Being Sensitive: to Specify When Amino Acid Tracers Accumulate in a Brain Lesion

TO THE EDITOR: I read with considerable interest the recent report by Rapp et al. (1) demonstrating the diagnostic performance of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]-FET) PET in newly diagnosed cerebral lesions suggestive of glioma. This retrospective but nevertheless convincing study provides us with substantial data on the accumulation of an amino acid PET tracer in glioma for a relatively large patient cohort. As the authors emphasize, their study meets the criteria of strict standardization of PET acquisition protocols. Considering that the clinical value of amino acid brain PET imaging for differential diagnosis still can be considered a work in progress, these precisely documented findings must not be underestimated.

On the other hand, the quintessence of these evaluations can be found in previous publications, and of course this fact supports the merit of the data of Rapp et al. in showing that high-grade glioma nearly always exhibits intense accumulation of [18F]-FET and that low uptake therefore excludes a high-grade tumor with high probability. Also, their finding of higher levels of [18F]-FET uptake in high-grade glioma than in low-grade glioma is not new, and because of their observed marked overlap in uptake quantification—again supporting previous data—the authors’ conclusion that [18F]-FET uptake ratios provide valuable additional information for grading of gliomas may be questionable at least in clinical practice.

We also face the substantiality that on visual rating about two thirds of low-grade glioma are [18F]-FET—positive and one third is [18F]-FET—negative. A study by our group published in 2010 (2) is cited by Rapp et al. as “the currently largest series” of patients. Additionally, they comment that “these results, however, were based only on a visual rating, and histology was available in only two thirds of patients.” This is right, as the images were of course rated visually by the reporting physicians. But we also published a lesion-to-brain ratio—correlated to histology when available—with results comparable to the findings of our German colleagues.

Here comes my main message: evidentially, it is important to have valuable data on amino acid uptake in lesions that are very suggestive of glioma and subsequently proven to be glioma on pathologic examination. But we have to look forward. What is the nature of [18F]-FET uptake in lesions that are possibly, but not very probably, glioma? Published data may focus on observational studies as well, as shown by the recent work of Hutterer et al. (3), in which only three quarters of patients had histology available. For the individual patient, the valuable information obtained from [18F]-FET PET—additional to that from MR imaging in general—would allow for better decisions about medical management. We must know more about possible pitfalls, such as whether [18F]-FET accumulates in abscesses, multiple sclerosis plaque, vasculitis (3), or radiation-induced astrogliosis (4). Then, we can make comparisons with a typical profile of [18F]-FET uptake in glioma as shown by the retrospective data of Rapp et al. and others.

The scientific community should also embrace the concept that negative or low-accumulating lesions—suggestive of low-grade glioma for example, by MR imaging—are related to a good prognosis even without specific therapy. Even more data are missing related to brain metastases from solid tumors, such as the already helpful data provide by Langen’s group (5).

REFERENCES


Robert Pichler
Wagner-Jauregg Hospital
Wagner-Jauregg Weg 15
A-4021 Linz, Austria
E-mail: robert.pichler@gespag.at

Published online 3/26/13
DOI: 10.2967/jnumed.113.122325
Being Sensitive: to Specify When Amino Acid Tracers Accumulate in a Brain Lesion

Robert Pichler

J Nucl Med.
Published online: March 27, 2013.
Doi: 10.2967/jnumed.113.122325

This article and updated information are available at:
http://jnm.snmjournals.org/content/early/2013/03/27/jnumed.113.122325.citation

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml

JNM ahead of print articles have been peer reviewed and accepted for publication in JNM. They have not been copyedited, nor have they appeared in a print or online issue of the journal. Once the accepted manuscripts appear in the JNM ahead of print area, they will be prepared for print and online publication, which includes copyediting, typesetting, proofreading, and author review. This process may lead to differences between the accepted version of the manuscript and the final, published version.