Imaging pulmonary iNOS expression with positron emission tomography

Howard J. Huang, MD
Warren Isakow, MD
Derek E. Byers, MD, PhD
Jacquelyn T. Engle
Elizabeth A. Griffin
Debra Kemp, RN
Steven L. Brody, MD
Robert J. Gropler, MD
J. Philip Miller, PhD
Wenhua Chu, PhD
Dong Zhou, PhD
Richard A. Pierce, PhD
Mario Castro, MD
Robert H. Mach, PhD
Delphine L. Chen, MD

1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
2Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
First Author:

Howard J. Huang, M.D.
Assistant Medical Director, Lung Transplantation
Annette C. and Harold C. Simmons Transplant Institute
Baylor University Medical Center at Dallas
3410 Worth Street, Suite 250
Dallas, TX 75246
Tel: 214-820-6856
Fax: 214-820-1474
E-mail: Howard.Huang@BaylorHealth.edu

Corresponding Author:

Delphine L. Chen, MD
Divisions of Radiological Sciences and Nuclear Medicine
Mallinckrodt Institute of Radiology
Washington University School of Medicine
Campus Box 8225
510 S. Kingshighway Blvd.
St. Louis, MO 63110
chend@mir.wustl.edu

Short running title: PET imaging of pulmonary iNOS

Word Count: 4993

Financial Support: This study was funded by the Barnes-Jewish Hospital Foundation through the Institute for Clinical and Translational Sciences at Washington University. DLC’s effort was also supported by K08 EB006702, R01 HL116389, R01 HL121218, and a Doris Duke Charitable Foundation Clinical Investigator Award. HJH’s effort was supported by NIH K08 HL107677.
ABSTRACT

Rationale: Inducible nitric oxide synthase (iNOS) activity increases in acute and chronic inflammatory lung diseases. Imaging iNOS expression may be useful as an inflammation biomarker for monitoring lung disease activity. We developed a novel tracer for positron emission tomography (PET) that binds to iNOS in vivo, 18F-NOS. In this study, we tested whether 18F-NOS could quantify iNOS expression from endotoxin-induced lung inflammation in healthy volunteers.

Methods: Healthy volunteers were screened to exclude cardiopulmonary disease. Qualifying volunteers underwent a baseline, one-hour dynamic 18F-NOS PET/CT scan. Endotoxin (4 ng/kg) was then instilled bronchoscopically in the right middle lobe. 18F-NOS imaging was performed again approximately 16 hours after endotoxin instillation. Radiolabeled metabolites were determined from blood samples. Cells recovered by bronchoalveolar lavage (BAL) after imaging were stained immunohistochemically for iNOS. 18F-NOS uptake was quantified as the distribution volume ratio (DVR) determined by Logan plot graphical analysis in volumes of interest (VOI) placed over the area of endotoxin instillation and in an equivalent lung region on the left. The mean Hounsfield units (HU) were also computed using the same VOIs to measure density changes.

Results: Seven healthy volunteers with normal pulmonary function completed the study with evaluable data. The DVR increased by approximately 30%, from a baseline mean of 0.42 ± 0.07 to 0.54 ± 0.12, and the mean HU by 11% after endotoxin in six volunteers who had positive iNOS staining in BAL cells. The DVR did not change in the left lung after endotoxin. In one volunteer with low-level iNOS staining in BAL cells, the mean HU increased by 7% without an increase in DVR. Metabolism was rapid, with approximately 50% of the parent compound at 5 min and 17% at 60 min post-injection.
Conclusion: 18F-NOS can be used to image iNOS activity in acute lung inflammation in humans and may be a useful PET tracer for imaging iNOS expression in inflammatory lung disease.

Key words: endotoxin, inducible nitric oxide synthase, lung inflammation, positron emission tomography
INTRODUCTION

Inflammation contributes to many acute and chronic lung diseases. These diseases are associated with high morbidity and mortality rates as well as significant healthcare utilization (1-3). Despite this socioeconomic burden, therapeutic development for respiratory indications lags that of other disease areas (4). This deficiency has been attributed in part to the lack of reliable biomarkers that accurately localize and quantify lung disease activity and assess response to treatment (5).

Currently available techniques for assessing lung inflammation include invasive methods such as bronchoalveolar lavage (BAL) and lung tissue biopsy to directly examine immune cells. Induced sputum, while minimally invasive, requires significant patient effort to obtain adequate samples and is difficult to reproduce. Moreover, these tissue-based methods do not provide a global assessment of the inflammatory disease burden or information regarding cellular activity or function. Thus, noninvasive, molecular-based techniques for quantifying inflammation could improve upon or provide complementary information to these existing approaches.

Several imaging methods have been investigated as potential noninvasive biomarkers for lung inflammation. Computed tomography (CT) can provide more detailed lung parenchymal characterization for inflammation than plain radiographs (6), but the signal is nonspecific as infiltrates and thickening of the airways can be due to non-inflammatory processes, such as edema or hemorrhage. ¹⁸F-Fluorodeoxyglucose (¹⁸F-FDG) imaging with positron emission tomography (PET) has been used to measure neutrophilic lung inflammation in patients with acute respiratory distress syndrome, cystic fibrosis, and chronic obstructive pulmonary disease (7-10). However, neoplastic and fibrotic processes also increase glucose utilization, thus decreasing the specificity of ¹⁸F-FDG for inflammation. Thus, there remains a need for novel PET tracers that detect the expression of specific inflammatory markers in lung tissue.
Inducible nitric oxide synthase (iNOS, NOS2) is one of three NOS isoforms that is constitutively expressed in normal lung epithelium (11) and also induced by inflammatory stimuli (12). Increased iNOS has been associated with either disease severity or progression in asthma (13,14), chronic obstructive pulmonary disease (15-17), and acute respiratory distress syndrome (18,19). Preclinical studies also suggest a mechanistic link between iNOS expression and the development of emphysema, pulmonary hypertension, and asthma (20,21). Thus, noninvasive methods for imaging iNOS expression may be useful as a more specific biomarker of inflammatory lung disease activity. We have developed a novel PET tracer, 18F-NOS, that binds to iNOS (22) and has been used to image iNOS expression in heart transplant recipients (23). To assess its potential utility for imaging lung related inflammation, we hypothesized that 18F-NOS could image iNOS expression in human lungs following endotoxin instillation.

MATERIALS AND METHODS

Study Design and Procedure Flow

This study was approved by the Institutional Review Board and conducted in compliance with the Health Insurance Portability and Accountability Act under Investigational New Drug (IND) #100042 for endotoxin and exploratory IND #106089 for 18F-NOS. All volunteers signed written informed consent. Eligible volunteers had no cardiopulmonary disease and normal spirometry, chest radiographs, electrocardiograms, and screening blood evaluations. Detailed eligibility criteria are listed in the supplement.

Figure 1 illustrates the study procedure flow. Eligible volunteers underwent a baseline 18F-NOS PET/CT scan in the morning followed by endotoxin instillation. A post-endotoxin 18F-NOS PET/CT scan was performed the following morning, approximately 16 hours later, followed by BAL. Spirometry testing was repeated after endotoxin administration. 18F-NOS was synthesized
as previously described (23). Vital sign monitoring was performed throughout the study as previously reported (24).

Endotoxin instillation and BAL

Bronchoscopic endotoxin instillation (4 ng/kg in 2 ml sterile water) and BAL were performed as previously described (24,25). See Supplement for details. For BAL, three sequential 50-ml volumes of warmed sterile saline (37°C) were instilled in the suction channel of the bronchoscope, recovered by gentle aspiration, and pooled for analysis.

BAL cell processing and immunohistochemical staining

Cytospins of 3 x 10⁶ BAL cells were created on slides, air dried and fixed in 100% methanol, and stored at 4°C until ready for staining. One slide was stained with Hema 3 (Fisher Scientific #123-869) to determine the percentage of macrophages and neutrophils. Slides were stained with one of two different polyclonal rabbit anti-human iNOS antibodies for fluorescence microscopy (Millipore #AB5384 that binds at the C-terminus, 1:200 dilution, or Santa Cruz #sc-8310, clone H-174, that binds the N-terminus, 1:50 dilution) so that each volunteer had at least one slide stained with each iNOS antibody (at least two slides total stained). See Supplement for details.

Exhaled nitric oxide measurement

Exhaled nitric oxide measurements were obtained as previously described (26) using a NIOX MINO (Aerocrine). The baseline measurements were obtained independently before spirometry. The post-endotoxin measurements were collected prior to spirometry on the same day. The fractional exhaled nitric oxide (FeNO) was reported as parts per billion (ppb).

Single nucleotide polymorphism (SNP) testing
Toll-like receptor 4 (TLR4) polymorphisms Asp299Gly (rs4986790) and Thr399Ile (rs4986791), associated with decreased endotoxin responsiveness, were tested in all volunteers (27). DNA was extracted from whole blood using the Qiagen PureGene protocol according to the manufacturer’s instructions and sent for genotyping by DNA Genotek, Inc. (Kanata, Ontario).

Image Acquisition

Scans were obtained on a Siemens Biograph 40 PET/CT scanner. After obtaining a low-dose attenuation correction CT scan (tube current = 80 mA, pitch = 0.8, collimation = 28.8 mm, effective mAs = 50), a one-hour PET dynamic acquisition was started at the time of a bolus intravenous injection of 18F-NOS (267 ± 6.5 MBq, 7.2 ± 0.2 mCi, 0.35 ± 0.16 µg total mass) with the following framing schedule: 24 x 5 sec, 6 x 3 min, and 7 x 5 min frames. Venous blood samples were obtained according to the following schedule: 4 x 30 sec, 4 x 1 min, 2 x 2.5 min, 2 x 5 min, and 10 x 10 min. The attenuation correction CT images were reconstructed with 3 mm slices using a B19f kernel. PET images were reconstructed using filtered back-projection (Gaussian filter 5 mm).

Image Analysis

The DICOM PET and CT image files were imported into Integrated Research Workflow 4.0 (Siemens) for analysis. The pre-endotoxin PET and CT images were aligned to the coregistered post-endotoxin PET and CT images. Volumes of interest (VOIs) were placed on the areas of infiltrate in the right middle lobe and in an equivalent region of lung on the left using standard lung windows (center -500 HU, width 1500 HU). The time-activity curves were then extracted from these VOIs on both the baseline and post-endotoxin 18F-NOS PET scans. A VOI over the main pulmonary artery served as the reference region for the Logan plot analysis (28), which determined the distribution volume ratio (DVR) for 18F-NOS. See Supplement for details.

Metabolite Analysis
Metabolite analysis was performed on 5 of the 7 volunteers with evaluable data using high performance liquid chromatography (HPLC). Eighteen total HPLC fractions were counted. The available parent compound in the plasma was then expressed as a percent of the total activity. See Supplement for details.

Statistical Analysis

A two-way repeated measures analysis of variance tested for differences in DVR and mean HU before and after endotoxin instillation in both the right and left lungs using Sigmaplot 12.5. Paired Student’s t-test assessed for differences in the clinical parameters (vital signs, blood work, and pulmonary function tests) before and after endotoxin with Bonferroni corrections applied for multiple comparisons. When more than one measurement of any clinical parameter was obtained after endotoxin instillation, the most abnormal values or the values obtained immediately after completing PET imaging were used for statistical testing.

RESULTS

Participant Flow and Clinical Characteristics

Nineteen healthy volunteers enrolled in the study. Eleven volunteers either failed screening procedures (N=10) or withdrew consent (N=1), leaving eight who completed all study procedures. Of these eight, one volunteer had significant motion during the baseline PET/CT scan that could not be corrected, leaving a total of seven volunteers with fully evaluable imaging data. Table 1 summarizes the demographics and clinical characteristics of these seven volunteers. There were expected statistically significant increases after endotoxin in the total white blood cell count and peripheral blood neutrophil percentages. Statistically significant, but clinically insignificant, changes in temperature, heart rate, mean arterial pressure, and respiratory rate were also noted. As in our prior studies, no clinically significant adverse effects were noted after endotoxin instillation.
Endotoxin increases iNOS expression in BAL cells but not exhaled nitric oxide production.

The mean BAL return volume from the endotoxin-challenged segment in the right middle lobe was 85±9 ml. The total number of recovered cells (894 ± 431 cells/mm³) and percentage of neutrophils (59 ± 12%) were within the expected range for this model (29). Immunohistochemical assessment of cells recovered by BAL demonstrated low level iNOS expression in neutrophils and more intense iNOS expression in macrophages (Figure 2). In one volunteer, very little iNOS protein was detected in any cells with either antibody. The BAL cell counts and differentials (958 cells/mm³, 55% neutrophils) as well as the return volume (90 ml) from this volunteer were not different from rest of the group. No differences in FeNO measurements were noted as a result of the endotoxin (26 ± 20 ppb before vs 25 ± 16 ppb after endotoxin).

18F-NOS uptake increases with iNOS expression by immunohistochemical staining

18F-NOS DVR was higher on the endotoxin-challenged side in the region of the infiltrate on CT. Figures 3 and 4 show representative images and time-activity curves. The average VOI size in the left lung was smaller (26±8 ml on the left vs 31±10 ml on the right) because of the heart. All volunteers with positive iNOS staining had increased 18F-NOS DVR accompanied by increased HU on CT (Figure 5). The one volunteer with low-level iNOS staining had no change in DVR despite an increased mean HU in the right lung infiltrate, the CT volume of which was also smaller compared to other volunteers (4.5 ml).

18F-NOS blood clearance is rapid

Approximately 40% of the parent compound was detected in the plasma at 15 min with approximately 17% remaining at 60 min after tracer injection (Figure 6). Only one major metabolite eluted early from the HPLC column, indicating that this was a polar metabolite. The
second peak of activity noted at approximately 10 min post-tracer injection in the time-activity curves from both the venous blood samples and the pulmonary artery VOI (Supplement Figure 1) most likely represents the appearance of this metabolite.

DISCUSSION

Our findings suggest that 18F-NOS uptake may reflect lung iNOS expression induced by bronchoscopically-instilled endotoxin in healthy volunteers. The 18F-NOS affinity for iNOS is five-fold higher than endothelial NOS and two-fold higher than neuronal NOS (22). In this study, we demonstrated that 18F-NOS increased in all subjects that had detectable iNOS staining by immunohistochemistry. This increased 18F-NOS uptake also correlated with evidence of inflammation by CT and BAL. In one volunteer with very low-level iNOS expression by immunohistochemistry in cells from BAL, no increase in 18F-NOS uptake was noted despite the presence of an infiltrate on CT and increased airway cell recruitment by BAL. These data therefore suggest that 18F-NOS uptake in the lungs depends on iNOS expression.

The degree of 18F-NOS uptake following endotoxin instillation was modest when compared to the higher 18F-FDG uptake observed in the same model (24,25). Characteristics of the tracer itself may have contributed to this modest signal. Because this tracer is a reversible inhibitor of iNOS, no known trapping mechanism for signal amplification exists as for 18F-FDG. Additionally, only ~50% of the parent compound was available for binding at 5 min post-injection with buildup of a single polar metabolite in the blood. Due to its polarity, this metabolite is most likely excluded by the lung endothelium from entering the lung parenchyma. While the metabolite could certainly have leaked out of the vasculature as a result of the endotoxin-induced inflammation, our data suggest that this does not fully explain the uptake seen after endotoxin. The fact that we observed no change in DVR in one volunteer despite a clear infiltrate on CT indicates that simple vascular leak of either the parent compound or the metabolite is not enough to generate a signal with this tracer. Future studies that include measurements of
extravascular lung water to compare the degree of vascular leak to $^{18}\text{F}-\text{NOS}$ uptake would help confirm these initial findings.

The modest $^{18}\text{F}-\text{NOS}$ signal may also have been due to characteristics of the model itself. The endotoxin induces early increases in cytokine and chemokine expression at 6 hours with continued neutrophil recruitment up to 24 hours after instillation in healthy volunteers (29). In the present study, both the total cell numbers and neutrophil percentages in the BAL increased when compared to previously reported numbers from saline-lavaged, normal control lung segments (29). Normal alveolar macrophages also express iNOS (11); thus, the higher level of staining noted in the macrophages compared to the neutrophils may not have changed significantly as a result of the endotoxin challenge. The modest $^{18}\text{F}-\text{NOS}$ signal may therefore have been primarily due to the recruitment of neutrophils with low-level iNOS staining. Additionally, iNOS expression in rodent models of lung inflammation peaks early, approximately six to 12 hours after endotoxin administration (30). While human lung epithelium is also known to have substantial iNOS expression at baseline (11), the time course for epithelial iNOS upregulation after endotoxin in humans is unknown. Therefore, maximal epithelial iNOS expression may have occurred earlier as the peak expression of inflammatory cytokines has been demonstrated at 6 hours post-endotoxin in this model (29).

No change in $^{18}\text{F}-\text{NOS}$ uptake occurred in one volunteer with much lower iNOS immunohistochemical staining than in other volunteers. This volunteer, however, still had an infiltrate by CT and increased neutrophil recruitment by BAL after endotoxin instillation. Interestingly, the amount of infiltrate on CT, based on the VOI volume, was smaller than that of the other volunteers. Thus, the absence of iNOS staining may have indicated a functional defect in iNOS that limited the extent of the endotoxin-induced inflammation. Alternative splicing of iNOS mRNA as well as SNPs that could cause altered iNOS protein expression or function have been reported (31,32). However, we did not test for these variants. Instead, we tested for the
TLR4 mutations Asp299Gly and Thr399Ile because they have been specifically associated with hyporesponsiveness to inhaled endotoxin (27). Interestingly, one volunteer who carried a single allele for each TLR4 SNP expressed iNOS (arrowheads, Figure 5), whereas the volunteer with decreased iNOS expression did not carry any TLR4 SNPs (circles, Figure 5). Thus, the basis for decreased iNOS expression in this particular volunteer is unknown.

The overlap in absolute DVR values for 18F-NOS measured before and after endotoxin may limit its clinical applicability. However, the absence of FeNO changes despite increased 18F-NOS uptake suggests that this approach can detect mild segmental lung inflammation that is not great enough to change a global lung measurement such as the FeNO. Additionally, the dynamic range of this tracer may be higher in lung disease as the epithelium and BAL cells in asthma (14), chronic obstructive pulmonary disease (15), acute respiratory distress syndrome (18), post-lung transplant bronchiolitis obliterans (33), and idiopathic pulmonary fibrosis (34) demonstrate higher iNOS expression when compared to healthy volunteers. This tracer may also still provide useful information about iNOS expression in clinical trials where a baseline scan can be obtained prior to initiating an anti-inflammatory therapy. Nevertheless, one previously published study investigating 18F-NOS in transplanted heart grafts demonstrated a very small increase in signal, suggesting that further chemical modifications may be needed to improve in vivo binding (23). Such tracers could potentially image a wider range of in vivo iNOS expression in the lungs as well as other organ systems. Improvements would also potentially enable static image acquisitions to facilitate the clinical use of this approach.

In conclusion, we have demonstrated that 18F-NOS is a potentially useful biomarker of iNOS expression in the lungs. Used in conjunction with CT, this tracer may provide specific information about iNOS expression that can distinguish areas of lung parenchyma with active inflammation from areas affected by non-inflammatory processes. Further studies to assess the
dynamic range of this tracer in lung disease will help define its potential application as an inflammation-specific biomarker.

DISCLOSURES

None of the authors have any conflicts of interest or financial interests to disclose.

ACKNOWLEDGEMENTS

We thank Jinda Fan, Aixiao Li, and Lynne Jones for help with the metabolite analysis, Elizabeth Arentson for sample processing, Tamara Millay for study coordination and scheduling, Sharon Phillips for data organization and reporting, Tammy Koch and Brenda Patterson for pulmonary function testing, Linda Becker, Michael Harrod, and Betsy Thomas of the Center for Clinical Imaging Research for image acquisition and blood sample collection, and the staff of the Washington University Cyclotron Facility for radiopharmaceutical production. This study was funded by the Barnes-Jewish Hospital Foundation through the Institute for Clinical and Translational Sciences at Washington University. DLC’s effort was also supported by K08 EB006702, R01 HL116389, R01 HL121218, and a Doris Duke Charitable Foundation Clinical Investigator Award. HJH’s effort was supported by NIH K08 HL107677. This trials’ clinicaltrials.gov record number is NCT01407796.
References

Figure 1. Study design. The post-endotoxin 18F-NOS positron emission tomography (PET) scan occurred at approximately 16 hours after endotoxin instillation. BAL = bronchoalveolar lavage.
Figure 2. Immunohistochemical staining for inducible nitric oxide synthase (iNOS, green) in cells obtained by bronchoalveolar lavage (BAL) in the endotoxin-challenged airway. Only one individual had negative iNOS staining (iNOS (−)). The iNOS (+) image is representative of the positive staining results obtained on BAL cells from n = 6 volunteers. Neutrophils (white arrowheads) and macrophages (yellow arrowheads) were identified by nuclear morphology from DAPI staining (blue). Images taken at 20x magnification.
Figure 3. Representative Logan parametric 18F-NOS PET/CT images (distribution volume ratio (DVR) scale, ml lung/ml blood) obtained before and after bronchoscopic instillation of endotoxin in the right middle lobe. Volumes of interest are shown in white.
Figure 4. Time-activity curves and Logan plots from the images (VOI) in Figure 3. The last 12 data points (last 50 min of image acquisition) were used for the Logan plot linear regression for all scans. Inset shows the later time points of the curve focused on the lower range activity to better illustrate the differences in activity among the different VOIs. Units for Logan plot axes: x-axis = ml blood/ml lung * min; y-axis = min.
Figure 5. 18F-NOS distribution volume ratio (DVR) and mean Hounsfield units in the right and left lung volumes of interest before and after endotoxin instillation in the right middle lobe (RML). White circles denote the one volunteer without inducible nitric oxide staining in bronchoalveolar lavage cells. Arrowheads pointing to dark gray squares denote data from the one volunteer with heterozygosity for two Toll-like receptor-4 single nucleotide polymorphisms reported to predict endotoxin hyporesponsiveness. * $p < 0.05$ compared to either the left lung after endotoxin or the RML before endotoxin. Before = before endotoxin instillation; After = sixteen hours after endotoxin instillation.
Figure 6. 18F-NOS metabolism showing percent of parent compound in the plasma. Values are shown as the mean ± standard deviation bars.
Table 1. Summary characteristics for all volunteers completing study procedures with evaluable data

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>BEFORE ENDOTOXIN</th>
<th>16 HOURS AFTER ENDOTOXIN</th>
<th>MOST ABNORMAL VALUE AFTER ETX</th>
<th>P VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>35 ± 6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Gender</td>
<td>3F/4M</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td>3 Caucasian</td>
<td>4 African-American</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Vital Signs**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature, C</td>
<td>36.5 ± 0.3</td>
<td>36.3 ± 0.4</td>
<td>37.3 ± 0.3 (highest)</td>
<td>0.0016*</td>
</tr>
<tr>
<td>Heart rate, beats/m</td>
<td>69 ± 11</td>
<td>72 ± 11</td>
<td>92 ± 9 (highest)</td>
<td>0.0015*</td>
</tr>
<tr>
<td>Blood pressure, mm Hg</td>
<td>116 ± 6 / 69 ± 5</td>
<td>113 ± 6 / 72 ± 5</td>
<td>100 ± 13 / 50 ± 6 (lowest)</td>
<td>0.0071 / 0.016</td>
</tr>
<tr>
<td>S_{a}O_{2}, % on room air</td>
<td>85 ± 1</td>
<td>99 ± 1</td>
<td>95 ± 2 (lowest)</td>
<td>0.016</td>
</tr>
<tr>
<td>Respiratory rate, breaths/m</td>
<td>17 ± 1</td>
<td>18 ± 2</td>
<td>22 ± 2 (highest)</td>
<td>0.0002*</td>
</tr>
<tr>
<td>Pulmonary function tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV_{1}</td>
<td>3.7 ± 0.7</td>
<td>3.6 ± 0.6</td>
<td>N/A</td>
<td>0.424</td>
</tr>
<tr>
<td>% predicted FEV_{1}</td>
<td>108 ± 12</td>
<td>106 ± 16</td>
<td>N/A</td>
<td>0.548</td>
</tr>
<tr>
<td>FVC</td>
<td>4.5 ± 1.0</td>
<td>4.5 ± 0.9</td>
<td>N/A</td>
<td>0.824</td>
</tr>
<tr>
<td>% predicted FVC</td>
<td>108 ± 10</td>
<td>109 ± 15</td>
<td>N/A</td>
<td>0.888</td>
</tr>
<tr>
<td>Complete blood count</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White blood cells, x10^3/µl</td>
<td>6.6 ± 1.4</td>
<td>10.8 ± 2.4*</td>
<td>N/A</td>
<td>0.0026*</td>
</tr>
<tr>
<td>% neutrophils</td>
<td>62 ± 5</td>
<td>73 ± 7*</td>
<td>N/A</td>
<td>0.0069</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>14 ± 2</td>
<td>13 ± 2</td>
<td>N/A</td>
<td>0.16</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>41 ± 5</td>
<td>38 ± 6</td>
<td>N/A</td>
<td>0.183</td>
</tr>
<tr>
<td>Platelets</td>
<td>274 ± 59</td>
<td>254 ± 38</td>
<td>N/A</td>
<td>0.247</td>
</tr>
<tr>
<td>Erythrocyte sedimentation rate (ESR)</td>
<td>20 ± 18</td>
<td>18 ± 14</td>
<td>N/A</td>
<td>0.337</td>
</tr>
<tr>
<td>Change in ESR</td>
<td>N/A</td>
<td>-2.4 ± 6.2</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>C-reactive protein (CRP)</td>
<td>9 ± 15</td>
<td>14 ± 19</td>
<td>N/A</td>
<td>0.016</td>
</tr>
<tr>
<td>Change in CRP</td>
<td>N/A</td>
<td>5.1 ± 3.6</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

* p<0.0026 (significance level with Bonferroni correction)

** Statistical testing for vital signs was performed only on the most abnormal value after endotoxin instillation.
Imaging pulmonary iNOS expression with positron emission tomography

Howard J Huang, Warren Isakow, Derek E Byers, Jacquelyn T Engle, Elizabeth A Griffin, Debra Kemp, Steven L Brody, Robert J Gropler, J. Philip Miller, Wenhua Chu, Dong Zhou, Richard A Pierce, Mario Castro, Robert H Mach and Delphine L Chen

J Nucl Med.
Published online: December 18, 2014.
Doi: 10.2967/jnumed.114.146381

This article and updated information are available at:
http://jnm.snmjournals.org/content/early/2014/12/16/jnumed.114.146381

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml

JNM ahead of print articles have been peer reviewed and accepted for publication in *JNM.* They have not been copyedited, nor have they appeared in a print or online issue of the journal. Once the accepted manuscripts appear in the *JNM* ahead of print area, they will be prepared for print and online publication, which includes copyediting, typesetting, proofreading, and author review. This process may lead to differences between the accepted version of the manuscript and the final, published version.