PET Imaging of Adenosine $A_1$ Receptor Occupancy

TO THE EDITOR: We have recently published 2 articles about the use of $^{11}$C-MPDX (8-dicyclopropylmethyl-1-$^{11}$C-methyl-3-propylxanthine) and PET for measurement of adenosine $A_1$ receptor occupancy by nonradioactive agonists and antagonists (1,2). Dose-dependent occupancy of $A_1$ receptors in the rodent brain by antagonists (caffeine, DPCPX [1,3-dipropyl-8-cyclopentyl xanthine]) could be assessed, but administration of an exogenous agonist (CPA [N-cyclopentyladenosine]) or raising the levels of endogenous adenosine by treating animals with ethanol and the adenosine kinase inhibitor ABT-702 (4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimidine) did not result in measurable competition of agonist and tracer. A paradoxical increase of tracer uptake was observed under these conditions. Kinetic modeling of the PET data suggested that there was an increase in tracer binding potential rather than in tracer delivery to the brain or passage of the tracer across the blood–brain barrier. This phenomenon was unexpected and could not be explained.

At the recent Purines 2014 meeting in Bonn, a possible explanation was offered by Drs. Andreas Bauer (Düsseldorf, Germany) and Renata Ciccarelli (Chieti, Italy). These experts pointed out that many ligands for adenosine $A_1$ receptors that initially were considered antagonists are in fact inverse agonists. Inverse agonism has been proven for WRC-0571 (8-(6-morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimidine) (3), CGS-15943 (9-chloro-2-(furan-2-yl)-[1,2,4]triazolo[1,5-c]quinazolin-5-amine) (3), DPCPX (3), and CPFPX (8-cyclopentyl-3(3-fluoropropyl)-1-propylxanthine) (4). The last 2 ligands are structurally similar to our tracer, MPDX.

Inverse agonists such as DPCPX display a high affinity for the uncoupled, or inactive, state of the $A_1$ receptor and a lower affinity for the G-protein–coupled state (5). Paradoxic increases in $^{11}$C-MPDX binding in the rodent brain on administration of CPA or treatment of rats with ethanol and adenosine kinase inhibitor may therefore be explained in the following way: agonists (such as CPA or adenosine) increase the fraction of $A_1$ receptors in the uncoupled state, because the ternary complex consisting of agonist, activated receptor, and G-protein is not stable in living tissue. Guanosine triphosphate binding results in decoupling of the G-protein from the complex and relaxation of the receptor to the inactive conformation, possessing low affinity for the agonist but high affinity for an inverse agonist such as $^{11}$C-MPDX. Thus, the binding potential for $^{11}$C-MPDX is increased after administration of a pharmacologic dose of an agonist. An increase (23%–55%) similar to that we observed for $^{11}$C-MPDX binding in the rodent brain after agonist treatment was seen for $^3$H-DPCPX binding in human brain slices on the addition of guanosine triphosphate (6).

This hypothesized explanation of our PET findings could be tested by radiolabeling a neutral antagonist and repeating the experiments with that tracer. Binding of an antagonist tracer should not be increased in the presence of an excess of agonist, in contrast to binding of an inverse agonist such as $^{11}$C-MPDX or $^{18}$F-CPFPX. To achieve this goal, a neutral antagonist with nanomolar affinity should be developed that is amenable to labeling (7). It may also be possible to use the nonxanthine PET tracer $^{11}$C-FR194921 (6-morpholino-pyridin-3-yl)-3(2H)-pyridazinone (8).

REFERENCES


Soumen Paul
Shivashankar Khanapur
Philip H. Elsinga
Kiichi Ishiwata
Peter Meerlo
Rudi Dierckx
Aren van Waarde*

*University of Groningen, University Medical Center Groningen
Hanzeplein 1, P.O. Box 30001
9700 RB Groningen, The Netherlands

Published online **************.
DOI: 10.2967/jnumed.114.147736
PET Imaging of Adenosine A<sub>1</sub> Receptor Occupancy

Soumen Paul, Shivashankar Khanapur, Philip H. Elsinga, Kiichi Ishiwata, Peter Meerlo, Rudi Dierckx and Aren van Waarde

*J Nucl Med.*
Published online: October 9, 2014.
Doi: 10.2967/jnumed.114.147736

This article and updated information are available at:
http://jnm.snmjournals.org/content/early/2014/10/06/jnumed.114.147736.citation

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml

*JNM* ahead of print articles have been peer reviewed and accepted for publication in *JNM*. They have not been copyedited, nor have they appeared in a print or online issue of the journal. Once the accepted manuscripts appear in the *JNM* ahead of print area, they will be prepared for print and online publication, which includes copyediting, typesetting, proofreading, and author review. This process may lead to differences between the accepted version of the manuscript and the final, published version.