (n=2) acquired on the Biograph mCT were used for the adult patient collective.

All CT images were contrast enhanced (portal venous phase).

All patients were enlisted in a clinical study and gave their written informed consent. For underage patients, the consent was given by their parent or guardian.

PET/MR. Corresponding PET/MR images for the pediatric patients were acquired on a Biograph mMR (Siemens). The MR images used for MR-based attenuation correction (MRAC) were acquired in breath-hold using a dual echo spoiled gradient echo sequence with Dixon fat and water separation (echo time 1=1.23 ms, echo time 2=2.46 ms, repetition time=3.6 ms, flip angle=10°, acquisition time=18 s per bed position). No MR contrast agents were applied prior to the PET/MR acquisition. The MRAC sequence as well as additional diagnostic MR sequences were acquired parallel to the PET data acquisition with 6 min per bed position.

A subset of 10 patients (age 14.5±2.27 years, range 10-17 years) was used to create the atlas MR-CT atlas database and evaluate the bias in atlas-based attenuation maps; of these, 9 patients (age 14.4±2.4 years, range 10-17 years) were used for evaluation of the error in PET datasets. The PET images of these patients were acquired 103.0±30.4 min after the injection of 4.5±1.2 MBq/kg 2-deoxy-[18F] fluoro-2-D-glucose.

Evaluation of age-related LAC variations
An evaluation of age-related variations in HU values and the corresponding LACs was performed on the 33 CT datasets, subdivided in the categories pediatric (n=17; age 13.3±3.6 years, range 5-17 years) and adult (n=16; age 44.6±3.0 years, range 27-66 years) using VOI analysis.
A total of 29 spherical VOIs were placed in each dataset such that tissue categories 'muscle' (8 VOIs), subcutaneous fat at the level of the hips ('hip fat') (4 VOIs), 'liver' (3 VOIs), 'lung' (6 VOIs), 'femur' (2 VOIs) and 'bone marrow' (6 VOIs) were represented.

Mean and Standard Deviation in HU and cm$^{-1}$ were calculated for each VOI category on the adult and pediatric patient collectives. Statistical significance was tested with the Wilcoxon Signed rank test with P-value adjustment via the Benjamini & Hochberg method. Results were considered statistically significant for $P < 0.01$.

Additionally, mean and SD of all voxels from VOIs in one tissue category for each patient were computed, yielding Mean$_{\text{patient,group}}$ and SD$_{\text{patient,group}}$. We calculated the SD of Mean$_{\text{patient,group}}$ over all patients to assess the inter-patient variability of LACs. To derive the intra-patient variability, we calculated the means of both SD$_{\text{patient,group}}$ and relative SD (SD$_{\text{patient,group}}$/Mean$_{\text{patient,group}}$ *100) over all patients.

Creation of attenuation maps

MR-based attenuation maps were created to evaluate the influence of age-related anatomical variability on attenuation map prediction quality and to quantify the PET bias caused by omission of osseous tissue. CT-based attenuation maps were used as reference.

Baseline Segmentation-Based Method (SEGbase). The standard vendor-provided method for creation of MR-based attenuation maps on the Biograph mMR was used to compute reference MR-based attenuation maps. The method segments the MR images into five classes outer air, lung, fat, soft tissue and a fat/soft tissue mix, with predefined LACs assigned to each class (6). Bone tissue is not considered as a distinct tissue class.

Segmentation-Based Method With Bone Prediction (SEGwBONE). We further evaluated the
feasibility to use a previously described hybrid segmentation and atlas-based approach (8) on the pediatric patient data. Segmentation-based LACs are assigned to non-osseous regions in a dataset, whereas LACs for bone areas are computed using an approach based on atlas- and pattern recognition. A detailed description of the method is given in Supplemental Methods.

The attenuation maps were created using two separate atlas databases consisting of co-registered MR and CT image pairs: an adult atlas database of 11 patients, as described previously (9) (SEGwBONEad), and a newly created database of pediatric patients (SEGwBONEpe).

Creation Of Pediatric Atlas Database. The newly created atlas database of pediatric patients consisted of a subset of 10 of the 17 pediatric patients (age 14.5±2.27 years, range 10-17 years), where the following criteria were met: PET/MR data with bed positions including thorax, abdomen and pelvis was available; no fat/water flip in the Dixon images occurred; the visual assessment of CT to MR registration showed no major registration artifacts. Dixon and resulting segmented attenuation map were visually inspected. None of the datasets used for the database showed an influence of the patient diseases on the attenuation maps.

All CT images of the patients in the atlas database were contrast enhanced (portal venous phase). The CT datasets were preprocessed to remove ancillary objects as the patient table and fixing devices. An initial alignment was performed such that the lung centers of gravity for MR and CT datasets were matched. Subsequently, the CT images were co-registered to the in-phase MR data using Elastix (10). The MR data was previously normalized for intensity variations. The registration procedure is described in Supplemental Methods. As the arm positions of the MR and CT datasets differed between acquisitions, the arm regions were substituted from the MR-based attenuation map created on the scanner, as reported previously (8).
The co-registered datasets were postprocessed to handle regions of artificially high HUs caused by the injection of contrast agent. These regions were masked automatically, checked and adjusted manually and replaced with HU values of soft tissue. In Supplemental Figure 1, the CT-based attenuation maps created from the CT before (A) and after the removal (B) of artificially high HUs are shown.

When using the pediatric atlas database, the attenuation maps were computed with a cross-validation approach, such that for each patient, n=9 patients were used as atlas database to create the attenuation map.

CT-Based Baseline (CTAC). The co-registered and postprocessed CT datasets were further used to create reference CT-based attenuation maps. The conversion of HU to LAC values was performed using a piecewise bilinear transformation (11).

Evaluation of atlas influence on attenuation map prediction quality

To evaluate whether the anatomical variability between adult and pediatric patients affects the prediction accuracy of atlas-based attenuation maps, we applied the hybrid segmentation and atlas-based approach to compute attenuation maps for the pediatric patients using two different databases, an adult atlas database of 11 patients (SEGwBoneAd) and the new pediatric atlas database with 10 patients (SEGwBonePe).

A region-based evaluation was performed on the SEGbase and SEGwBonePe/ad attenuation maps, where the mean difference to the CT-based reference attenuation maps was computed. The following regions were used: soft tissue, bone and lungs. Soft tissue and lung regions were determined from the SEGbase attenuation map by assigning the tissue classes to the corresponding regions (fat and non-fat soft tissue to ‘soft tissue’, lungs to ‘lungs’). Bone regions were determined from the CT-based reference attenuation maps by selecting voxels with an LAC above 0.1106 cm⁻¹. In order to limit the
influence of factors not related to the performance of the attenuation map prediction algorithms, the evaluated regions were further limited: Regions where the evaluation could be biased due to injection of contrast agent were excluded from the region-based evaluation, as were upper shoulder and arm regions where also registration errors occurred due to the different arms positions in MR and CT. Furthermore, only areas which were present in all co-registered atlas datasets were used, excluding lower extremities and parts of upper head regions from further evaluation. A sample region map is shown in Supplemental Figure 1.

Mean and SD of LAC deviations from the reference CT-based attenuation map were computed for each region category.

Evaluation of PET data

PET datasets of 9 pediatric patients (age 14.4±2.4 years, range 10-17 years) were reconstructed using CTAC, SEGbase, SEGwBONEad and SEGwBONEpe attenuation maps. One patient was excluded from PET reconstruction due to unavailability of PET raw data. VOI-based evaluations were performed using PET images reconstructed with CTAC as reference.

Two types of VOIs were placed: spherical VOIs located in regions of normal physiological uptake and 80% iso-contour VOIs placed on regions of elevated uptake.

For VOIs on regions of normal uptake, 29 VOIs previously placed on CT images were visually adjusted side-by-side such that they were in the same positions in the PET/MR datasets, except for femur VOIs, which were placed adjacent to the bone due to very low uptake in the joints.

As in the evaluation of HU variations, these VOIs represented the tissue types bone, muscle tissue, fat and lung. In total, 261 VOIs were placed. The VOI placement is shown in Figure 1.

To assess the inter- and intra-patient variability of the bias, mean and SD of relative differences of all
voxels from VOIs in one tissue category for each patient were computed, resulting in $\text{Mean}_{\text{patient,group,ACmethod}}$ and $\text{SD}_{\text{patient,group,ACmethod}}$. The relative differences were calculated voxel-wise between PET images reconstructed with MRAC and CTAC. The SD of $\text{Mean}_{\text{patient,group,ACmethod}}$ over all patients was computed to assess the inter-patient variability for each method and VOI group. Intra-patient variability was derived by computing the mean over $\text{SD}_{\text{patient,group,ACmethod}}$ over all patients (12).

Additionally, 80% iso-contour VOIs were placed at locations of elevated uptake (lesions, urinary tract, brown adipose tissue) on PET images reconstructed with SEGbase attenuation maps. 42 iso-contour VOIs were placed in total. The VOIs were grouped by location and proximity to osseous tissue. VOIs adjacent to bone tissue and not further away than 30mm were assigned to the category “Near bone”.

Statistical significance of the differences between VOI means in the PET images with MRAC and reference CTAC was tested with the Wilcoxon Signed rank test with P-value adjustment via Benjamini & Hochberg method. Results were considered statistically significant for $P < 0.01$.

Reconstruction. All PET images were reconstructed on the scanner using the manufacturer-provided implementation of 3D ordered subset expectation maximization algorithm with 2 subsets, 21 iterations and 4 mm smoothing. Automatic truncation correction of arm regions was enabled for all reconstructions.

RESULTS

Evaluation of age-related LAC variations

The means, standard deviations and P values of the average HU values/LACs for the VOIs in CT datasets of pediatric and adult patient groups are given in Table 1, grouped by tissue categories.

Only differences in femur and lung VOIs between adult and pediatric collectives were statistically significant, with $P=0.0001/P<0.0001$ and $P<0.0001/P<0.0001$ for HU/LAC, respectively.
Average HU values of lung VOIs showed a high variation within both adult and pediatric patient collectives, with an SD of 48.79 HU/0.00468 cm\(^{-1}\) resp. 76.53 HU/0.00735 cm\(^{-1}\). Intra-patient SDs were similar for the adult and pediatric patient collectives, with LACs of 0.00753/0.00735 cm\(^{-1}\), the relative intra-patient SD was higher for the adult collective with 34.0% compared to 27.4%. Inter-patient SD was higher for the pediatric collective, with 0.00689 cm\(^{-1}\) compared to 0.00359 cm\(^{-1}\) for the adult collective.

While the differences for bone marrow VOIs were not statistically significant with \(P=0.0703/P=0.0586\), the pediatric collective showed a higher SD of 44.82 HU/0.00229 cm\(^{-1}\), compared to 30.72 HU/0.00157 cm\(^{-1}\) for the adult collective. A higher SD for the pediatric patient collective was also observed in the hip fat VOIs.

Intra-patient absolute and relative SDs averaged over each patient for soft tissue VOI categories were similar for both patient collectives in the range of 0.0011-0.0.00187 cm\(^{-1}\)/1.1-2.1\% (Supplemental Table 1).

Atlas-related fidelity of attenuation maps

The prediction errors of MR-based attenuation maps that were created using an atlas of pediatric or adult patients are shown in Figure 2. The bias is very similar for both methods in non-osseous tissue. For osseous tissue, the attenuation maps created with the pediatric atlas database show a smaller deviation compared to CT attenuation maps. Visually, the attenuation maps created with the pediatric atlas database show a better delineation of bony structures. In Figure 3, a comparison of attenuation maps created using the two different atlas databases is shown for a representative patient. Here, a better delineation of vertebrae is clearly notable. Registration-related artifacts occur in attenuation maps created with both atlases, particularly in the shoulder areas due to the mismatch of arms positions.
between MR and CT images.

Quantitative evaluation of PET data

VOIs With Physiological Uptake. The relative differences of the VOIs with physiological uptake in PET images reconstructed with SEGbase or SEGwBONEad/pe and PET images reconstructed with reference CTAC are shown in Figure 1. Additionally, absolute differences, minimum and maximum deviations as well as the P values are shown in Table 2. The corresponding scatter plots of mean activity in the VOIs are shown in the Supplemental Figure 2. The regression fit parameters are given in Supplemental Table 2. Voxel-wise means and SDs of relative differences for all voxels in each VOI group averaged over each patient are given in Supplemental Table 3 and Supplemental Figure 3.

VOIs located in soft tissue regions (Hip fat, liver and muscle) show minor mean deviations with both SUVmean and SD below 5% for all methods. The deviations of liver and muscle tissue VOIs for SEGbase, of hip fat and liver VOIs for SEGwBONEpe and of hip fat, liver and muscle VOIs for SEGwBONEad were statistically significant.

The scatter plots for soft tissue VOIs also show a good agreement with reference CTAC, with R^2 values greater than 0.99 for all methods.

Averaged intra-patient SDs of the relative error for soft tissue VOI categories were below 5% for all methods.

The differences to CTAC for lung VOIs exhibited a high variability compared to soft tissue VOIs. While the non-significant mean deviations are below 5% for all methods, the standard deviations range from 15% to 18%. This is reflected by the lower R^2 values of 0.774/0.722/0.675, for SEGbase/SEGwBONEpe/SEGwBONEad, respectively. The inter-patient SDs were higher than intra-
patient SDs, with a range of 14-15% for the former and 7-8% for the latter.

VOIs placed adjacent to femur joints exhibited the highest relative as well as absolute mean deviations for the SEGbase method (where bone is not predicted) showing a relative error of -23.0%±6.4%. SEGwBONEpe showed a good agreement with reference CTAC, with a relative deviation of -1.1%±4.8%. SEGwBONEad showed a slightly higher mean error and higher standard deviation of -3.6±8.1%. The difference for SEGbase was statistically significant with P < 0.0001. The R² values are 0.920, 0.967 and 0.924 for SEGbase, SEGwBONEpe and SEGwBONEad, respectively. Inter-patient SD was lowest for SEGwBONEpe with 4.4%, whereas SEGwBONEad and SEGbase exhibited 6.4% and 8.2%, respectively. Intra-patient SDs were below 2.1% for all methods.

VOIs located inside bone marrow showed an error of -14.4%±5.0%, 0.3%±4.3% and -6.4%±3.2% for SEGbase, SEGwBONEpe and SEGwBONEad, respectively. The bias for SEGbase and SEGwBONEad was statistically significant with P < 0.0001. The R² value was on a similar scale for with 0.990 for SEGbase/SEGwBONEpe and 0.992 for SEGwBONEad. Inter-patient SDs were 4.9%/3.3%/2.6% for SEGbase/SEGwBONEpe/ad, respectively. Intra-patient SDs were below 2.1% for all methods.

VOIs With Elevated Uptake. Relative differences of mean activity for VOIs in regions of elevated uptake are shown in Figure 4. The differences are grouped by their anatomical location and proximity to osseous tissue. Furthermore, absolute differences, minimum and maximum deviations as well as P values are shown in Table 3.

Both MRAC methods with and without bone prediction showed similar results with only minor differences, except in the thorax, where also the largest mean deviations were found. For thoracic VOIs not located in bone proximity SEGbase exhibited a deviation of -6.7%±5.4% vs. -0.7%±4.4%/0.2%±7.4% for SEGwBONEpe/ad. For thoracic VOIs in bone proximity, SEGbase showed
an underestimation of -2.4%±6.5%, while SEGwBONEpe/ad showed an overestimation of 5.6%±5.2%/2.3%±3.9%.

For the abdomen/pelvis region, mean differences below 5% in comparison to reference CTAC for all MRAC methods were observed.

DISCUSSION

Our findings did not reveal statistically significant differences for soft tissue VOIs in CT datasets between pediatric and adult patient collectives. It is thus reasonable to expect that no specific adaptation of soft tissue LACs to assign to segmented tissue regions in segmentation-based MRAC is required for pediatric patients.

Lung density exhibits a high variability between patients, such that the assignment of non-patient specific lung LACs can affect PET quantification (7,9,13). In this study high variations of average HU values in lung VOIs were observed between the pediatric and adult collectives as well as within one population. These variations between the collectives are partially age-dependent, since lung density correlates with lung volume (14) and the lung volume increases during child growth. A linear decrease of mean lung density in CT was observed by Vock et al for children of 7-18 years’ age (15). The amount of variation within the collectives is likely caused by variations of lung density between the patients as well as intra-patient variations, which can be attributed to density gradients in the ventral-dorsal and apical basal directions. The observed amount of intra-patient variation was slightly higher for the pediatric collective in our study, with a relative SD of 34% compared to 27%. The observed variation is reflected in the differences for lung VOIs with physiological uptake in PET, where an SD in the range of 15% for both MRAC methods was observed. While the correlation between lung volume and density could be used to determine patient-specific or age-specific LACs, a uniform lung LAC would not perform as well as an approach that predicts LACs for individual voxels or slices, as...
was observed by Marshall et al (16). Therefore, approaches based on specific MR sequences (16) are potentially more robust but would add additional MR scanning time.

The average LACs in femur bone VOIs for the pediatric and adult patient collectives exhibited a statistically significant increase for the adult patient collective, which could potentially affect PET quantification results. A probable cause for the increase is an age-related compression of the joint bones due to continuous load.

As the mean LACs of bone marrow VOIs were not significantly different between the adult and pediatric collectives, the PET quantification results are likely not to be affected by age-related LAC differences to a clinically relevant degree, although the amount of inter-patient variation was higher for the pediatric than for the adult collective.

The use of a dedicated atlas for pediatric patients improved the prediction quality of the attenuation maps in bone tissue areas, with a better delineation of bone structures. The improved prediction quality is to a large part due to improved atlas database registration results, given the lower anatomical variations in-between pediatric patients compared to variations between pediatric and adult patients. A better match of bone densities of the pediatric atlas database, as was found in the femur, might also contribute. An improvement in quantification accuracy is likely to be expected in osseous lesions or lesions adjacent to bone. Since the created attenuation maps use the same segmentation-based results in non-osseous regions, independent of the atlas, the differences in the lungs and soft tissue were very similar using both atlases.

The selection of matching patients for an atlas-based prediction based on age, patient height or body mass index might thus be a viable way to improve robustness and prediction quality of atlas-based attenuation maps.
In consistence with the small differences in mean HU values of soft tissue VOIs between the adult and pediatric collectives found in CT data, SUVs from PET VOIs with normal physiological uptake revealed only minor deviations with mean and SD below 5% for SEGbase and SEGwBONEpe/ad in muscle, hip fat and liver. The mean absolute differences of these VOIs were below 0.05 SUV, thus, statistical significance was not reached for all regions.

Similar error magnitudes below 5% were reported by Keereman et al for soft tissue regions of segmentation-based attenuation maps in a PET simulation study (13), as well as by Bezrukov et al (8) for lesions in soft tissue. Thus, previous findings in adults that segmentation-based methods without bone-prediction are sufficient for quantitative PET imaging in soft-tissue regions hold also true for pediatric patients.

We observed a high amount of variation for lung VOIs with physiological uptake in PET, with an SD in the range of 15% and markedly lower R² values of 0.774 and 0.722/0.675 for SEGbase and SEGwBONEpe/ad when compared to other tissues. The better performance of SEGbase is most likely due to the observation that the patient with the highest deviations shows a particularly low lung density of -862 HU or a LAC of 0.0132 cm⁻¹, which is closer to the predefined LAC of SEGbase (0.0224 cm⁻¹) than to the lung LAC of SEGwBONE (0.024 cm⁻¹). Although the relative differences in the lungs exceed 40% (Figure 1), the physiological activity is low, such that absolute differences are not as pronounced with an SD of 0.04 SUV and 0.05 SUV for SEGbase and SEGwBONEpe/ad, respectively. An assignment of non-matching LACs for lung tissue could potentially affect lung lesions or lesions in the thoracic region. In the case described above, where the mismatch between assigned lung density and assigned lung LACs is particularly large, a lesion located in the thorax was overestimated by 9.1% and 14.2% for SEGbase and SEGwBONEpe, which could partially be attributed to the mismatch in lung densities.
While the mean SUV underestimation for SEGbase was highest (-23.0%±6.4%) in VOIs with physiological uptake located directly adjacent to femoral bone, the magnitude is comparable to or slightly lower than the results of a similar evaluation on VOIs with physiological uptake, where mean underestimations for pelvic VOIs in osseous tissue between -31% and -17% were reported (9). An underestimation for bone regions of 30.1%±27.5% was reported from a comparison study of PET/CT datasets with PET/MR datasets of the same patient with a mean age of 58 years (17). While not directly comparable, as a variety of different bone regions was evaluated and PET images from two different systems were used, the reported underestimation is higher than the bias in our study. The lower average HU values of femoral bone VOIs for the pediatric collective, combined with the smaller size of bones and thus a smaller amount of high-attenuating bone tissue along the lines of response suggests a smaller impact on PET quantification compared to adult patients, if bone prediction in attenuation maps is omitted.

The mean underestimation of -14% that was observed for bone marrow VOIs when bone was not predicted needs to be taken into account when quantitative PET readings are performed. As the characterization of bone marrow is of particular interest in pediatric patients (e.g. higher incidence of osteosarcoma and Ewing's sarcoma, which are primary bone tumors and also tend to spread to the bone), the application of an MRAC method that predicts bone tissue would improve correspondence with PET/CT data and quantification accuracy. If an atlas-based method such as SEGwBONE is used, the accuracy can benefit from the use of a dedicated pediatric atlas, as it can provide better atlas registration results and, as seen in the example of femur bone, more accurate density estimations.

Both intra- and inter-patient variability contribute to the magnitude of the bias standard deviation (12). We observed a higher amount of inter-patient SD than intra-patient SD for all VOI categories in our study except hip fat and muscle, where inter-patient SD was slightly lower, but both inter- and intra-
patient SDs were below 3%. Intra-patient SD was below 3% for all regions except the lungs, where it was in the range of 7% for all AC methods. In comparison, inter-patient SD for the lungs was in the range of 15%. Ouyang et al reported almost equal contributions of inter- and intra-patient lung density variations in the range of 10% to the overall lung SD (12). The higher amount of inter-patient lung bias variation in our study is likely to be caused by the amount of inter-patient SD in lung LACs, which was higher in the pediatric collective ($69 \text{ cm}^{-1} \cdot 10^4$) than in the adult collective ($36 \text{ cm}^{-1} \cdot 10^4$).

VOIs of PET-avid lesions not located in the thorax showed minor deviations from reference PET images corrected with CTAC for both methods, suggesting that for most lesions in clinical routine the PET quantification on pediatric patients can be performed using existing attenuation map algorithms with only small adaptations. Particularly, an adaptation of LACs for segmentation-based algorithms is not necessary for soft-tissue classes. However, lesions in the thorax would potentially benefit from an adapted lung LAC, as discussed in the previous paragraph. For VOIs with elevated uptake, the underestimation for SEGbase in VOIs near osseous tissue is smaller than for VOIs further away from bone, which is likely to be attributed to the differences in lung LACs for the patients in question.

The study has some limitations that need to be considered. First, the reference attenuation maps used in this study were created from corresponding CT datasets that were co-registered to the MR images of the same patients. Remaining residual inaccuracies in the registration can affect the results. The different arms positions that required postprocessing could cause a potentially lower bias, particularly in the thoracic VOIs.

Second, the presence of intravascular CT contrast agent is known to cause PET artifacts in thoracic veins containing the undiluted agent (18). As we replaced the HU values of affected regions with HU values of soft tissue, the effect is not likely to cause a systematic bias in the evaluation, as other studies indicate that the presence of intravascular contrast agents at normal concentrations has little effect on
PET/CT quantification accuracy (19,20). However, contrast-enhanced CTs are used for AC in PET/CT in clinical routine at our hospital, and the contrast agent was present in all patients of this study. Also, we used VOIs with physiological activity to assess the quantification accuracy. Since the activity and the tissue composition of tumor tissue can vary (21), VOIs with physiological activity may not always show errors consistent with lesion VOIs.

Finally, additional variability of bone density may be introduced through treatment side effects, for example caused by corticosteroids during chemotherapy. The chosen cohort is representative for patients examined in PET/CT and PET/MR, which might be during or shortly after therapy. However, an evaluation of a potential impact on PET quantification would require a larger patient collective.

We did not consider toddlers in our study, thus our conclusions do not extend to very young patients. For these patients, it is reasonable to expect that a patient-specific lung LAC might become more important, as the lung density would further increase (5). While the anatomical variability might require the use of a dedicated toddler atlas if atlas-based bone AC is desired, the bias by leaving bone attenuation out might further decrease, as the smaller bone size would lead to a smaller impact on PET quantification. Thus, dependent on the accuracy requirements, bone attenuation correction might be not necessary for toddlers; however, this issue should be further evaluated.

CONCLUSIONS

We investigated the accuracy of MR-based attenuation maps for PET quantification in pediatric patients in simultaneous PET/MR. To this end, we evaluated whether age-related variabilities in tissue density and anatomy affect the accuracy of MR-based attenuation maps.

Statistically significant variations in CT density between adult and pediatric collectives were found in lung and femur VOIs. The use of a dedicated atlas for the pediatric patient collective resulted in an improved attenuation map prediction in osseous regions. For the lungs, where the intra-patient variation
was higher for the pediatric collective, a patient- or group-specific LAC could improve the accuracy of attenuation maps.

Subsequent evaluation of PET quantification accuracy using two MRAC methods, SEGbase that does not account for bone and SEGwBONE, that predicts bone tissue using the adult or pediatric atlas database and pattern recognition yielded statistically significant mean errors of -14%/-23% in bone marrow/femur-adjacent VOIs with physiological uptake for SEGbase, a magnitude which can affect PET quantification. SEGwBONEad showed mean errors of -6%/4%, which could be further reduced to 0.3%/-1% with SEGwBONEpe. Inter-patient bias variation in femur-adjacent VOIs was reduced for SEGwBONEpe with 4.4% in comparison to 8.2% for SEGwBONEad.

Overall, SUV underestimations in pediatric patients near or inside bony structures are less prominent than in adults. Nevertheless, for quantitative evaluation of primary bone tumors, having a higher incidence in children, consideration of bone (e.g. by atlas-based approaches) is still important. Especially for small children the increased lung density might be important to be considered.

Acknowledgements

Financial research support was provided through “Deutsche Forschungsgemeinschaft” grants PI771/5-1 and PI771/1-1 and through the Swiss Werner Siemens Foundation.
REFERENCES

Figure 1: VOI positions and relative deviations of SUVmean in VOIs with normal physiological uptake for the baseline segmentation-based method (SEGbase) and the segmentation-based method with bone prediction using the adult/pediatric atlas (SEGwBONEad/pe).
Figure 2: Prediction errors for MR-based attenuation maps using the SEGwBONE approach for two different atlas databases, pediatric and adult compared to CT-based attenuation maps.
Figure 3: A sample slice of in-phase MR image, attenuation maps from standard segmentation (SEGbase) and predicted using two different atlas databases (pediatric and adult) as well as the corresponding reference CT-based attenuation map. Red arrows denote artifacts in predicted and reference attenuation maps which are related to registration. Yellow arrows denote regions where bone structure fidelity is affected.
Figure 4: Relative deviations in SUVmean in VOIs with elevated uptake in the tissue categories non-osseous tissue (N) and near bone (NB).
TABLES

Table 1: Comparison of mean HU values and LACs for pediatric (n=17) and adult (n=16) patient collectives*.

<table>
<thead>
<tr>
<th>VOI</th>
<th>Mean±SD (HU/cm(^4))</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pediatric</td>
<td>Adult</td>
</tr>
<tr>
<td></td>
<td>Mean±SD (HU/cm(^4))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hip Fat (4 VOIs/patient)</td>
<td>-93.50±27.81</td>
<td>-101.62±11.77</td>
</tr>
<tr>
<td></td>
<td>(870.23±26.6)</td>
<td>(862.44±11.30)</td>
</tr>
<tr>
<td>Liver (3 VOIs/patient)</td>
<td>111.87±28.71</td>
<td>107.63±26.83</td>
</tr>
<tr>
<td></td>
<td>(1037.80±14.92)</td>
<td>(1035.19±15.99)</td>
</tr>
<tr>
<td>Muscle (8 VOIs/patient)</td>
<td>58.35±8.60</td>
<td>57.28±7.89</td>
</tr>
<tr>
<td></td>
<td>(1008.98±5.58)</td>
<td>(1008.64±5.21)</td>
</tr>
<tr>
<td>Lung (6 VOIs/patient)</td>
<td>-706.32±76.53</td>
<td>-769.04±48.79</td>
</tr>
<tr>
<td></td>
<td>(281.92±73.47)</td>
<td>(221.71±46.82)</td>
</tr>
<tr>
<td>Femur (2 VOIs/patient)</td>
<td>309.99±34.98</td>
<td>351.34±33.39</td>
</tr>
<tr>
<td></td>
<td>(1139.11±17.84)</td>
<td>(1160.19±17.03)</td>
</tr>
<tr>
<td>Marrow (6 VOIs/patient)</td>
<td>189.44±44.82</td>
<td>196.34±30.72</td>
</tr>
<tr>
<td></td>
<td>(1077.59±22.91)</td>
<td>(1081.14±15.68)</td>
</tr>
</tbody>
</table>

*P values of statistically significant differences are denoted in bold. The LACs are given in parentheses.
Table 2: Relative differences (%) and absolute differences (SUV) on VOIs in physiological uptake.

<table>
<thead>
<tr>
<th>VOI</th>
<th>N</th>
<th>AC Method</th>
<th>Relative difference (%)</th>
<th>Absolute difference (SUV)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean±SD</td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>Hip Fat</td>
<td>36</td>
<td>SEGbase</td>
<td>-1.41±3.52</td>
<td>-13.51</td>
<td>5.23</td>
</tr>
<tr>
<td>Hip Fat</td>
<td>36</td>
<td>SEGwBONEpe</td>
<td>-3.58±3.43</td>
<td>-12.07</td>
<td>2.41</td>
</tr>
<tr>
<td>Hip Fat</td>
<td>36</td>
<td>SEGwBONEad</td>
<td>-3.09±4.06</td>
<td>-8.53</td>
<td>5.61</td>
</tr>
<tr>
<td>Liver</td>
<td>27</td>
<td>SEGbase</td>
<td>-4.25±4.12</td>
<td>-12.15</td>
<td>9.53</td>
</tr>
<tr>
<td>Liver</td>
<td>27</td>
<td>SEGwBONEpe</td>
<td>-3.05±3.90</td>
<td>-10.52</td>
<td>9.10</td>
</tr>
<tr>
<td>Liver</td>
<td>27</td>
<td>SEGwBONEad</td>
<td>-3.72±3.19</td>
<td>-8.72</td>
<td>5.04</td>
</tr>
<tr>
<td>Muscle</td>
<td>72</td>
<td>SEGbase</td>
<td>-1.85±2.75</td>
<td>-8.98</td>
<td>10.07</td>
</tr>
<tr>
<td>Muscle</td>
<td>72</td>
<td>SEGwBONEpe</td>
<td>-0.88±2.66</td>
<td>-7.70</td>
<td>7.95</td>
</tr>
<tr>
<td>Muscle</td>
<td>72</td>
<td>SEGwBONEad</td>
<td>-1.59±2.67</td>
<td>-7.79</td>
<td>6.98</td>
</tr>
<tr>
<td>Lung</td>
<td>54</td>
<td>SEGbase</td>
<td>-1.73±14.75</td>
<td>-28.79</td>
<td>35.79</td>
</tr>
<tr>
<td>Lung</td>
<td>54</td>
<td>SEGwBONEpe</td>
<td>2.36±16.64</td>
<td>-26.99</td>
<td>43.43</td>
</tr>
<tr>
<td>Lung</td>
<td>54</td>
<td>SEGwBONEad</td>
<td>2.20±17.54</td>
<td>-26.28</td>
<td>60.79</td>
</tr>
<tr>
<td>Femur</td>
<td>18</td>
<td>SEGbase</td>
<td>-23.01±6.35</td>
<td>-31.77</td>
<td>-9.62</td>
</tr>
<tr>
<td>Femur</td>
<td>18</td>
<td>SEGwBONEpe</td>
<td>-1.10±4.80</td>
<td>-10.01</td>
<td>7.61</td>
</tr>
<tr>
<td>Femur</td>
<td>18</td>
<td>SEGwBONEad</td>
<td>-3.56±8.06</td>
<td>-11.84</td>
<td>12.97</td>
</tr>
<tr>
<td>Marrow</td>
<td>54</td>
<td>SEGbase</td>
<td>-14.42±4.96</td>
<td>-26.16</td>
<td>-4.30</td>
</tr>
<tr>
<td>Marrow</td>
<td>54</td>
<td>SEGwBONEpe</td>
<td>0.25±4.30</td>
<td>-6.43</td>
<td>18.99</td>
</tr>
<tr>
<td>VOI</td>
<td>N</td>
<td>AC Method</td>
<td>Relative difference (%)</td>
<td>Absolute difference (SUV)</td>
<td>P value</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
<td>-----------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Marrow</td>
<td>54</td>
<td>SEGwBONEad</td>
<td>-6.41±3.12</td>
<td>-0.09±0.05</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Differences are averaged over all evaluated patients. P values of statistically significant differences are denoted in bold.
Table 3: Relative differences (%), absolute differences (SUV) on elevated uptake VOIs.

<table>
<thead>
<tr>
<th>Location</th>
<th>Tissue</th>
<th>N</th>
<th>AC Method</th>
<th>Relative difference (%)</th>
<th>Absolute difference (SUV)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean±SD</td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>Th 6 N</td>
<td>SEGbase</td>
<td>6</td>
<td>-6.70±5.38</td>
<td>-12.78</td>
<td>-0.70</td>
<td>0.26±0.24</td>
</tr>
<tr>
<td>Th 6 N</td>
<td>SEGwBONEpe</td>
<td>6</td>
<td>-0.74±4.36</td>
<td>-6.42</td>
<td>5.98</td>
<td>-0.05±0.16</td>
</tr>
<tr>
<td>Th 6 N</td>
<td>SEGwBONEad</td>
<td>6</td>
<td>0.19±7.37</td>
<td>-9.56</td>
<td>11.46</td>
<td>-0.04±0.26</td>
</tr>
<tr>
<td>Th 8 NB</td>
<td>SEGbase</td>
<td>8</td>
<td>-2.42±6.51</td>
<td>-9.70</td>
<td>9.12</td>
<td>0.18±0.97</td>
</tr>
<tr>
<td>Th 8 NB</td>
<td>SEGwBONEpe</td>
<td>8</td>
<td>5.63±5.19</td>
<td>-1.99</td>
<td>14.19</td>
<td>0.64±1.34</td>
</tr>
<tr>
<td>Th 8 NB</td>
<td>SEGwBONEad</td>
<td>8</td>
<td>2.34±3.87</td>
<td>-2.59</td>
<td>9.71</td>
<td>0.39±0.97</td>
</tr>
</tbody>
</table>

*VOIs are placed in abdomen/pelvis (AbdPe) and thorax (Th) at locations in normal tissue (N) and near bone (NB) averaged over all evaluated patients. P values of statistically significant differences are denoted in bold.
Quantitative evaluation of segmentation- and atlas-based attenuation correction for PET/MR on pediatric patients

Ilja Bezrukov, Holger Schmidt, Sergios Gatidis, Frédéric Mantlik, Jürgen F Schäfer, Nina F Schwenzer and Bernd J Pichler

J Nucl Med.
Published online: May 7, 2015.
Doi: 10.2967/jnumed.114.149476

This article and updated information are available at:
http://jnm.snmjournals.org/content/early/2015/05/06/jnumed.114.149476

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml

JNM ahead of print articles have been peer reviewed and accepted for publication in JNM. They have not been copyedited, nor have they appeared in a print or online issue of the journal. Once the accepted manuscripts appear in the JNM ahead of print area, they will be prepared for print and online publication, which includes copyediting, typesetting, proofreading, and author review. This process may lead to differences between the accepted version of the manuscript and the final, published version.