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Our objective was to predict the outcome of 90Y radioembolization

in patients with intrahepatic tumors from pretherapeutic baseline
parameters and to identify predictive variables using a machine-

learning approach based on random survival forests. Methods: In
this retrospective study, 366 patients with primary (n 5 92) or sec-

ondary (n 5 274) liver tumors who had received 90Y radioemboliza-
tion were analyzed. A random survival forest was trained to predict

individual risk from baseline values of cholinesterase, bilirubin, type

of primary tumor, age at radioembolization, hepatic tumor burden,
presence of extrahepatic disease, and sex. The predictive importance of

each baseline parameter was determined using the minimal-depth con-

cept, and the partial dependency of predicted risk on the continuous

variables bilirubin level and cholinesterase level was determined. Re-
sults: Median overall survival was 11.4 mo (95% confidence interval,

9.7–14.2 mo), with 228 deaths occurring during the observation period.

The random-survival-forest analysis identified baseline cholinesterase

and bilirubin as the most important variables (forest-averaged
lowest minimal depth, 1.2 and 1.5, respectively), followed by the type

of primary tumor (1.7), age (2.4), tumor burden (2.8), and presence of

extrahepatic disease (3.5). Sex had the highest forest-averaged minimal

depth (5.5), indicating little predictive value. Baseline bilirubin levels
above 1.5 mg/dL were associated with a steep increase in predicted

mortality. Similarly, cholinesterase levels below 7.5 U predicted a strong

increase in mortality. The trained random survival forest achieved a
concordance index of 0.657, with an SE of 0.02, comparable to the

concordance index of 0.652 and SE of 0.02 for a previously published

Cox proportional hazards model. Conclusion: Random survival forests

are a simple and straightforward machine-learning approach for predic-
tion of overall survival. The predictive performance of the trained model

was similar to a previously published Cox regression model. The model

has revealed a strong predictive value for baseline cholinesterase and

bilirubin levels with a highly nonlinear influence for each parameter.
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Radioembolization with 90Y-loaded resin microspheres is an
established and potentially life-prolonging treatment option for

patients with hepatocellular carcinoma (1), cholangiocellular car-
cinoma (2), metastatic colorectal carcinoma (3), metastatic neuro-
endocrine tumors (4,5), and metastatic breast cancer (6). When

considering an aggressive therapy, one needs to balance cost and
risk of complications against quality and potential prolonging of
life. Prediction of treatment response is therefore highly relevant

for patient selection and stratification.
For the stratification of patients eligible for radioembolization,

a simple risk score model based on the Karnofsky index and on

carcinoembryonic antigen and cancer antigen 19-9 serum levels
has been proposed (7). This score is easily applicable in clinical
routine and has been shown to be strongly predictive. A similar

approach was followed in a previous study (8), in which a nomo-
gram based on the hazard ratios of risk factors was constructed.

Because of their simplicity, these approaches may impose overly
strong assumptions, such as on the linearity of the effect of pre-
dictive variables, and may not use the full information that is

contained in baseline variables. An established statistical concept
for prediction of risk is based on multivariate Cox proportional-
hazards models (6,9). Here, a statistical model for the individual

hazard ratio is derived; multivariate situations are addressed by,
for example, using stepwise variable selection or including inter-
action terms. In a recent study (9), multivariate Cox regression

determined type of primary tumor, tumor burden, presence of
extrahepatic disease, and baseline level of cholinesterase as in-

dependent predictors of overall survival. Cox regression relies
on strong and potentially restrictive assumptions about linearity,
and the selection of appropriate variables and interaction terms is

an art in itself and often considered unintuitive and a ‘‘black box’’
from the perspective of the clinician.
Recently, a particular statistical model—random survival forest—

has emerged as an intuitive technique for predicting individual risk
(10–12). By combining many individual decision trees, random sur-
vival forests form an ensemble method and as such have attractive

properties: they require little input from the analyst, and they can
easily deal with nonlinear effects, correlated parameters, and variable
interactions. In addition, random survival forests allow for an intu-

itive assessment of variable importance (13) and allow insights into
the partial dependency of predicted risk on individual variables.
In the present work, we evaluated whether random survival

forests can predict response to radioembolization in a large cohort
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of patients with hepatic tumors and metastases who underwent 90Y
radioembolization at our institute. In addition, we evaluated the
importance and predictive value of clinical variables for therapy
outcome, and we compared results from the random-survival-
forest analysis to a previously published Cox proportional-hazards
model with respect to prediction error and variable selection.

MATERIALS AND METHODS

Patients

This retrospective study analyzed patients from a previously

described cohort (9). This cohort comprised consecutive patients with
hepatocellular carcinoma; cholangiocellular carcinoma; metastases

of colorectal carcinoma, neuroendocrine tumors, or breast cancer; or
other hepatic metastases who underwent radioembolization at our in-

stitution between January 2009 and December 2012. The study was
approved by the institutional review board, and the need for written

informed consent was waived. One day before the first radioembo-
lization procedure, the following pretherapeutic parameters were

recorded: bilirubin and cholinesterase levels in mg/dL and U/L, re-
spectively; age at time of procedure; sex; type of primary tumor;

extrahepatic disease, defined as presence of metastatic lymph nodes
or other nonlife-limiting metastases; and hepatic tumor burden. The

last of these was assessed in 3 categories (,25%, 25%–50%, .50%)
by means of pretherapeutic contrast-enhanced MRI using gadobenate

dimeglumine after segmentation of tumor volume. Patients were fol-
lowed up until December 2013 and were included in the retrospective

analysis when all the above pretherapeutic baseline parameters were
available. Patients for whom one or more of these parameters were

unavailable were excluded from further analysis.
Before radioembolization, patients had undergone an angiographic

procedure to detect and occlude relevant aberrant vessels that other-
wise would have led to extrahepatic deposition of microspheres.

Approximately 100 MBq of 99mTc-macroaggregated albumin were
applied at the arterial tree to assess relevant liver–lung and epigastric

shunts by means of planar scintigraphy and SPECT examination. At a
second hepatic arterial catheterization conducted after therapy-planning

angiography, 90Y-resin microspheres (SIR-Spheres; Sirtex Medical
Ltd.) suspended in water for injection were applied under intermittent

fluoroscopic visualization. The prescribed activity was administered
either in whole-liver, lobar, or sequential lobar treatment. Within 24 h

after therapy, deposition of microspheres at the target was confirmed
by SPECT/CT scans.

Statistical Analysis

A random survival forest is trained by growing a large number of

individual trees (10,11). Each tree is trained on a random-bootstrap
sample from the original cohort. Starting with the entire sample at the

tree trunk, a random set of variables is chosen as candidates for split-
ting the branch into 2 subbranches, with the objective of maximizing

the difference in survival between subbranches. The optimal splitting
threshold is determined for each of the candidate variables, and the

variable that maximizes the log-rank statistic between split data is
chosen for splitting (10). This process is repeated until a predeter-

mined terminal node size is achieved. A trained random survival forest
predicts an individual mortality, which is calibrated on the number of

events. Specifically, if all patients shared the same characteristics, the
predicted mortality would equal the number of expected deaths.

All analyses were performed with R, version 3.3.2 (www.R-project.

org). A random survival forest with 2,000 trees was trained on the
entire dataset using the R package randomForestSRC (14), with a

terminal node size of 5; 3 variables were randomly sampled as can-
didates at each iteration. Seven pretherapeutic variables, described

above, were used for analysis, with right-censored survival time as

the primary endpoint. To ensure unbiased evaluation, the individual

risk was predicted from each tree only for the remaining data, which
were not used during training (out-of-bag data (10)).

To evaluate the predictive performance of the random survival
forest, the concordance index (CI) of the final forest was calculated.

The concordance index is a measure for the evaluation of statistical
survival models and reports the fraction of allowed pairs of samples,

which are sorted in the right order. Hence, a concordance index of
0.5 indicates random sorting, and a concordance index of 1.0 perfect

sorting. As a reference, a previously reported Cox proportional-
hazards model (9) was fitted to our dataset and the concordance index

of this model was determined.
As a measure of the relative importance and hence the predictive

value of variables, the minimal depth (13) was used. This minimal
depth of a variable in a single tree is the shortest distance from the tree

trunk to the branch level of the first split of the variable. The most
important variables are considered to be those that are most frequently

TABLE 1
Baseline Patient Characteristics

Characteristic Data

Age (y) 64 (55.7–71.0)

Sex

Male 217 (59)

Female 149 (41)

Primary tumor

Colorectal cancer 128 (35.0)

Hepatocellular cancer 57 (15.6)

Neuroendocrine tumor 51 (13.9)

Metastatic breast cancer 40 (10.9)

Cholangiocarcinoma 35 (9.6)

Other* 55 (15.0)

Hepatic tumor burden

25% 191 (52.2)

25%–50% 140 (38.3)

50% 35 (9.6)

Extrahepatic disease

Yes 253 (69.1)

No 113 (30.9)

Baseline liver function

Bilirubin (mg/dL) 0.6 (0.5–0.9) (reference

range , 1.2)

Cholinesterase (U/L) 6.35 (4.89–7.6) (reference

range . 4.6)

*Pancreas (n 5 13), uveal melanoma (n 5 6), gastric cancer
(n 5 6), sarcoma (n 5 4), urothelial carcinoma (n 5 4), ovarian

cancer (n 5 3), malignant melanoma (n 5 3), cancer of unknown

primary (n 5 2), prostate cancer (n 5 2), lung cancer (n 5 2),

thymus cancer (n 5 2), base-of-tongue cancer (n 5 2), squamous
cell carcinoma (n 5 1), endometrial cancer (n 5 1), esophageal

carcinoma (n 5 1), thyroid carcinoma (n 5 1), squamous cell car-

cinoma of maxillary sinus (n 5 1), and testicular cancer (n 5 1).

Qualitative data are expressed as numbers followed by
percentages in parentheses; continuous data are expressed as

median followed by interquartile range in parentheses.
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used for splits close to the tree trunks. Hence, the importance of each
variable can be assessed as the forest-averaged minimal depth.

Random survival forests can be interpreted as a mapping of several
independent variables to a combined outcome. An advantage of this

concept is that the partial dependency of the predicted outcome on
each independent variable can be assessed separately by integrating

out all other variables. This is a powerful tool

for assessing nonlinear behavior of single
variables and allows novel insights that are

not accessible with the more traditional Cox
proportional-hazards models. Partial depen-

dencies were calculated for baseline levels
of cholinesterase and bilirubin and for tumor

type.

RESULTS

In total, 366 patients who had received
radioembolization were included in the
study (217 male, 149 female; mean age,

62 y; range, 31–91 y) and were analyzed
retrospectively. Median overall survival

was 11.4 mo (95% confidence interval,

9.7–14.2 mo). During the observation pe-
riod, 228 deaths occurred. Details are pro-

vided in Table 1.
Bilirubin and cholinesterase values showed

a moderately negative but significant correla-

tion (r 5 20.38, P , 0.001). ANOVA
revealed a significant (P, 0.001) association

of cholinesterase with tumor burden.
The trained random survival forest

achieved a concordance index of 0.657, with an SE of 0.02. In
comparison, the concordance index of the previously used parsimo-

nious Cox model was 0.652 (SE, 0.02). The median of the individual
predicted mortality was 93—implying that if all individuals had

the same parameters as this patient, an average of 93 deaths
would be expected. Predicted mortalities ranged from 14 to 254.
Splitting the patient population into 2 equal-sized groups with

the median predicted mortality as the threshold, we found that

survival was significantly longer in the group with a low predicted
mortality than in the group with a high predicted mortality (16.8

vs. 6.6 mo, P 5 6.06 · 1028), as demonstrated in Figure 1.
The variable importance of pretherapeutic variables is illus-

trated in Figure 2. Cholinesterase and bilirubin levels had the

lowest forest-averaged minimal depth (1.2 and 1.5, respectively),
followed by type of primary tumor (1.7), age (2.4), tumor burden

(2.8), and presence of extrahepatic disease (3.5). Sex had the high-

est averaged minimal depth (5.5), indicating little predictive value.
Importantly, both cholinesterase and bilirubin were included in

the model and had similar importance.
Figures 3 and 4 illustrate the dependency of predicted mortality

on the pretherapeutic levels of bilirubin and cholinesterase and

illustrate highly nonlinear behavior. Bilirubin levels below 1.5
mg/dL had little influence on predicted mortality. Levels above

1.5 mg/dL were associated with a linear and steep increase in

predicted mortality. Similarly, cholinesterase levels above 7.5 U/L
were associated with a roughly constant predicted mortality, whereas

a level falling below 7.5 U/L predicted a strong increase in mortality.
Figure 5 demonstrates the influence of tumor type on the expected

mortality. Predicted mortalities depend on the tumor type. The
trained model predicted the highest mortality for metastatic breast
cancer and the lowest mortality for neuroendocrine tumors.

DISCUSSION

In this study, we have used an advanced statistical method,
random survival forests, to predict response to 90Y radioembolization

FIGURE 1. Splitting patient population on median of predicted mortality reveals strong and

highly significant (P 5 6 · 10−8) differences in overall survival. Median survival in nonresponder

group was 6.6 mo, whereas median survival in responder group was 16.8 mo.

FIGURE 2. Minimal depth of baseline parameters, measuring the vari-

able importance: low values indicate that variable is used early in tree

growing and has stronger predictive value. Cholinesterase and bilirubin

levels have lowest minimal depth, highlighting importance of liver func-

tion. EHD 5 extrahepatic disease.
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in a cohort of patients with a hepatic tumor burden. We have dem-

onstrated that the predictive performance of the proposed random

survival forest is similar to a previously published Cox model, with-

out relying on restrictive assumptions. By means of the concept of

‘‘minimal depth,’’ we assessed the importance and hence the pre-

dictive value of pretherapeutic variables. Confirming a previous find-

ing (9), pretherapeutic cholinesterase level emerged as a highly

predictive factor, closely followed by pretherapeutic bilirubin level

and tumor type. This result highlights the role of these parameters as

markers of liver function. Although elevated bilirubin levels indicate

impaired hepatic bilirubin clearance, cholinesterase is an important

biomarker of the synthetic liver function (15). As such, the cholinesterase

level provides complementary information
about liver function, especially in patients
with primary tumors of the liver who have
an underlying cirrhotic liver disease.
Importantly, the random-survival-forest

model can accommodate both parameters
with appropriate importance, whereas the
conventional multivariate regression model
excluded bilirubin level because of corre-
lation with cholinesterase. In conventional
analysis, such correlated parameters may
act as confounders, whereas random sur-
vival forests are able to circumvent this
issue through the 2-fold randomization in
the training process (13).
In addition, our random-survival-forest

analysis provided novel insights into the
influence of individual predictive variables
on the overall predicted risk: by assessing
partial dependency, we were able to dem-
onstrate nonlinear behavior for baseline
cholinesterase and bilirubin levels, confirm-
ing previous intuitions. Our analysis suggests
that bilirubin levels below 1.5 mg/dL have

little influence on the predicted risk, whereas bilirubin levels above
1.5 mg/dL are associated with a strong and approximately linear
increase in risk. Likewise, a pretherapeutic cholinesterase level above
7.5 U/L is associated with good prognosis, whereas lower levels are
associated with high predicted mortality. Moreover, the trained random
survival forest captures the influence of tumor type on overall survival:
metastatic breast cancer is associated with the highest predicted
mortality, closely followed by colorectal carcinoma, whereas the
model predicts the lowest mortality for neuroendocrine tumors. This
model behavior is in excellent agreement with the median survival
times in our patient cohort (9).
Recently, a simple scoring system for patient selection was

proposed (7) in which tumor burden, Karnofsky index, and serum
levels of carcinoembryonic antigen or cancer
antigen 19-9 were binarized and formed a
combined score. This score discriminated
overall survival in patients with metastatic
colorectal carcinoma, suggesting potential
for improved patient selection. In comparison,
our random-survival-forest model was trained
on a larger cohort including more types of pri-
mary tumors, considers more variables, and,
importantly, does not rely on the definition of
thresholds.
Our random-survival-forest model predicts

individual mortality as a continuous variable.
To select patients who will benefit most from
radioembolization, an optimal cutoff needs
to be found. To choose such a threshold, one
needs to balance overtreatment and risks of
aggressive therapy against the benefits of life-
prolonging therapy with an acceptable qual-
ity of life. Briefly, one would dichotomize the
predicted mortality and estimate the log-rank
statistic and the hazard ratio in a Cox model
(16). As a cutoff, one could then choose ei-
ther the value where the log-rank statistic has

FIGURE 3. Partial dependency for bilirubin: expected mortality increases strongly once bilirubin

levels exceed approximately 1.5 mg/dL.

FIGURE 4. Partial dependency for cholinesterase: cholinesterase levels below approximately

7.5 U/L are associated with strong increase in expected mortality.
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the highest significance or the maximal predicted mortality that
still results in a significant difference in overall survival, with the
objective of including a large number of patients.
In our analysis, the hepatic tumor burden expressed in 3

categories (below 25%, 25%–50%, and above 50%) was moder-
ately important. This measure was derived from pretherapeutic
MRI. In light of the emerging role of radiomics (17), it can be
expected that imaging biomarkers with much higher predictive
performance will be identified as demonstrated recently for
high-grade brain tumors (12,18). Hence, a stronger contribution
of pretherapeutic imaging to the prediction of mortality and strat-
ification of patients is likely.
The present study is not without limitations. First, it relies on data

from a single institution only; our findings should be validated on a
large database, ideally from multiple institutions. Second, we have not
validated our random survival forest on an independent test dataset,
nor have we used cross validation for prediction of mortality. However,
unbiased predictions were ensured by out-of-bag predictions—every
single tree predicted outcome only for the data that were not used for
tree growing. Moreover, our analysis was not focused on prediction
alone; we aimed also to derive insights into the contribution of indi-
vidual variables. For this purpose, validation in separate datasets is not
required.

CONCLUSION

We have used a modern statistical approach for prediction of
overall survival after 90Y radioembolization. The predictive per-
formance of our model was similar to a previously published Cox
proportional hazards model, and in addition, the model revealed a
strong predictive value for baseline cholinesterase and bilirubin, with
a highly nonlinear influence for each parameter.
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